Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.301
Filter
1.
Biochemistry ; 63(10): 1287-1296, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38727003

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) frameshift stimulatory element (FSE) is necessary for programmed -1 ribosomal frameshifting (-1 PRF) and optimized viral efficacy. The FSE has an abundance of context-dependent alternate conformations, but two of the structures most crucial to -1 PRF are an attenuator hairpin and a three-stem H-type pseudoknot structure. A crystal structure of the pseudoknot alone features three RNA stems in a helically stacked linear structure, whereas a 6.9 Å cryo-EM structure including the upstream heptameric slippery site resulted in a bend between two stems. Our previous research alluded to an extended upstream multibranch loop that includes both the attenuator hairpin and the slippery site-a conformation not previously modeled. We aim to provide further context to the SARS-CoV-2 FSE via computational and medium resolution cryo-EM approaches, by presenting a 6.1 Å cryo-EM structure featuring a linear pseudoknot structure and a dynamic upstream multibranch loop.


Subject(s)
Cryoelectron Microscopy , Frameshifting, Ribosomal , Nucleic Acid Conformation , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Humans , Models, Molecular , COVID-19/virology
2.
PLoS Comput Biol ; 20(5): e1011787, 2024 May.
Article in English | MEDLINE | ID: mdl-38713726

ABSTRACT

Understanding and targeting functional RNA structures towards treatment of coronavirus infection can help us to prepare for novel variants of SARS-CoV-2 (the virus causing COVID-19), and any other coronaviruses that could emerge via human-to-human transmission or potential zoonotic (inter-species) events. Leveraging the fact that all coronaviruses use a mechanism known as -1 programmed ribosomal frameshifting (-1 PRF) to replicate, we apply algorithms to predict the most energetically favourable secondary structures (each nucleotide involved in at most one pairing) that may be involved in regulating the -1 PRF event in coronaviruses, especially SARS-CoV-2. We compute previously unknown most stable structure predictions for the frameshift site of coronaviruses via hierarchical folding, a biologically motivated framework where initial non-crossing structure folds first, followed by subsequent, possibly crossing (pseudoknotted), structures. Using mutual information from 181 coronavirus sequences, in conjunction with the algorithm KnotAli, we compute secondary structure predictions for the frameshift site of different coronaviruses. We then utilize the Shapify algorithm to obtain most stable SARS-CoV-2 secondary structure predictions guided by frameshift sequence-specific and genome-wide experimental data. We build on our previous secondary structure investigation of the singular SARS-CoV-2 68 nt frameshift element sequence, by using Shapify to obtain predictions for 132 extended sequences and including covariation information. Previous investigations have not applied hierarchical folding to extended length SARS-CoV-2 frameshift sequences. By doing so, we simulate the effects of ribosome interaction with the frameshift site, providing insight to biological function. We contribute in-depth discussion to contextualize secondary structure dual-graph motifs for SARS-CoV-2, highlighting the energetic stability of the previously identified 3_8 motif alongside the known dominant 3_3 and 3_6 (native-type) -1 PRF structures. Using a combination of thermodynamic methods and sequence covariation, our novel predictions suggest function of the attenuator hairpin via previously unknown pseudoknotted base pairing. While certain initial RNA folding is consistent, other pseudoknotted base pairs form which indicate potential conformational switching between the two structures.


Subject(s)
Algorithms , COVID-19 , Computational Biology , Frameshifting, Ribosomal , Nucleic Acid Conformation , RNA, Viral , SARS-CoV-2 , Frameshifting, Ribosomal/genetics , SARS-CoV-2/genetics , RNA, Viral/genetics , RNA, Viral/chemistry , Humans , COVID-19/virology , Computational Biology/methods , Coronavirus/genetics
3.
Biochemistry ; 63(10): 1235-1240, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38718213

ABSTRACT

Nonstructural protein 1 (nsp1) of the severe acute respiratory syndrome coronavirus (SCOV1 and SCOV2) acts as a host shutoff protein by blocking the translation of host mRNAs and triggering their decay. Surprisingly, viral RNA, which resembles host mRNAs containing a 5'-cap and a 3'-poly(A) tail, escapes significant translation inhibition and RNA decay, aiding viral propagation. Current literature proposes that, in SCOV2, nsp1 binds the viral RNA leader sequence, and the interaction may serve to distinguish viral RNA from host mRNA. However, a direct binding between SCOV1 nsp1 and the corresponding RNA leader sequence has not been established yet. Here, we show that SCOV1 nsp1 binds to the SCOV1 RNA leader sequence but forms multiple complexes at a high concentration of nsp1. These complexes are marginally different from complexes formed with SCOV2 nsp1. Finally, mutations of the RNA stem-loop did not completely abolish RNA binding by nsp1, suggesting that an RNA secondary structure is more important for binding than the sequence itself. Understanding the nature of binding of nsp1 to viral RNA will allow us to understand how this viral protein selectively suppresses host gene expression.


Subject(s)
RNA, Viral , Viral Nonstructural Proteins , RNA, Viral/metabolism , RNA, Viral/genetics , RNA, Viral/chemistry , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Protein Binding , Humans , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/metabolism , 5' Untranslated Regions , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , RNA-Dependent RNA Polymerase
4.
Nat Commun ; 15(1): 4198, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760344

ABSTRACT

During HIV infection, specific RNA-protein interaction between the Rev response element (RRE) and viral Rev protein is required for nuclear export of intron-containing viral mRNA transcripts. Rev initially binds the high-affinity site in stem-loop II, which promotes oligomerization of additional Rev proteins on RRE. Here, we present the crystal structure of RRE stem-loop II in distinct closed and open conformations. The high-affinity Rev-binding site is located within the three-way junction rather than the predicted stem IIB. The closed and open conformers differ in their non-canonical interactions within the three-way junction, and only the open conformation has the widened major groove conducive to initial Rev interaction. Rev binding assays show that RRE stem-loop II has high- and low-affinity binding sites, each of which binds a Rev dimer. We propose a binding model, wherein Rev-binding sites on RRE are sequentially created through structural rearrangements induced by Rev-RRE interactions.


Subject(s)
HIV-1 , Nucleic Acid Conformation , RNA, Viral , rev Gene Products, Human Immunodeficiency Virus , HIV-1/metabolism , HIV-1/genetics , Binding Sites , rev Gene Products, Human Immunodeficiency Virus/metabolism , rev Gene Products, Human Immunodeficiency Virus/chemistry , rev Gene Products, Human Immunodeficiency Virus/genetics , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , Crystallography, X-Ray , Protein Binding , Models, Molecular , Humans , Response Elements
5.
PLoS One ; 19(4): e0298164, 2024.
Article in English | MEDLINE | ID: mdl-38574063

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, is known to exhibit secondary structures in its 5' and 3' untranslated regions, along with the frameshifting stimulatory element situated between ORF1a and 1b. To identify additional regions containing conserved structures, we utilized a multiple sequence alignment with related coronaviruses as a starting point. We applied a computational pipeline developed for identifying non-coding RNA elements. Our pipeline employed three different RNA structural prediction approaches. We identified forty genomic regions likely to harbor structures, with ten of them showing three-way consensus substructure predictions among our predictive utilities. We conducted intracomparisons of the predictive utilities within the pipeline and intercomparisons with four previously published SARS-CoV-2 structural datasets. While there was limited agreement on the precise structure, different approaches seemed to converge on regions likely to contain structures in the viral genome. By comparing and combining various computational approaches, we can predict regions most likely to form structures, as well as a probable structure or ensemble of structures. These predictions can be used to guide surveillance, prophylactic measures, or therapeutic efforts. Data and scripts employed in this study may be found at https://doi.org/10.5281/zenodo.8298680.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Sequence Alignment , Genome, Viral/genetics , RNA, Viral/genetics , RNA, Viral/chemistry
6.
PLoS Pathog ; 20(4): e1012142, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574111

ABSTRACT

RNA viruses and viroids exist and evolve as quasispecies due to error-prone replication. Quasispecies consist of a few dominant master sequences alongside numerous variants that contribute to genetic diversity. Upon environmental changes, certain variants within quasispecies have the potential to become the dominant sequences, leading to the emergence of novel infectious strains. However, the emergence of new infectious variants remains unpredictable. Using mutant pools prepared by saturation mutagenesis of selected stem and loop regions, our study of potato spindle tuber viroid (PSTVd) demonstrates that mutants forming local three-dimensional (3D) structures similar to the wild type (WT) are more likely to accumulate in PSTVd quasispecies. The selection mechanisms underlying this biased accumulation are likely associated with cell-to-cell movement and long-distance trafficking. Moreover, certain trafficking-defective PSTVd mutants can be spread by functional sister genomes in the quasispecies. Our study reveals that the RNA 3D structure of stems and loops constrains the evolution of viroid quasispecies. Mutants with a structure similar to WT have a higher likelihood of being maintained within the quasispecies and can potentially give rise to novel infectious variants. These findings emphasize the potential of targeting RNA 3D structure as a more robust approach to defend against viroid infections.


Subject(s)
Plant Viruses , Solanum tuberosum , Viroids , Viroids/genetics , Solanum tuberosum/genetics , RNA, Viral/genetics , RNA, Viral/chemistry , Quasispecies , Mutagenesis , Plant Diseases , Plant Viruses/genetics
7.
PeerJ ; 12: e16962, 2024.
Article in English | MEDLINE | ID: mdl-38666080

ABSTRACT

Introduction: The propensity of nucleotide bases to form pairs, causes folding and the formation of secondary structure in the RNA. Therefore, purine (R): pyrimidine (Y) base-pairing is vital to maintain uniform lateral dimension in RNA secondary structure. Transversions or base substitutions between R and Y bases, are more detrimental to the stability of RNA secondary structure, than transitions derived from substitutions between A and G or C and T. The study of transversion and transition base substitutions is important to understand evolutionary mechanisms of RNA secondary structure in the 5'  and 3'  untranslated (UTR) regions of SARS-CoV-2. In this work, we carried out comparative analysis of transition and transversion base substitutions in the stem and loop regions of RNA secondary structure of SARS-CoV-2. Methods: We have considered the experimentally determined and well documented stem and loop regions of 5' and 3' UTR regions of SARS-CoV-2 for base substitution analysis. The secondary structure comprising of stem and loop regions were visualized using the RNAfold web server. The GISAID repository was used to extract base sequence alignment of the UTR regions. Python scripts were developed for comparative analysis of transversion and transition frequencies in the stem and the loop regions. Results: The results of base substitution analysis revealed a higher transition (ti) to transversion (tv) ratio (ti/tv) in the stem region of UTR of RNA secondary structure of SARS-CoV-2 reported during the early stage of the pandemic. The higher ti/tv ratio in the stem region suggested the influence of secondary structure in selecting the pattern of base substitutions. This differential pattern of ti/tv values between stem and loop regions was not observed among the Delta and Omicron variants that dominated the later stage of the pandemic. It is noteworthy that the ti/tv values in the stem and loop regions were similar among the later dominant Delta and Omicron variant strains which is to be investigated to understand the rapid evolution and global adaptation of SARS-CoV-2. Conclusion: Our findings implicate the lower frequency of transversions than the transitions in the stem regions of UTRs of SARS-CoV-2. The RNA secondary structures are associated with replication, translation, and packaging, further investigations are needed to understand these base substitutions across different variants of SARS-CoV-2.


Subject(s)
Nucleic Acid Conformation , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/chemistry , RNA, Viral/genetics , RNA, Viral/chemistry , 3' Untranslated Regions/genetics , Humans , 5' Untranslated Regions/genetics , COVID-19/virology , COVID-19/epidemiology , Base Pairing , Base Sequence
8.
PLoS Comput Biol ; 20(4): e1012009, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38648223

ABSTRACT

Influenza A virus contains regions of its segmented genome associated with ability to package the segments into virions, but many such regions are poorly characterised. We provide detailed predictions of the key locations within these packaging-associated regions, and their structures, by applying a recently-improved pipeline for delineating constrained regions in RNA viruses and applying structural prediction algorithms. We find and characterise other known constrained regions within influenza A genomes, including the region associated with the PA-X frameshift, regions associated with alternative splicing, and constraint around the initiation motif for a truncated PB1 protein, PB1-N92, associated with avian viruses. We further predict the presence of constrained regions that have not previously been described. The extra characterisation our work provides allows investigation of these key regions for drug target potential, and points towards determinants of packaging compatibility between segments.


Subject(s)
Computational Biology , Influenza A virus , Virus Assembly , Influenza A virus/genetics , Virus Assembly/genetics , Computational Biology/methods , Genome, Viral/genetics , Algorithms , Computer Simulation , RNA, Viral/genetics , RNA, Viral/chemistry , RNA, Viral/metabolism , Humans , RNA Viruses/genetics
9.
Nucleic Acids Res ; 52(9): 5257-5272, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38634805

ABSTRACT

It has been proposed that coronavirus nsp15 mediates evasion of host cell double-stranded (ds) RNA sensors via its uracil-specific endoribonuclease activity. However, how nsp15 processes viral dsRNA, commonly considered as a genome replication intermediate, remains elusive. Previous research has mainly focused on short single-stranded RNA as substrates, and whether nsp15 prefers single-stranded or double-stranded RNA for cleavage is controversial. In the present work, we prepared numerous RNA substrates, including both long substrates mimicking the viral genome and short defined RNA, to clarify the substrate preference and cleavage pattern of SARS-CoV-2 nsp15. We demonstrated that SARS-CoV-2 nsp15 preferentially cleaved pyrimidine nucleotides located in less thermodynamically stable areas in dsRNA, such as AU-rich areas and mismatch-containing areas, in a nicking manner. Because coronavirus genomes generally have a high AU content, our work supported the mechanism that coronaviruses evade the antiviral response mediated by host cell dsRNA sensors by using nsp15 dsRNA nickase to directly cleave dsRNA intermediates formed during genome replication and transcription.


Subject(s)
RNA, Double-Stranded , RNA, Viral , SARS-CoV-2 , Viral Nonstructural Proteins , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/genetics , SARS-CoV-2/genetics , SARS-CoV-2/enzymology , RNA, Viral/metabolism , RNA, Viral/genetics , RNA, Viral/chemistry , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Humans , Endoribonucleases/metabolism , Endoribonucleases/genetics , Virus Replication/genetics , Substrate Specificity , Genome, Viral , COVID-19/virology
10.
Nucleic Acids Res ; 52(6): 3419-3432, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38426934

ABSTRACT

Betacoronaviruses are a genus within the Coronaviridae family of RNA viruses. They are capable of infecting vertebrates and causing epidemics as well as global pandemics in humans. Mitigating the threat posed by Betacoronaviruses requires an understanding of their molecular diversity. The development of novel antivirals hinges on understanding the key regulatory elements within the viral RNA genomes, in particular the 5'-proximal region, which is pivotal for viral protein synthesis. Using a combination of cryo-electron microscopy, atomic force microscopy, chemical probing, and computational modeling, we determined the structures of 5'-proximal regions in RNA genomes of Betacoronaviruses from four subgenera: OC43-CoV, SARS-CoV-2, MERS-CoV, and Rousettus bat-CoV. We obtained cryo-electron microscopy maps and determined atomic-resolution models for the stem-loop-5 (SL5) region at the translation start site and found that despite low sequence similarity and variable length of the helical elements it exhibits a remarkable structural conservation. Atomic force microscopy imaging revealed a common domain organization and a dynamic arrangement of structural elements connected with flexible linkers across all four Betacoronavirus subgenera. Together, these results reveal common features of a critical regulatory region shared between different Betacoronavirus RNA genomes, which may allow targeting of these RNAs by broad-spectrum antiviral therapeutics.


Subject(s)
Betacoronavirus , RNA, Viral , Betacoronavirus/genetics , Cryoelectron Microscopy , Genome, Viral/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/ultrastructure , SARS-CoV-2/genetics
11.
Biochem Soc Trans ; 52(2): 899-909, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38533854

ABSTRACT

RNA, a dynamic and flexible molecule with intricate three-dimensional structures, has myriad functions in disease development. Traditional methods, such as X-ray crystallography and nuclear magnetic resonance, face limitations in capturing real-time, single-molecule dynamics crucial for understanding RNA function. This review explores the transformative potential of single-molecule force spectroscopy using optical tweezers, showcasing its capability to directly probe time-dependent structural rearrangements of individual RNA molecules. Optical tweezers offer versatility in exploring diverse conditions, with the potential to provide insights into how environmental changes, ligands and RNA-binding proteins impact RNA behaviour. By enabling real-time observations of large-scale structural dynamics, optical tweezers emerge as an invaluable tool for advancing our comprehension of RNA structure and function. Here, we showcase their application in elucidating the dynamics of RNA elements in virology, such as the pseudoknot governing ribosomal frameshifting in SARS-CoV-2.


Subject(s)
COVID-19 , Nucleic Acid Conformation , Optical Tweezers , SARS-CoV-2 , Single Molecule Imaging , SARS-CoV-2/genetics , Single Molecule Imaging/methods , COVID-19/virology , Humans , RNA, Viral/chemistry , RNA/chemistry , Frameshifting, Ribosomal , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism
12.
RNA ; 30(6): 609-623, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38383158

ABSTRACT

Flaviviruses such as Zika (ZIKV) and dengue virus (DENV) are positive-sense RNA viruses belonging to Flaviviridae The flavivirus genome contains a 5' end stem-loop promoter sequence known as stem-loop A (SLA) that is recognized by the flavivirus polymerase NS5 during viral RNA synthesis and 5' guanosine cap methylation. The crystal structures of ZIKV and DENV SLAs show a well-defined fold, consisting of a bottom stem, side loop, and top stem-loop, providing unique interaction sites for small molecule inhibitors to disrupt the promoter function. To facilitate the identification of small molecule binding sites in flavivirus SLA, we determined high-resolution structures of the bottom and top stems of ZIKV SLA, which contain a single U- or G-bulge, respectively. Both bulge nucleotides exhibit multiple orientations, from folded back on the adjacent nucleotide to flipped out of the helix, and are stabilized by stacking or base triple interactions. These structures suggest that even a single unpaired nucleotide can provide flexibility to RNA structures, and its conformation is mainly determined by the stabilizing chemical environment. To facilitate discovery of small molecule inhibitors that interfere with the functions of ZIKV SLA, we screened and identified compounds that bind to the bottom and top stems of ZIKV SLA.


Subject(s)
Nucleic Acid Conformation , RNA, Viral , Small Molecule Libraries , Zika Virus , Zika Virus/genetics , Zika Virus/drug effects , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Binding Sites , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Crystallography, X-Ray , Models, Molecular , Promoter Regions, Genetic
13.
J Virol ; 98(3): e0182023, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38329331

ABSTRACT

Multi-segmented viruses often multimerize their genomic segments to ensure efficient and stoichiometric packaging of the correct genetic cargo. In the bipartite Nodaviridae family, genome heterodimerization is also observed and conserved among different species. However, the nucleotide composition and biological function for this heterodimer remain unclear. Using Flock House virus as a model system, we developed a next-generation sequencing approach ("XL-ClickSeq") to probe heterodimer site sequences. We identified an intermolecular base-pairing site which contributed to heterodimerization in both wild-type and defective virus particles. Mutagenic disruption of this heterodimer site exhibited significant deficiencies in genome packaging and encapsidation specificity to viral genomic RNAs. Furthermore, the disruption of this intermolecular interaction directly impacts the thermostability of the mature virions. These results demonstrate that the intermolecular RNA-RNA interactions within the encapsidated genome of an RNA virus have an important role on virus particle integrity and thus may impact its transmission to a new host.IMPORTANCEFlock House virus is a member of Nodaviridae family of viruses, which provides a well-studied model virus for non-enveloped RNA virus assembly, cell entry, and replication. The Flock House virus genome consists of two separate RNA molecules, which can form a heterodimer upon heating of virus particles. Although similar RNA dimerization is utilized by other viruses (such as retroviruses) as a packaging mechanism and is conserved among Nodaviruses, the role of heterodimerization in the Nodavirus replication cycle is unclear. In this research, we identified the RNA sequences contributing to Flock House virus genome heterodimerization and discovered that such RNA-RNA interaction plays an essential role in virus packaging efficiency and particle integrity. This provides significant insight into how the interaction of packaged viral RNA may have a broader impact on the structural and functional properties of virus particles.


Subject(s)
Dimerization , Genome, Viral , Nodaviridae , RNA, Viral , Thermodynamics , Viral Genome Packaging , Virion , Animals , Base Pairing/genetics , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing , Mutation , Nodaviridae/chemistry , Nodaviridae/genetics , Nodaviridae/growth & development , RNA Virus Infections/transmission , RNA Virus Infections/veterinary , RNA Virus Infections/virology , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Viral Genome Packaging/genetics , Virion/chemistry , Virion/genetics , Virion/metabolism
14.
RNA ; 30(4): 327-336, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38325897

ABSTRACT

RNA caps are deposited at the 5' end of RNA polymerase II transcripts. This modification regulates several steps of gene expression, in addition to marking transcripts as self to enable the innate immune system to distinguish them from uncapped foreign RNAs, including those derived from viruses. Specialized immune sensors, such as RIG-I and IFITs, trigger antiviral responses upon recognition of uncapped cytoplasmic transcripts. Interestingly, uncapped transcripts can also be produced by mammalian hosts. For instance, 5'-triphosphate RNAs are generated by RNA polymerase III transcription, including tRNAs, Alu RNAs, or vault RNAs. These RNAs have emerged as key players of innate immunity, as they can be recognized by the antiviral sensors. Mechanisms that regulate the presence of 5'-triphosphates, such as 5'-end dephosphorylation or RNA editing, prevent immune recognition of endogenous RNAs and excessive inflammation. Here, we provide a comprehensive overview of the complexity of RNA cap structures and 5'-triphosphate RNAs, highlighting their roles in transcript identity, immune surveillance, and disease.


Subject(s)
Immunity, Innate , Polyphosphates , Animals , Immunity, Innate/genetics , RNA Caps , Antiviral Agents , RNA, Viral/chemistry , Mammals/genetics
15.
RNA ; 30(3): 213-222, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38164607

ABSTRACT

Certain positive-sense single-stranded RNA viruses contain elements at their 3' termini that structurally mimic tRNAs. These tRNA-like structures (TLSs) are classified based on which amino acid is covalently added to the 3' end by host aminoacyl-tRNA synthetase. Recently, a cryoEM reconstruction of a representative tyrosine-accepting tRNA-like structure (TLSTyr) from brome mosaic virus (BMV) revealed a unique mode of recognition of the viral anticodon-mimicking domain by tyrosyl-tRNA synthetase. Some viruses in the hordeivirus genus of Virgaviridae are also selectively aminoacylated with tyrosine, yet these TLS RNAs have a different architecture in the 5' domain that comprises the atypical anticodon loop mimic. Herein, we present bioinformatic and biochemical data supporting a distinct secondary structure for the 5' domain of the hordeivirus TLSTyr compared to those in Bromoviridae Despite forming a different secondary structure, the 5' domain is necessary to achieve robust in vitro aminoacylation. Furthermore, a chimeric RNA containing the 5' domain from the BMV TLSTyr and the 3' domain from a hordeivirus TLSTyr are aminoacylated, illustrating modularity in these structured RNA elements. We propose that the structurally distinct 5' domain of the hordeivirus TLSTyrs performs the same role in mimicking the anticodon loop as its counterpart in the BMV TLSTyr Finally, these structurally and phylogenetically divergent types of TLSTyr provide insight into the evolutionary connections between all classes of viral tRNA-like structures.


Subject(s)
Bromovirus , RNA Viruses , Tyrosine-tRNA Ligase , Base Sequence , Anticodon/genetics , RNA, Viral/chemistry , RNA, Transfer/chemistry , Bromovirus/genetics , Bromovirus/metabolism , RNA Viruses/genetics , Tyrosine-tRNA Ligase/genetics , Tyrosine-tRNA Ligase/chemistry , Tyrosine-tRNA Ligase/metabolism , Tyrosine/genetics , Tyrosine/metabolism , Nucleic Acid Conformation
16.
Acta Crystallogr D Struct Biol ; 80(Pt 2): 113-122, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38265877

ABSTRACT

Phenuiviridae nucleoprotein is the main structural and functional component of the viral cycle, protecting the viral RNA and mediating the essential replication/transcription processes. The nucleoprotein (N) binds the RNA using its globular core and polymerizes through the N-terminus, which is presented as a highly flexible arm, as demonstrated in this article. The nucleoprotein exists in an `open' or a `closed' conformation. In the case of the closed conformation the flexible N-terminal arm folds over the RNA-binding cleft, preventing RNA adsorption. In the open conformation the arm is extended in such a way that both RNA adsorption and N polymerization are possible. In this article, single-crystal X-ray diffraction and small-angle X-ray scattering were used to study the N protein of Toscana virus complexed with a single-chain camelid antibody (VHH) and it is shown that in the presence of the antibody the nucleoprotein is unable to achieve a functional assembly to form a ribonucleoprotein complex.


Subject(s)
Nucleoproteins , Sandfly fever Naples virus , Nucleoproteins/chemistry , Sandfly fever Naples virus/genetics , Sandfly fever Naples virus/metabolism , Nucleocapsid Proteins/chemistry , Models, Molecular , RNA, Viral/chemistry , RNA, Viral/metabolism
17.
Nanoscale ; 16(2): 752-764, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38087988

ABSTRACT

The parasitic nature of the SARS-CoV-2 virus demands selective packaging of its RNA genome (gRNA) from the abundance of other nucleic acids present in infected cells. Despite increasing evidence that stem-loop 4 (SL4) of the gRNA 5' UTR is involved in the initiation of this process by binding the nucleocapsid (N) protein, little is known about its conformational dynamics. Here, we unravel the stability, dynamics and (un)folding pathways of SL4 using optical tweezers and a base analogue, tCO, that provides a local and subtle increase in base stacking without perturbing hydrogen bonding. We find that SL4 (un)folds mainly in a single step or through an intermediate, encompassing nucleotides from the central U bulge to the hairpin loop. Due to an upper-stem CU mismatch, SL4 is prone to misfold, the extent of which can be tuned by incorporating tCO at different positions. Our study contributes to a better understanding of SARS-CoV-2 packaging and the design of drugs targeting SL4. We also highlight the generalizability of using base analogues in optical tweezers experiments for probing intramolecular states and conformational transitions of various nucleic acids at the level of single molecules and with base-pair resolution.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral/chemistry , Base Sequence , Nucleic Acid Conformation , Optical Tweezers , RNA, Guide, CRISPR-Cas Systems
18.
Biochem Cell Biol ; 102(1): 96-105, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37774422

ABSTRACT

Zika virus (ZIKV) infection remains a worldwide concern, and currently no effective treatments or vaccines are available. Novel therapeutics are an avenue of interest that could probe viral RNA-human protein communication to stop viral replication. One specific RNA structure, G-quadruplexes (G4s), possess various roles in viruses and all domains of life, including transcription and translation regulation and genome stability, and serves as nucleation points for RNA liquid-liquid phase separation. Previous G4 studies on ZIKV using a quadruplex forming G-rich sequences Mapper located a potential G-quadruplex sequence in the 3' terminal region (TR) and was validated structurally using a 25-mer oligo. It is currently unknown if this structure is conserved and maintained in a large ZIKV RNA transcript and its specific roles in viral replication. Using bioinformatic analysis and biochemical assays, we demonstrate that the ZIKV 3' TR G4 is conserved across all ZIKV isolates and maintains its structure in a 3' TR full-length transcript. We further established the G4 formation using pyridostatin and the BG4 G4-recognizing antibody binding assays. Our study also demonstrates that the human DEAD-box helicases, DDX3X132-607 and DDX17135-555, bind to the 3' TR and that DDX17135-555 unfolds the G4 present in the 3' TR. These findings provide a path forward in potential therapeutic targeting of DDX3X or DDX17's binding to the 3' TR G4 region for novel treatments against ZIKV.


Subject(s)
G-Quadruplexes , Zika Virus Infection , Zika Virus , Humans , Zika Virus/genetics , Zika Virus/metabolism , RNA, Viral/genetics , RNA, Viral/chemistry , RNA, Viral/metabolism , Virus Replication , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism
19.
Biophys J ; 123(1): 42-56, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37978800

ABSTRACT

During the HIV-1 assembly process, the Gag polyprotein multimerizes at the producer cell plasma membrane, resulting in the formation of spherical immature virus particles. Gag-genomic RNA (gRNA) interactions play a crucial role in the multimerization process, which is yet to be fully understood. We performed large-scale all-atom molecular dynamics simulations of membrane-bound full-length Gag dimer, hexamer, and 18-mer. The inter-domain dynamic correlation of Gag, quantified by the heterogeneous elastic network model applied to the simulated trajectories, is observed to be altered by implicit gRNA binding, as well as the multimerization state of the Gag. The lateral dynamics of our simulated membrane-bound Gag proteins, with and without gRNA binding, agree with prior experimental data and help to validate our simulation models and methods. The gRNA binding is observed to affect mainly the SP1 domain of the 18-mer and the matrix-capsid linker domain of the hexamer. In the absence of gRNA binding, the independent dynamical motion of the nucleocapsid domain results in a collapsed state of the dimeric Gag. Unlike stable SP1 helices in the six-helix bundle, without IP6 binding, the SP1 domain undergoes a spontaneous helix-to-coil transition in the dimeric Gag. Together, our findings reveal conformational switches of Gag at different stages of the multimerization process and predict that the gRNA binding reinforces an efficient binding surface of Gag for multimerization, and also regulates the dynamic organization of the local membrane region itself.


Subject(s)
Gene Products, gag , HIV-1 , gag Gene Products, Human Immunodeficiency Virus , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/metabolism , Gene Products, gag/chemistry , Gene Products, gag/genetics , Gene Products, gag/metabolism , Genomics , HIV-1/metabolism , RNA, Viral/chemistry , Virus Assembly
20.
RNA Biol ; 21(1): 1-32, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38100535

ABSTRACT

Viruses remain a global threat to animals, plants, and humans. The type 1 human immunodeficiency virus (HIV-1) is a member of the retrovirus family and carries an RNA genome, which is reverse transcribed into viral DNA and further integrated into the host-cell DNA for viral replication and proliferation. The RNA structures from the HIV-1 genome provide valuable insights into the mechanisms underlying the viral replication cycle. Moreover, these structures serve as models for designing novel therapeutic approaches. Here, we review structural data on RNA from the HIV-1 genome as well as computational studies based on these structural data. The review is organized according to the type of structured RNA element which contributes to different steps in the viral replication cycle. This is followed by an overview of the HIV-1 transactivation response element (TAR) RNA as a model system for understanding dynamics and interactions in the viral RNA systems. The review concludes with a description of computational studies, highlighting the impact of biomolecular simulations in elucidating the mechanistic details of various steps in the HIV-1's replication cycle.


Subject(s)
HIV-1 , Animals , Humans , HIV-1/genetics , HIV Long Terminal Repeat , Virus Replication , RNA, Viral/genetics , RNA, Viral/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...