Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 296
Filter
1.
Nat Commun ; 15(1): 4189, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760379

ABSTRACT

The viral polymerase complex, comprising the large protein (L) and phosphoprotein (P), is crucial for both genome replication and transcription in non-segmented negative-strand RNA viruses (nsNSVs), while structures corresponding to these activities remain obscure. Here, we resolved two L-P complex conformations from the mumps virus (MuV), a typical member of nsNSVs, via cryogenic-electron microscopy. One conformation presents all five domains of L forming a continuous RNA tunnel to the methyltransferase domain (MTase), preferably as a transcription state. The other conformation has the appendage averaged out, which is inaccessible to MTase. In both conformations, parallel P tetramers are revealed around MuV L, which, together with structures of other nsNSVs, demonstrates the diverse origins of the L-binding X domain of P. Our study links varying structures of nsNSV polymerase complexes with genome replication and transcription and points to a sliding model for polymerase complexes to advance along the RNA templates.


Subject(s)
Cryoelectron Microscopy , Mumps virus , Viral Proteins , Mumps virus/genetics , Mumps virus/ultrastructure , Mumps virus/metabolism , Viral Proteins/metabolism , Viral Proteins/ultrastructure , Viral Proteins/chemistry , Viral Proteins/genetics , Models, Molecular , RNA, Viral/metabolism , RNA, Viral/ultrastructure , RNA, Viral/genetics , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/ultrastructure , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Protein Domains , Phosphoproteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/ultrastructure , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/ultrastructure , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , Virus Replication , Transcription, Genetic , Protein Conformation
2.
Nucleic Acids Res ; 52(6): 3419-3432, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38426934

ABSTRACT

Betacoronaviruses are a genus within the Coronaviridae family of RNA viruses. They are capable of infecting vertebrates and causing epidemics as well as global pandemics in humans. Mitigating the threat posed by Betacoronaviruses requires an understanding of their molecular diversity. The development of novel antivirals hinges on understanding the key regulatory elements within the viral RNA genomes, in particular the 5'-proximal region, which is pivotal for viral protein synthesis. Using a combination of cryo-electron microscopy, atomic force microscopy, chemical probing, and computational modeling, we determined the structures of 5'-proximal regions in RNA genomes of Betacoronaviruses from four subgenera: OC43-CoV, SARS-CoV-2, MERS-CoV, and Rousettus bat-CoV. We obtained cryo-electron microscopy maps and determined atomic-resolution models for the stem-loop-5 (SL5) region at the translation start site and found that despite low sequence similarity and variable length of the helical elements it exhibits a remarkable structural conservation. Atomic force microscopy imaging revealed a common domain organization and a dynamic arrangement of structural elements connected with flexible linkers across all four Betacoronavirus subgenera. Together, these results reveal common features of a critical regulatory region shared between different Betacoronavirus RNA genomes, which may allow targeting of these RNAs by broad-spectrum antiviral therapeutics.


Subject(s)
Betacoronavirus , RNA, Viral , Betacoronavirus/genetics , Cryoelectron Microscopy , Genome, Viral/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/ultrastructure , SARS-CoV-2/genetics
3.
J Biol Chem ; 299(12): 105362, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863261

ABSTRACT

The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) compacts the RNA genome into viral ribonucleoprotein (vRNP) complexes within virions. Assembly of vRNPs is inhibited by phosphorylation of the N protein serine/arginine (SR) region. Several SARS-CoV-2 variants of concern carry N protein mutations that reduce phosphorylation and enhance the efficiency of viral packaging. Variants of the dominant B.1.1 viral lineage also encode a truncated N protein, termed N∗ or Δ(1-209), that mediates genome packaging despite lacking the N-terminal RNA-binding domain and SR region. Here, we use mass photometry and negative stain electron microscopy to show that purified Δ(1-209) and viral RNA assemble into vRNPs that are remarkably similar in size and shape to those formed with full-length N protein. We show that assembly of Δ(1-209) vRNPs requires the leucine-rich helix of the central disordered region and that this helix promotes N protein oligomerization. We also find that fusion of a phosphomimetic SR region to Δ(1-209) inhibits RNA binding and vRNP assembly. Our results provide new insights into the mechanisms by which RNA binding promotes N protein self-association and vRNP assembly, and how this process is modulated by phosphorylation.


Subject(s)
Nucleocapsid Proteins , SARS-CoV-2 , Humans , COVID-19/virology , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Nucleocapsid Proteins/ultrastructure , RNA, Viral/metabolism , RNA, Viral/ultrastructure , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/ultrastructure , Phosphorylation , Virus Assembly/genetics
4.
Nat Commun ; 14(1): 1134, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36854751

ABSTRACT

Human RNA binding protein Musashi-1 (MSI1) plays a critical role in neural progenitor cells (NPCs) by binding to various host RNA transcripts. The canonical MSI1 binding site (MBS), A/GU(1-3)AG single-strand motif, is present in many RNA virus genomes, but only Zika virus (ZIKV) genome has been demonstrated to bind MSI1. Herein, we identified the AUAG motif and the AGAA tetraloop in the Xrn1-resistant RNA 2 (xrRNA2) as the canonical and non-canonical MBS, respectively, and both are crucial for ZIKV neurotropism. More importantly, the unique AGNN-type tetraloop is evolutionally conserved, and distinguishes ZIKV from other known viruses with putative MBSs. Integrated structural analysis showed that MSI1 binds to the AUAG motif and AGAA tetraloop of ZIKV in a bipartite fashion. Thus, our results not only identified an unusual viral RNA structure responsible for MSI recognition, but also revealed a role for the highly structured xrRNA in controlling viral neurotropism.


Subject(s)
RNA, Viral , Zika Virus Infection , Zika Virus , Humans , Binding Sites , Nerve Tissue Proteins/genetics , RNA, Viral/ultrastructure , RNA-Binding Proteins/genetics , Zika Virus/genetics , Zika Virus/metabolism , Zika Virus Infection/genetics
5.
Sci Rep ; 12(1): 310, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013354

ABSTRACT

Influenza virus is a persistent threat to human health; indeed, the deadliest modern pandemic was in 1918 when an H1N1 virus killed an estimated 50 million people globally. The intent of this work is to better understand influenza from an RNA-centric perspective to provide local, structural motifs with likely significance to the influenza infectious cycle for therapeutic targeting. To accomplish this, we analyzed over four hundred thousand RNA sequences spanning three major clades: influenza A, B and C. We scanned influenza segments for local secondary structure, identified/modeled motifs of likely functionality, and coupled the results to an analysis of evolutionary conservation. We discovered 185 significant regions of predicted ordered stability, yet evidence of sequence covariation was limited to 7 motifs, where 3-found in influenza C-had higher than expected amounts of sequence covariation.


Subject(s)
Betainfluenzavirus/genetics , Gammainfluenzavirus/genetics , Influenza A virus/genetics , RNA Stability , RNA, Viral/ultrastructure , Antiviral Agents/pharmacology , Influenza A virus/drug effects , Betainfluenzavirus/drug effects , Gammainfluenzavirus/drug effects , Models, Molecular , Nucleic Acid Conformation , Nucleotide Motifs , RNA, Viral/drug effects , RNA, Viral/genetics , Sequence Analysis, RNA , Structure-Activity Relationship
6.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: mdl-34996842

ABSTRACT

The current COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The positive-sense single-stranded RNA virus contains a single linear RNA segment that serves as a template for transcription and replication, leading to the synthesis of positive and negative-stranded viral RNA (vRNA) in infected cells. Tools to visualize vRNA directly in infected cells are critical to analyze the viral replication cycle, screen for therapeutic molecules, or study infections in human tissue. Here, we report the design, validation, and initial application of FISH probes to visualize positive or negative RNA of SARS-CoV-2 (CoronaFISH). We demonstrate sensitive visualization of vRNA in African green monkey and several human cell lines, in patient samples and human tissue. We further demonstrate the adaptation of CoronaFISH probes to electron microscopy. We provide all required oligonucleotide sequences, source code to design the probes, and a detailed protocol. We hope that CoronaFISH will complement existing techniques for research on SARS-CoV-2 biology and COVID-19 pathophysiology, drug screening, and diagnostics.


Subject(s)
COVID-19/diagnosis , In Situ Hybridization, Fluorescence/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , Virus Replication/genetics , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/pharmacology , COVID-19/virology , Caco-2 Cells , Cell Line, Tumor , Chlorocebus aethiops , Humans , In Situ Hybridization/methods , Microscopy, Electron/methods , RNA, Viral/ultrastructure , Reproducibility of Results , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Sensitivity and Specificity , Vero Cells , Virus Release/drug effects , Virus Release/genetics , Virus Release/physiology , Virus Replication/drug effects , Virus Replication/physiology , COVID-19 Drug Treatment
7.
Curr Opin Virol ; 51: 74-79, 2021 12.
Article in English | MEDLINE | ID: mdl-34601307

ABSTRACT

The nodavirus flock house virus recently provided a well-characterized model for the first cryo-electron microscope tomography of membrane-bound, positive-strand RNA ((+)RNA) virus genome replication complexes (RCs). The resulting first views of RC organization and complementary biochemical results showed that the viral RNA replication vesicle is tightly packed with the dsRNA genomic RNA replication intermediate, and that (+)ssRNA replication products are released through the vesicle neck to the cytosol through a 12-fold symmetric ring or crown of multi-functional viral RNA replication proteins, which likely also contribute to viral RNA synthesis. Subsequent studies identified similar crown-like RNA replication protein complexes in alphavirus and coronavirus RCs, indicating related mechanisms across highly divergent (+)RNA viruses. As outlined in this review, these results have significant implications for viral function, evolution and control.


Subject(s)
Nodaviridae/ultrastructure , Animals , Cryoelectron Microscopy , Nodaviridae/physiology , Plants/virology , RNA, Viral/ultrastructure , Virus Replication
8.
Nat Commun ; 12(1): 5513, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535641

ABSTRACT

Under the Baltimore nucleic acid-based virus classification scheme, the herpesvirus human cytomegalovirus (HCMV) is a Class I virus, meaning that it contains a double-stranded DNA genome-and no RNA. Here, we report sub-particle cryoEM reconstructions of HCMV virions at 2.9 Å resolution revealing structures resembling non-coding transfer RNAs (tRNAs) associated with the virion's capsid-bound tegument protein, pp150. Through deep sequencing, we show that these RNA sequences match human tRNAs, and we built atomic models using the most abundant tRNA species. Based on our models, tRNA recruitment is mediated by the electrostatic interactions between tRNA phosphate groups and the helix-loop-helix motif of HCMV pp150. The specificity of these interactions may explain the absence of such tRNA densities in murine cytomegalovirus and other human herpesviruses.


Subject(s)
Capsid/metabolism , Cytomegalovirus/ultrastructure , Phosphoproteins/metabolism , RNA, Transfer/metabolism , Viral Matrix Proteins/metabolism , Virion/ultrastructure , Anticodon/metabolism , Base Sequence , Cell Line , Cryoelectron Microscopy , Glutamate-tRNA Ligase/chemistry , Glutamate-tRNA Ligase/metabolism , Humans , Models, Molecular , Phosphoproteins/ultrastructure , RNA, Viral/ultrastructure , Viral Matrix Proteins/ultrastructure
9.
Nat Struct Mol Biol ; 28(9): 747-754, 2021 09.
Article in English | MEDLINE | ID: mdl-34426697

ABSTRACT

Drug discovery campaigns against COVID-19 are beginning to target the SARS-CoV-2 RNA genome. The highly conserved frameshift stimulation element (FSE), required for balanced expression of viral proteins, is a particularly attractive SARS-CoV-2 RNA target. Here we present a 6.9 Å resolution cryo-EM structure of the FSE (88 nucleotides, ~28 kDa), validated through an RNA nanostructure tagging method. The tertiary structure presents a topologically complex fold in which the 5' end is threaded through a ring formed inside a three-stem pseudoknot. Guided by this structure, we develop antisense oligonucleotides that impair FSE function in frameshifting assays and knock down SARS-CoV-2 virus replication in A549-ACE2 cells at 100 nM concentration.


Subject(s)
COVID-19/prevention & control , Cryoelectron Microscopy/methods , Frameshift Mutation/genetics , Oligonucleotides, Antisense/genetics , RNA, Viral/genetics , Response Elements/genetics , SARS-CoV-2/genetics , A549 Cells , Animals , Base Sequence , COVID-19/virology , Cell Line, Tumor , Chlorocebus aethiops , Genome, Viral/genetics , Humans , Models, Molecular , Nucleic Acid Conformation , Oligonucleotides, Antisense/pharmacology , RNA, Viral/chemistry , RNA, Viral/ultrastructure , SARS-CoV-2/physiology , SARS-CoV-2/ultrastructure , Vero Cells , Virus Replication/drug effects , Virus Replication/genetics
10.
Nat Commun ; 12(1): 4176, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34234134

ABSTRACT

Mammalian reovirus (MRV) is the prototypical member of genus Orthoreovirus of family Reoviridae. However, lacking high-resolution structures of its RNA polymerase cofactor µ2 and infectious particle, limits understanding of molecular interactions among proteins and RNA, and their contributions to virion assembly and RNA transcription. Here, we report the 3.3 Å-resolution asymmetric reconstruction of transcribing MRV and in situ atomic models of its capsid proteins, the asymmetrically attached RNA-dependent RNA polymerase (RdRp) λ3, and RdRp-bound nucleoside triphosphatase µ2 with a unique RNA-binding domain. We reveal molecular interactions among virion proteins and genomic and messenger RNA. Polymerase complexes in three Spinoreovirinae subfamily members are organized with different pseudo-D3d symmetries to engage their highly diversified genomes. The above interactions and those between symmetry-mismatched receptor-binding σ1 trimers and RNA-capping λ2 pentamers balance competing needs of capsid assembly, external protein removal, and allosteric triggering of endogenous RNA transcription, before, during and after infection, respectively.


Subject(s)
Capsid Proteins/metabolism , Nucleoside-Triphosphatase/metabolism , Orthoreovirus/ultrastructure , RNA, Viral/metabolism , Transcription Factors/metabolism , Allosteric Regulation , Animals , Capsid Proteins/ultrastructure , Cell Line , Cryoelectron Microscopy , Gene Expression Regulation, Viral , Genome, Viral , Macaca mulatta , Nucleoside-Triphosphatase/ultrastructure , Orthoreovirus/genetics , Orthoreovirus/metabolism , Protein Multimerization , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/ultrastructure , RNA, Messenger/metabolism , RNA, Viral/ultrastructure , RNA-Dependent RNA Polymerase/metabolism , Transcription Factors/ultrastructure , Transcriptional Activation , Virus Assembly/genetics
11.
PLoS Pathog ; 17(7): e1009740, 2021 07.
Article in English | MEDLINE | ID: mdl-34270629

ABSTRACT

Nipah and its close relative Hendra are highly pathogenic zoonotic viruses, storing their ssRNA genome in a helical nucleocapsid assembly formed by the N protein, a major viral immunogen. Here, we report the first cryoEM structure for a Henipavirus RNA-bound nucleocapsid assembly, at 3.5 Å resolution. The helical assembly is stabilised by previously undefined N- and C-terminal segments, contributing to subunit-subunit interactions. RNA is wrapped around the nucleocapsid protein assembly with a periodicity of six nucleotides per protomer, in the "3-bases-in, 3-bases-out" conformation, with protein plasticity enabling non-sequence specific interactions. The structure reveals commonalities in RNA binding pockets and in the conformation of bound RNA, not only with members of the Paramyxoviridae family, but also with the evolutionarily distant Filoviridae Ebola virus. Significant structural differences with other Paramyxoviridae members are also observed, particularly in the position and length of the exposed α-helix, residues 123-139, which may serve as a valuable epitope for surveillance and diagnostics.


Subject(s)
Nipah Virus/ultrastructure , Nucleocapsid Proteins/ultrastructure , Nucleocapsid/ultrastructure , Cryoelectron Microscopy , Models, Molecular , Molecular Conformation , Nipah Virus/chemistry , Nucleocapsid/chemistry , Nucleocapsid Proteins/chemistry , RNA, Viral/chemistry , RNA, Viral/ultrastructure
12.
Genes (Basel) ; 12(2)2021 02 08.
Article in English | MEDLINE | ID: mdl-33567556

ABSTRACT

Chikungunya virus (CHIKV) is an emerging Alphavirus which causes millions of human infections every year. Outbreaks have been reported in Africa and Asia since the early 1950s, from three CHIKV lineages: West African, East Central South African, and Asian Urban. As new outbreaks occurred in the Americas, individual strains from the known lineages have evolved, creating new monophyletic groups that generated novel geographic-based lineages. Building on a recently updated phylogeny of CHIKV, we report here the availability of an interactive CHIKV phylodynamics dataset, which is based on more than 900 publicly available CHIKV genomes. We provide an interactive view of CHIKV molecular epidemiology built on Nextstrain, a web-based visualization framework for real-time tracking of pathogen evolution. CHIKV molecular epidemiology reveals single nucleotide variants that change the stability and fold of locally stable RNA structures. We propose alternative RNA structure formation in different CHIKV lineages by predicting more than a dozen RNA elements that are subject to perturbation of the structure ensemble upon variation of a single nucleotide.


Subject(s)
Chikungunya Fever/genetics , Chikungunya virus/genetics , Evolution, Molecular , RNA/ultrastructure , Chikungunya Fever/epidemiology , Chikungunya Fever/virology , Chikungunya virus/pathogenicity , Genome, Viral/genetics , Genotype , Humans , Nucleic Acid Conformation , Phylogeny , Polymorphism, Single Nucleotide/genetics , RNA/genetics , RNA, Viral/genetics , RNA, Viral/ultrastructure
13.
PLoS Pathog ; 16(12): e1009146, 2020 12.
Article in English | MEDLINE | ID: mdl-33370422

ABSTRACT

Picornaviruses are important viral pathogens, but despite extensive study, the assembly process of their infectious virions is still incompletely understood, preventing the development of anti-viral strategies targeting this essential part of the life cycle. We report the identification, via RNA SELEX and bioinformatics, of multiple RNA sites across the genome of a typical enterovirus, enterovirus-E (EV-E), that each have affinity for the cognate viral capsid protein (CP) capsomer. Many of these sites are evolutionarily conserved across known EV-E variants, suggesting they play essential functional roles. Cryo-electron microscopy was used to reconstruct the EV-E particle at ~2.2 Å resolution, revealing extensive density for the genomic RNA. Relaxing the imposed symmetry within the reconstructed particles reveals multiple RNA-CP contacts, a first for any picornavirus. Conservative mutagenesis of the individual RNA-contacting amino acid side chains in EV-E, many of which are conserved across the enterovirus family including poliovirus, is lethal but does not interfere with replication or translation. Anti-EV-E and anti-poliovirus aptamers share sequence similarities with sites distributed across the poliovirus genome. These data are consistent with the hypothesis that these RNA-CP contacts are RNA Packaging Signals (PSs) that play vital roles in assembly and suggest that the RNA PSs are evolutionarily conserved between pathogens within the family, augmenting the current protein-only assembly paradigm for this family of viruses.


Subject(s)
Capsid Proteins/metabolism , Enterovirus/physiology , RNA, Viral/genetics , Virus Assembly/physiology , Amino Acid Sequence , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , Enterovirus/ultrastructure , RNA, Viral/ultrastructure
14.
Nat Commun ; 11(1): 6275, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33293523

ABSTRACT

Biochemical assays and computational analyses have discovered RNA structures throughout various transcripts. However, the roles of these structures are mostly unknown. Here we develop folded RNA element profiling with structure library (FOREST), a multiplexed affinity assay system to identify functional interactions from transcriptome-wide RNA structure datasets. We generate an RNA structure library by extracting validated or predicted RNA motifs from gene-annotated RNA regions. The RNA structure library with an affinity enrichment assay allows for the comprehensive identification of target-binding RNA sequences and structures in a high-throughput manner. As a proof-of-concept, FOREST discovers multiple RNA-protein interaction networks with quantitative scores, including translational regulatory elements that function in living cells. Moreover, FOREST reveals different binding landscapes of RNA G-quadruplex (rG4) structures-binding proteins and discovers rG4 structures in the terminal loops of precursor microRNAs. Overall, FOREST serves as a versatile platform to investigate RNA structure-function relationships on a large scale.


Subject(s)
G-Quadruplexes , MicroRNAs/metabolism , Protein Biosynthesis/genetics , RNA Precursors/metabolism , RNA, Messenger/metabolism , 5' Untranslated Regions/genetics , Computer Simulation , Datasets as Topic , Electrophoretic Mobility Shift Assay , Eukaryotic Initiation Factor-3/metabolism , Gene Library , Genome, Viral/genetics , HEK293 Cells , HIV-1/genetics , Humans , MicroRNAs/ultrastructure , Nucleotide Motifs , Proof of Concept Study , Protein Binding/genetics , RNA Folding/genetics , RNA Precursors/ultrastructure , RNA, Messenger/ultrastructure , RNA, Viral/metabolism , RNA, Viral/ultrastructure , RNA-Binding Proteins/metabolism
15.
Nucleic Acids Res ; 48(20): 11664-11674, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33137199

ABSTRACT

Cytoplasmic RIG-I-like receptor (RLR) proteins in mammalian cells recognize viral RNA and initiate an antiviral response that results in IFN-ß induction. Melanoma differentiation-associated protein 5 (MDA5) forms fibers along viral dsRNA and propagates an antiviral response via a signaling domain, the tandem CARD. The most enigmatic RLR, laboratory of genetics and physiology (LGP2), lacks the signaling domain but functions in viral sensing through cooperation with MDA5. However, it remains unclear how LGP2 coordinates fiber formation and subsequent MDA5 activation. We utilized biochemical and biophysical approaches to observe fiber formation and the conformation of MDA5. LGP2 facilitated MDA5 fiber assembly. LGP2 was incorporated into the fibers with an average inter-molecular distance of 32 nm, suggesting the formation of hetero-oligomers with MDA5. Furthermore, limited protease digestion revealed that LGP2 induces significant conformational changes on MDA5, promoting exposure of its CARDs. Although the fibers were efficiently dissociated by ATP hydrolysis, MDA5 maintained its active conformation to participate in downstream signaling. Our study demonstrated the coordinated actions of LGP2 and MDA5, where LGP2 acts as an MDA5 nucleator and requisite partner in the conversion of MDA5 to an active conformation. We revealed a mechanistic basis for LGP2-mediated regulation of MDA5 antiviral innate immune responses.


Subject(s)
Interferon-Induced Helicase, IFIH1/metabolism , RNA Helicases/metabolism , RNA, Viral , Adenosine Triphosphate/metabolism , Encephalomyocarditis virus/genetics , HEK293 Cells , Humans , Immunity, Innate , Interferon-Induced Helicase, IFIH1/chemistry , Interferon-Induced Helicase, IFIH1/ultrastructure , Interferon-beta/genetics , Poly I-C , Promoter Regions, Genetic , Protein Conformation , RNA Viruses/genetics , RNA, Viral/ultrastructure , Signal Transduction
16.
Nat Commun ; 11(1): 5531, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33139729

ABSTRACT

Biomolecules form dynamic ensembles of many inter-converting conformations which are key for understanding how they fold and function. However, determining ensembles is challenging because the information required to specify atomic structures for thousands of conformations far exceeds that of experimental measurements. We addressed this data gap and dramatically simplified and accelerated RNA ensemble determination by using structure prediction tools that leverage the growing database of RNA structures to generate a conformation library. Refinement of this library with NMR residual dipolar couplings provided an atomistic ensemble model for HIV-1 TAR, and the model accuracy was independently supported by comparisons to quantum-mechanical calculations of NMR chemical shifts, comparison to a crystal structure of a substate, and through designed ensemble redistribution via atomic mutagenesis. Applications to TAR bulge variants and more complex tertiary RNAs support the generality of this approach and the potential to make the determination of atomic-resolution RNA ensembles routine.


Subject(s)
Cheminformatics/methods , HIV-1/chemistry , RNA Folding , RNA, Viral/ultrastructure , HIV Long Terminal Repeat , HIV-1/genetics , HIV-1/ultrastructure , Models, Chemical , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , RNA, Viral/chemistry , RNA, Viral/genetics
17.
Commun Biol ; 3(1): 537, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994533

ABSTRACT

Rhinoviruses cause the common cold. They are icosahedral, built from sixty copies each of the capsid proteins VP1 through VP4 arranged in a pseudo T = 3 lattice. This shell encases a ss(+) RNA genome. Three-D classification of single and oligomeric asymmetric units computationally excised from a 2.9 Å cryo-EM density map of rhinovirus A89, showed that VP4 and the N-terminal extension of VP1 adopt different conformations within the otherwise identical 3D-structures. Analysis of up to sixty classes of single subunits and of six classes of subunit dimers, trimers, and pentamers revealed different orientations of the amino acid residues at the interface with the RNA suggesting that local asymmetry is dictated by disparities of the interacting nucleotide sequences. The different conformations escape detection by 3-D structure determination of entire virions with the conformational heterogeneity being only indicated by low density. My results do not exclude that the RNA follows a conserved assembly mechanism, contacting most or all asymmetric units in a specific way. However, as suggested by the gradual loss of asymmetry with increasing oligomerization and the 3D-structure of entire virions reconstructed by using Euler angles selected in the classification of single subunits, RNA path and/or folding likely differ from virion to virion.


Subject(s)
Capsid Proteins/metabolism , Common Cold/virology , RNA, Viral/metabolism , Rhinovirus/metabolism , Binding Sites , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , Genome, Viral , Nucleic Acid Conformation , Protein Structure, Tertiary , RNA, Viral/ultrastructure , Rhinovirus/genetics , Rhinovirus/ultrastructure , Virion/metabolism , Virion/ultrastructure
18.
PLoS Pathog ; 16(9): e1008920, 2020 09.
Article in English | MEDLINE | ID: mdl-32997730

ABSTRACT

The virions of enteroviruses such as poliovirus undergo a global conformational change after binding to the cellular receptor, characterized by a 4% expansion, and by the opening of holes at the two and quasi-three-fold symmetry axes of the capsid. The resultant particle is called a 135S particle or A-particle and is thought to be on the pathway to a productive infection. Previously published studies have concluded that the membrane-interactive peptides, namely VP4 and the N-terminus of VP1, are irreversibly externalized in the 135S particle. However, using established protocols to produce the 135S particle, and single particle cryo-electron microscopy methods, we have identified at least two unique states that we call the early and late 135S particle. Surprisingly, only in the "late" 135S particles have detectable levels of the VP1 N-terminus been trapped outside the capsid. Moreover, we observe a distinct density inside the capsid that can be accounted for by VP4 that remains associated with the genome. Taken together our results conclusively demonstrate that the 135S particle is not a unique conformation, but rather a family of conformations that could exist simultaneously.


Subject(s)
Capsid/ultrastructure , Poliomyelitis/metabolism , RNA, Viral/ultrastructure , Virion/ultrastructure , Capsid/metabolism , Capsid Proteins/metabolism , Cryoelectron Microscopy , Humans , Models, Molecular , RNA, Viral/metabolism , Receptors, Virus/metabolism , Virion/metabolism , Virus Internalization
19.
Nucleic Acids Res ; 48(16): 9285-9300, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32785642

ABSTRACT

The genomes of RNA viruses contain regulatory elements of varying complexity. Many plus-strand RNA viruses employ largescale intra-genomic RNA-RNA interactions as a means to control viral processes. Here, we describe an elaborate RNA structure formed by multiple distant regions in a tombusvirus genome that activates transcription of a viral subgenomic mRNA. The initial step in assembly of this intramolecular RNA complex involves the folding of a large viral RNA domain, which generates a discontinuous binding pocket. Next, a distally-located protracted stem-loop RNA structure docks, via base-pairing, into the binding site and acts as a linchpin that stabilizes the RNA complex and activates transcription. A multi-step RNA folding pathway is proposed in which rate-limiting steps contribute to a delay in transcription of the capsid protein-encoding viral subgenomic mRNA. This study provides an exceptional example of the complexity of genome-scale viral regulation and offers new insights into the assembly schemes utilized by large intra-genomic RNA structures.


Subject(s)
Genome, Viral/genetics , Nucleic Acid Conformation , RNA Viruses/ultrastructure , Viral Proteins/genetics , Base Pairing , RNA Viruses/genetics , RNA, Viral/genetics , RNA, Viral/ultrastructure , Tombusvirus/genetics , Tombusvirus/ultrastructure , Transcription, Genetic , Viral Proteins/ultrastructure , Virus Replication/genetics
20.
Proc Natl Acad Sci U S A ; 117(31): 18680-18691, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32690711

ABSTRACT

For positive-strand RNA [(+)RNA] viruses, the major target for antiviral therapies is genomic RNA replication, which occurs at poorly understood membrane-bound viral RNA replication complexes. Recent cryoelectron microscopy (cryo-EM) of nodavirus RNA replication complexes revealed that the viral double-stranded RNA replication template is coiled inside a 30- to 90-nm invagination of the outer mitochondrial membrane, whose necked aperture to the cytoplasm is gated by a 12-fold symmetric, 35-nm diameter "crown" complex that contains multifunctional viral RNA replication protein A. Here we report optimizing cryo-EM tomography and image processing to improve crown resolution from 33 to 8.5 Å. This resolves the crown into 12 distinct vertical segments, each with 3 major subdomains: A membrane-connected basal lobe and an apical lobe that together comprise the ∼19-nm-diameter central turret, and a leg emerging from the basal lobe that connects to the membrane at ∼35-nm diameter. Despite widely varying replication vesicle diameters, the resulting two rings of membrane interaction sites constrain the vesicle neck to a highly uniform shape. Labeling protein A with a His-tag that binds 5-nm Ni-nanogold allowed cryo-EM tomography mapping of the C terminus of protein A to the apical lobe, which correlates well with the predicted structure of the C-proximal polymerase domain of protein A. These and other results indicate that the crown contains 12 copies of protein A arranged basally to apically in an N-to-C orientation. Moreover, the apical polymerase localization has significant mechanistic implications for template RNA recruitment and (-) and (+)RNA synthesis.


Subject(s)
Genome, Viral/genetics , RNA, Viral/ultrastructure , Viral Proteins/ultrastructure , Virus Replication/physiology , Cryoelectron Microscopy , Mitochondrial Membranes/ultrastructure , Models, Molecular , Nodaviridae/genetics , Nodaviridae/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...