Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.132
Filter
1.
Nat Commun ; 15(1): 6607, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39098891

ABSTRACT

Delivering synthetic protein-coding RNA bypassing the DNA stage for ectopic protein functioning is a novel therapeutic strategy. Joining the linear RNA head-to-tail covalently could be a state-of-the-art strategy for functioning longer. Here we enroll a cis-acting ligase ribozyme (RzL) to generate circular RNA (circRNA) in vitro for ectopic protein expression. The RNA circularization is confirmed by masking the 5' phosphate group, resisting exonuclease RNase R digestion, failing for further tailing, and sequencing the RT-PCR products of the joined region. Interestingly, one internal ribosome entry site (IRES) renders circRNA translation competent, but two IRES in cis, not trans, hamper the translation. The circRNA with highly potent in translation is conferred for antiviral functioning. Accompanying specific guided RNA, a circRNA expressing ribonuclease Cas13 shows excellent potential against the corresponding RNA virus, further extending circRNA functioning in its growing list of applications.


Subject(s)
RNA, Catalytic , RNA, Circular , RNA, Circular/metabolism , RNA, Circular/genetics , RNA, Catalytic/metabolism , RNA, Catalytic/genetics , Humans , Internal Ribosome Entry Sites , Protein Biosynthesis , RNA/metabolism , RNA/genetics , HEK293 Cells , Exoribonucleases
2.
Nat Commun ; 15(1): 7067, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152130

ABSTRACT

RNA-binding proteins (RBPs) have pivotal functions in RNA metabolism, but current methods are limited in retrieving RBP-RNA interactions within endogenous biological contexts. Here, we develop INSCRIBE (IN situ Sensitive Capture of RNA-protein Interactions in Biological Environments), circumventing the challenges through in situ RNA labeling by precisely directing a purified APOBEC1-nanobody fusion to the RBP of interest. This method enables highly specific RNA-binding site identification across a diverse range of fixed biological samples such as HEK293T cells and mouse brain tissue and accurately identifies the canonical binding motifs of RBFOX2 (UGCAUG) and TDP-43 (UGUGUG) in native cellular environments. Applicable to any RBP with available primary antibodies, INSCRIBE enables sensitive capture of RBP-RNA interactions from ultra-low input equivalent to ~5 cells. The robust, versatile, and sensitive INSCRIBE workflow is particularly beneficial for precious tissues such as clinical samples, empowering the exploration of genuine RBP-RNA interactions in RNA-related disease contexts.


Subject(s)
DNA-Binding Proteins , RNA Splicing Factors , RNA-Binding Proteins , RNA , Humans , Animals , HEK293 Cells , Mice , RNA-Binding Proteins/metabolism , RNA/metabolism , RNA Splicing Factors/metabolism , DNA-Binding Proteins/metabolism , Binding Sites , Protein Binding , Brain/metabolism , Repressor Proteins
3.
Neuron ; 112(15): 2459-2461, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39116837

ABSTRACT

Aggregation of RNA binding proteins and dysregulation of RNA metabolism drives pathogenesis of multiple neurodegenerative diseases. In this issue of Neuron, Belur et al.1 identified pathological NONO/SFPQ inclusions and aberrant A-to-I-edited RNAs accumulated in nucleus, leading to dysregulation of gene expression and neurodegeneration in synucleinopathy-associated diseases.


Subject(s)
RNA Editing , Synucleinopathies , Humans , Synucleinopathies/metabolism , Synucleinopathies/genetics , Synucleinopathies/pathology , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Inclusion Bodies/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Animals , RNA/genetics , RNA/metabolism
4.
BMC Bioinformatics ; 25(1): 264, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127625

ABSTRACT

Circular RNA (CircRNA)-microRNA (miRNA) interaction (CMI) is an important model for the regulation of biological processes by non-coding RNA (ncRNA), which provides a new perspective for the study of human complex diseases. However, the existing CMI prediction models mainly rely on the nearest neighbor structure in the biological network, ignoring the molecular network topology, so it is difficult to improve the prediction performance. In this paper, we proposed a new CMI prediction method, BEROLECMI, which uses molecular sequence attributes, molecular self-similarity, and biological network topology to define the specific role feature representation for molecules to infer the new CMI. BEROLECMI effectively makes up for the lack of network topology in the CMI prediction model and achieves the highest prediction performance in three commonly used data sets. In the case study, 14 of the 15 pairs of unknown CMIs were correctly predicted.


Subject(s)
Computational Biology , MicroRNAs , RNA, Circular , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/chemistry , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Computational Biology/methods , RNA/chemistry , RNA/genetics , RNA/metabolism , Algorithms , Gene Regulatory Networks
5.
Nat Cell Biol ; 26(8): 1359-1372, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39095657

ABSTRACT

Circular RNA (circRNA) is covalently closed, single-stranded RNA produced by back-splicing. A few circRNAs have been implicated as functional; however, we lack understanding of pathways that are regulated by circRNAs. Here we generated a pooled short-hairpin RNA library targeting the back-splice junction of 3,354 human circRNAs that are expressed at different levels (ranging from low to high) in humans. We used this library for loss-of-function proliferation screens in a panel of 18 cancer cell lines from four tissue types harbouring mutations leading to constitutive activity of defined pathways. Both context-specific and non-specific circRNAs were identified. Some circRNAs were found to directly regulate their precursor, whereas some have a function unrelated to their precursor. We validated these observations with a secondary screen and uncovered a role for circRERE(4-10) and circHUWE1(22,23), two cell-essential circRNAs, circSMAD2(2-6), a WNT pathway regulator, and circMTO1(2,RI,3), a regulator of MAPK signalling. Our work sheds light on pathways regulated by circRNAs and provides a catalogue of circRNAs with a measurable function.


Subject(s)
Cell Proliferation , RNA, Circular , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Cell Proliferation/genetics , Cell Line, Tumor , Wnt Signaling Pathway/genetics , Signal Transduction , RNA/genetics , RNA/metabolism , RNA Splicing , Gene Expression Regulation, Neoplastic , Gene Library
6.
Nat Commun ; 15(1): 6855, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127751

ABSTRACT

RNA interference (RNAi) is a powerful tool for sequence-specific gene knockdown in therapeutic and research applications. However, spatiotemporal control of RNAi is required to decrease nonspecific targeting, potential toxicity, and allow targeting of essential genes. Herein we describe a class of de-novo-designed RNA switches that enable sequence-specific regulation of RNAi in mammalian cells. Using cis-repressing RNA elements, we engineer RNA devices that only initiate microRNA biogenesis when binding with cognate trigger RNAs. We demonstrate that this conditional RNAi system, termed Orthogonal RNA Interference induced by Trigger RNA (ORIENTR), provides up to 14-fold increases in artificial miRNA biogenesis upon activation in orthogonal libraries. We show that integration of ORIENTR triggers with dCas13d enhances dynamic range to up to 31-fold. We further demonstrate that ORIENTR can be applied to detect endogenous RNA signals and to conditionally knockdown endogenous genes, thus enabling regulatory possibilities including cell-type-specific RNAi and rewiring of transcriptional networks via RNA profile.


Subject(s)
MicroRNAs , RNA Interference , Transcriptional Activation , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , HEK293 Cells , Animals , Gene Knockdown Techniques , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA/metabolism , RNA/genetics
7.
Nat Commun ; 15(1): 6615, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103360

ABSTRACT

RNA base editing relies on the introduction of adenosine-to-inosine changes into target RNAs in a highly programmable manner in order to repair disease-causing mutations. Here, we propose that RNA base editing could be broadly applied to perturb protein function by removal of regulatory phosphorylation and acetylation sites. We demonstrate the feasibility on more than 70 sites in various signaling proteins and identify key determinants for high editing efficiency and potent down-stream effects. For the JAK/STAT pathway, we demonstrate both, negative and positive regulation. To achieve high editing efficiency over a broad codon scope, we applied an improved version of the SNAP-ADAR tool. The transient nature of RNA base editing enables the comparably fast (hours to days), dose-dependent (thus partial) and reversible manipulation of regulatory sites, which is a key advantage over DNA (base) editing approaches. In summary, PTM interference might become a valuable field of application of RNA base editing.


Subject(s)
Protein Processing, Post-Translational , RNA Editing , Humans , Phosphorylation , HEK293 Cells , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , RNA/metabolism , RNA/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Acetylation
8.
J Agric Food Chem ; 72(33): 18552-18560, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39129495

ABSTRACT

Developing microorganisms with a high ribonucleic acid (RNA) content is crucial for the RNA industry. Numerous studies have been conducted to enhance RNA production in yeast cells through genetic engineering, yet precise mechanisms remain elusive. Previously, upregulation of TAL1 or PGM2 and deleting PRS5 or DBP8 individually could increase the RNA content in Saccharomyces pastorianus. In this study, within these genetically modified strains, the intracellular nucleotide levels notably increased following cell fragmentation. Deletion of PRS5 and DBP8 within the strain prompted the upregulation of genes sharing similar functions, consequently augmenting the flow of the gene pathway. Furthermore, the upregulation of genes encoding cell-cycle-dependent protein kinases (CDK) was observed in the G03-△PRS5 strain. The influence of TAL1 and PGM2 on RNA content was attributed to the pentose phosphate pathway (PPP). The RNA content of polygenic recombinant strains, G03-△PRS5+△DBP8 and G03-△PRS5+△DBP8+PGM2, displayed the most significant improvement, increasing by 71.8 and 80.1% when compared to the parental strain. Additionally, the maximum specific growth rate of cells increased in these strains. This study contributes valuable insights into the genetic mechanisms underlying high nucleic acid synthesis in S. pastorianus.


Subject(s)
Saccharomyces , Saccharomyces/genetics , Saccharomyces/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , RNA/genetics , RNA/metabolism , Genetic Engineering , Pentose Phosphate Pathway/genetics , Metabolic Engineering , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
9.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125980

ABSTRACT

RNA polymerase II (Pol II) dysfunction is frequently implied in human disease. Understanding its functional mechanism is essential for designing innovative therapeutic strategies. To visualize its supra-molecular interactions with genes and nascent RNA, we generated a human cell line carrying ~335 consecutive copies of a recombinant ß-globin gene. Confocal microscopy showed that Pol II was not homogeneously concentrated around these identical gene copies. Moreover, Pol II signals partially overlapped with the genes and their nascent RNA, revealing extensive compartmentalization. Using a cell line carrying a single copy of the ß-globin gene, we also tested if the binding of catalytically dead CRISPR-associated system 9 (dCas9) to different gene regions affected Pol II transcriptional activity. We assessed Pol II localization and nascent RNA levels using chromatin immunoprecipitation and droplet digital reverse transcription PCR, respectively. Some enrichment of transcriptionally paused Pol II accumulated in the promoter region was detected in a strand-specific way of gRNA binding, and there was no decrease in nascent RNA levels. Pol II preserved its transcriptional activity in the presence of DNA-bound dCas9. Our findings contribute further insight into the complex mechanism of mRNA transcription in human cells.


Subject(s)
RNA Polymerase II , Transcription, Genetic , beta-Globins , Humans , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , beta-Globins/genetics , beta-Globins/metabolism , DNA/metabolism , DNA/genetics , Promoter Regions, Genetic , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , RNA/genetics , RNA/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cell Line
10.
Sci Adv ; 10(31): eadn1397, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39083617

ABSTRACT

Chromatin marks are associated with transcriptional regulatory activities. However, very few lncRNAs have been characterized with the role in regulating epigenetic marks, largely due to the technical difficulty in identifying chromatin-associating RNA. Current methods are largely limited by the availability of ChIP-grade antibody and the crosslinking, which generates high noise. Here, we developed a method termed Chrom-seq to efficiently capture RNAs associated with various chromatin marks in living cells. Chrom-seq jointly applies highly specific chromatin mark reader with APEX2, which catalyzes the oxidation of biotin-aniline to label the adjacent RNAs for isolation by streptavidin-coated beads. Using the readers of mCBX7/dPC, mCBX1, and mTAF3, we detected RNA species significantly associated with H3K27me3, H3K9me3, and H3K4me3, respectively. We demonstrated that Chrom-seq outperformed other equivalent methods in terms of sensitivity, efficiency, and cost of practice. It provides an antibody-free approach to systematically map RNAs at chromatin marks with potential regulatory roles in epigenetic events.


Subject(s)
Chromatin , Histones , RNA , Chromatin/metabolism , Chromatin/genetics , Humans , Histones/metabolism , RNA/metabolism , RNA/genetics , Epigenesis, Genetic , Sequence Analysis, RNA/methods
11.
BMC Biol ; 22(1): 151, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977974

ABSTRACT

BACKGROUND: RNA-DNA hybrids or R-loops are associated with deleterious genomic instability and protective immunoglobulin class switch recombination (CSR). However, the underlying phenomenon regulating the two contrasting functions of R-loops is unknown. Notably, the underlying mechanism that protects R-loops from classic RNase H-mediated digestion thereby promoting persistence of CSR-associated R-loops during CSR remains elusive. RESULTS: Here, we report that during CSR, R-loops formed at the immunoglobulin heavy (IgH) chain are modified by ribose 2'-O-methylation (2'-OMe). Moreover, we find that 2'-O-methyltransferase fibrillarin (FBL) interacts with activation-induced cytidine deaminase (AID) associated snoRNA aSNORD1C to facilitate the 2'-OMe. Moreover, deleting AID C-terminal tail impairs its association with aSNORD1C and FBL. Disrupting FBL, AID or aSNORD1C expression severely impairs 2'-OMe, R-loop stability and CSR. Surprisingly, FBL, AID's interaction partner and aSNORD1C promoted AID targeting to the IgH locus. CONCLUSION: Taken together, our results suggest that 2'-OMe stabilizes IgH-associated R-loops to enable productive CSR. These results would shed light on AID-mediated CSR and explain the mechanism of R-loop-associated genomic instability.


Subject(s)
Cytidine Deaminase , Immunoglobulin Class Switching , R-Loop Structures , Immunoglobulin Class Switching/genetics , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , Cytidine Deaminase/chemistry , Animals , Mice , Methylation , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , Recombination, Genetic , RNA/metabolism , RNA/genetics
12.
Biol Lett ; 20(7): 20240147, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38982851

ABSTRACT

The nucleus interacts with the other organelles to perform essential functions of the eukaryotic cell. Mitochondria have their own genome and communicate back to the nucleus in what is known as mitochondrial retrograde response. Information is transferred to the nucleus in many ways, leading to wide-ranging changes in nuclear gene expression and culminating with changes in metabolic, regulatory or stress-related pathways. RNAs are emerging molecules involved in this signalling. RNAs encode precise information and are involved in highly target-specific signalling, through a wide range of processes known as RNA interference. RNA-mediated mitochondrial retrograde response requires these molecules to exit the mitochondrion, a process that is still mostly unknown. We suggest that the proteins/complexes translocases of the inner membrane, polynucleotide phosphorylase, mitochondrial permeability transition pore, and the subunits of oxidative phosphorylation complexes may be responsible for RNA export.


Subject(s)
Cell Nucleus , Mitochondria , Mitochondria/metabolism , Cell Nucleus/metabolism , RNA/metabolism , RNA/genetics , Animals , RNA Transport , Eukaryotic Cells/metabolism , Eukaryota/metabolism , Eukaryota/genetics , Eukaryota/physiology , Signal Transduction
13.
Am J Hum Genet ; 111(8): 1673-1699, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39084224

ABSTRACT

Understanding the impact of splicing and nonsense variants on RNA is crucial for the resolution of variant classification as well as their suitability for precision medicine interventions. This is primarily enabled through RNA studies involving transcriptomics followed by targeted assays using RNA isolated from clinically accessible tissues (CATs) such as blood or skin of affected individuals. Insufficient disease gene expression in CATs does however pose a major barrier to RNA based investigations, which we show is relevant to 1,436 Mendelian disease genes. We term these "silent" Mendelian genes (SMGs), the largest portion (36%) of which are associated with neurological disorders. We developed two approaches to induce SMG expression in human dermal fibroblasts (HDFs) to overcome this limitation, including CRISPR-activation-based gene transactivation and fibroblast-to-neuron transdifferentiation. Initial transactivation screens involving 40 SMGs stimulated our development of a highly multiplexed transactivation system culminating in the 6- to 90,000-fold induction of expression of 20/20 (100%) SMGs tested in HDFs. Transdifferentiation of HDFs directly to neurons led to expression of 193/516 (37.4%) of SMGs implicated in neurological disease. The magnitude and isoform diversity of SMG expression following either transactivation or transdifferentiation was comparable to clinically relevant tissues. We apply transdifferentiation and/or gene transactivation combined with short- and long-read RNA sequencing to investigate the impact that variants in USH2A, SCN1A, DMD, and PAK3 have on RNA using HDFs derived from affected individuals. Transactivation and transdifferentiation represent rapid, scalable functional genomic solutions to investigate variants impacting SMGs in the patient cell and genomic context.


Subject(s)
Cell Transdifferentiation , Fibroblasts , Neurons , Transcriptional Activation , Humans , Cell Transdifferentiation/genetics , Fibroblasts/metabolism , Fibroblasts/cytology , Neurons/metabolism , Neurons/cytology , RNA/genetics , RNA/metabolism , CRISPR-Cas Systems
14.
Mol Cell ; 84(14): 2682-2697.e6, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38996576

ABSTRACT

RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs. serine. In addition, we identify the tetrameric assembly and a flap structural motif as key structural elements necessary for binding of RNA to eukaryotic SHMT1. The results presented here suggest that riboregulation may have played a role in evolution of eukaryotic SHMT1 and in compartmentalization of one-carbon metabolism. Our findings provide insights for RNA-based therapeutic strategies targeting this cancer-linked metabolic pathway.


Subject(s)
Cryoelectron Microscopy , Glycine Hydroxymethyltransferase , Glycine Hydroxymethyltransferase/metabolism , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/chemistry , Humans , RNA/metabolism , RNA/genetics , Serine/metabolism , Allosteric Regulation , Protein Binding , Phylogeny , Models, Molecular , Protein Conformation , Structure-Activity Relationship , Glycine/metabolism , Glycine/chemistry , Binding Sites
15.
Nat Commun ; 15(1): 6373, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075082

ABSTRACT

Recent studies have highlighted the impact of both transcription and transcripts on 3D genome organization, particularly its dynamics. Here, we propose a deep learning framework, called AkitaR, that leverages both genome sequences and genome-wide RNA-DNA interactions to investigate the roles of chromatin-associated RNAs (caRNAs) on genome folding in HFFc6 cells. In order to disentangle the cis- and trans-regulatory roles of caRNAs, we have compared models with nascent transcripts, trans-located caRNAs, open chromatin data, or DNA sequence alone. Both nascent transcripts and trans-located caRNAs improve the models' predictions, especially at cell-type-specific genomic regions. Analyses of feature importance scores reveal the contribution of caRNAs at TAD boundaries, chromatin loops and nuclear sub-structures such as nuclear speckles and nucleoli to the models' predictions. Furthermore, we identify non-coding RNAs (ncRNAs) known to regulate chromatin structures, such as MALAT1 and NEAT1, as well as several new RNAs, RNY5, RPPH1, POLG-DT and THBS1-IT1, that might modulate chromatin architecture through trans-interactions in HFFc6. Our modeling also suggests that transcripts from Alus and other repetitive elements may facilitate chromatin interactions through trans R-loop formation. Our findings provide insights and generate testable hypotheses about the roles of caRNAs in shaping chromatin organization.


Subject(s)
Chromatin , Deep Learning , Chromatin/metabolism , Chromatin/genetics , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line , RNA/metabolism , RNA/genetics , DNA/metabolism , DNA/genetics
16.
Endocrinology ; 165(8)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946397

ABSTRACT

Uterine leiomyoma or fibroids are prevalent noncancerous tumors of the uterine muscle layer, yet their origin and development remain poorly understood. We analyzed RNA expression profiles of 15 epigenetic mediators in uterine fibroids compared to myometrium using publicly available RNA sequencing (RNA-seq) data. To validate our findings, we performed RT-qPCR on a separate cohort of uterine fibroids targeting these modifiers confirming our RNA-seq data. We then examined protein profiles of key N6-methyladenosine (m6A) modifiers in fibroids and their matched myometrium, showing no significant differences in concordance with our RNA expression profiles. To determine RNA modification abundance, mRNA and small RNA from fibroids and matched myometrium were analyzed by ultra-high performance liquid chromatography-mass spectrometry identifying prevalent m6A and 11 other known modifiers. However, no aberrant expression in fibroids was detected. We then mined a previously published dataset and identified differential expression of m6A modifiers that were specific to fibroid genetic subtype. Our analysis also identified m6A consensus motifs on genes previously identified to be dysregulated in uterine fibroids. Overall, using state-of-the-art mass spectrometry, RNA expression, and protein profiles, we characterized and identified differentially expressed m6A modifiers in relation to driver mutations. Despite the use of several different approaches, we identified limited differential expression of RNA modifiers and associated modifications in uterine fibroids. However, considering the highly heterogenous genomic and cellular nature of fibroids, and the possible contribution of single molecule m6A modifications to fibroid pathology, there is a need for greater in-depth characterization of m6A marks and modifiers in a larger and diverse patient cohort.


Subject(s)
Adenosine , Leiomyoma , Uterine Neoplasms , Leiomyoma/genetics , Leiomyoma/metabolism , Humans , Female , Adenosine/analogs & derivatives , Adenosine/metabolism , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology , Myometrium/metabolism , Myometrium/pathology , Middle Aged , Adult , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA/genetics , RNA/metabolism , RNA Processing, Post-Transcriptional , Epigenesis, Genetic
17.
Acc Chem Res ; 57(15): 2058-2066, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39005057

ABSTRACT

ConspectusCreating a living system from nonliving matter is a great challenge in chemistry and biophysics. The early history of life can provide inspiration from the idea of the prebiotic "RNA World" established by ribozymes, in which all genetic and catalytic activities were executed by RNA. Such a system could be much simpler than the interdependent central dogma characterizing life today. At the same time, cooperative systems require a mechanism such as cellular compartmentalization in order to survive and evolve. Minimal cells might therefore consist of simple vesicles enclosing a prebiotic RNA metabolism.The internal volume of a vesicle is a distinctive environment due to its closed boundary, which alters diffusion and available volume for macromolecules and changes effective molecular concentrations, among other considerations. These physical effects are mechanistically distinct from chemical interactions, such as electrostatic repulsion, that might also occur between the membrane boundary and encapsulated contents. Both indirect and direct interactions between the membrane and RNA can give rise to nonintuitive, "emergent" behaviors in the model protocell system. We have been examining how encapsulation inside membrane vesicles would affect the folding and activity of entrapped RNA.Using biophysical techniques such as FRET, we characterized ribozyme folding and activity inside vesicles. Encapsulation inside model protocells generally promoted RNA folding, consistent with an excluded volume effect, independently of chemical interactions. This energetic stabilization translated into increased ribozyme activity in two different systems that were studied (hairpin ribozyme and self-aminoacylating RNAs). A particularly intriguing finding was that encapsulation could rescue the activity of mutant ribozymes, suggesting that encapsulation could affect not only folding and activity but also evolution. To study this further, we developed a high-throughput sequencing assay to measure the aminoacylation kinetics of many thousands of ribozyme variants in parallel. The results revealed an unexpected tendency for encapsulation to improve the better ribozyme variants more than worse variants. During evolution, this effect would create a tilted playing field, so to speak, that would give additional fitness gains to already-high-activity variants. According to Fisher's Fundamental Theorem of Natural Selection, the increased variance in fitness should manifest as faster evolutionary adaptation. This prediction was borne out experimentally during in vitro evolution, where we observed that the initially diverse ribozyme population converged more quickly to the most active sequences when they were encapsulated inside vesicles.The studies in this Account have expanded our understanding of emergent protocell behavior, by showing how simply entrapping an RNA inside a vesicle, which could occur spontaneously during vesicle formation, might profoundly affect the evolutionary landscape of the RNA. Because of the exponential dynamics of replication and selection, even small changes to activity and function could lead to major evolutionary consequences. By closely studying the details of minimal yet surprisingly complex protocells, we might one day trace a pathway from encapsulated RNA to a living system.


Subject(s)
Artificial Cells , RNA Folding , RNA, Catalytic , RNA , Artificial Cells/chemistry , Artificial Cells/metabolism , RNA, Catalytic/chemistry , RNA, Catalytic/metabolism , RNA/chemistry , RNA/metabolism , Evolution, Molecular
18.
PLoS Biol ; 22(7): e3002476, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39074139

ABSTRACT

Despite the increasing number of 3D RNA structures in the Protein Data Bank, the majority of experimental RNA structures lack thorough functional annotations. As the significance of the functional roles played by noncoding RNAs becomes increasingly apparent, comprehensive annotation of RNA function is becoming a pressing concern. In response to this need, we have developed FURNA (Functions of RNAs), the first database for experimental RNA structures that aims to provide a comprehensive repository of high-quality functional annotations. These include Gene Ontology terms, Enzyme Commission numbers, ligand-binding sites, RNA families, protein-binding motifs, and cross-references to related databases. FURNA is available at https://seq2fun.dcmb.med.umich.edu/furna/ to enable quick discovery of RNA functions from their structures and sequences.


Subject(s)
Molecular Sequence Annotation , Nucleic Acid Conformation , RNA , RNA/metabolism , RNA/chemistry , RNA/genetics , Databases, Nucleic Acid , Binding Sites , Humans
19.
J Vis Exp ; (209)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39037258

ABSTRACT

The availability of a range of modified synthetic oligonucleotides from commercial vendors has allowed the development of sophisticated assays to characterize diverse properties of nucleic acid metabolizing enzymes that can be run in any standard molecular biology lab. The use of fluorescent labels has made these methods accessible to researchers with standard PAGE electrophoresis equipment and a fluorescent-enabled imager, without using radioactive materials or requiring a lab designed for the storage and preparation of radioactive materials, i.e., a Hot Lab. The optional addition of standard modifications such as phosphorylation can simplify assay setup, while the specific incorporation of modified nucleotides that mimic DNA damages or intermediates can be used to probe specific aspects of enzyme behavior. Here, the design and execution of assays to interrogate several aspects of DNA processing by enzymes using commercially available synthetic oligonucleotides are demonstrated. These include the ability of ligases to join or nucleases to degrade different DNA and RNA hybrid structures, differential cofactor usage by the DNA ligase, and evaluation of the DNA-binding capacity of enzymes. Factors to consider when designing synthetic nucleotide substrates are discussed, and a basic set of oligonucleotides that can be used for a range of nucleic acid ligase, polymerase, and nuclease enzyme assays are provided.


Subject(s)
Oligonucleotides , Oligonucleotides/chemistry , Oligonucleotides/metabolism , DNA/chemistry , DNA/metabolism , DNA Ligases/metabolism , DNA Ligases/chemistry , RNA/chemistry , RNA/analysis , RNA/metabolism
20.
RNA Biol ; 21(1): 17-31, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39016036

ABSTRACT

It is likely that an RNA world existed in early life, when RNA played both the roles of the genome and functional molecules, thereby undergoing Darwinian evolution. However, even with only one type of polymer, it seems quite necessary to introduce a labour division concerning these two roles because folding is required for functional molecules (ribozymes) but unfavourable for the genome (as a template in replication). Notably, while ribozymes tend to have adopted a linear form for folding without constraints, a circular form, which might have been topologically hindered in folding, seems more suitable for an RNA template. Another advantage of involving a circular genome could have been to resist RNA's end-degradation. Here, we explore the scenario of a circular RNA genome plus linear ribozyme(s) at the precellular stage of the RNA world through computer modelling. The results suggest that a one-gene scene could have been 'maintained', albeit with rather a low efficiency for the circular genome to produce the ribozyme, which required precise chain-break or chain-synthesis. This strict requirement may have been relieved by introducing a 'noncoding' sequence into the genome, which had the potential to derive a second gene through mutation. A two-gene scene may have 'run well' with the two corresponding ribozymes promoting the replication of the circular genome from different respects. Circular genomes with more genes might have arisen later in RNA-based protocells. Therefore, circular genomes, which are common in the modern living world, may have had their 'root' at the very beginning of life.


Subject(s)
RNA, Catalytic , RNA, Circular , RNA , RNA, Circular/genetics , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , RNA/genetics , RNA/metabolism , Nucleic Acid Conformation , Evolution, Molecular , Genome , Computer Simulation , Origin of Life
SELECTION OF CITATIONS
SEARCH DETAIL