Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.042
Filter
1.
Life Sci Alliance ; 7(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38740431

ABSTRACT

Organismal growth and lifespan are inextricably linked. Target of Rapamycin (TOR) signalling regulates protein production for growth and development, but if reduced, extends lifespan across species. Reduction in the enzyme RNA polymerase III, which transcribes tRNAs and 5S rRNA, also extends longevity. Here, we identify a temporal genetic relationship between TOR and Pol III in Caenorhabditis elegans, showing that they collaborate to regulate progeny production and lifespan. Interestingly, the lifespan interaction between Pol III and TOR is only revealed when TOR signaling is reduced, specifically in adulthood, demonstrating the importance of timing to control TOR regulated developmental versus adult programs. In addition, we show that Pol III acts in C. elegans muscle to promote both longevity and healthspan and that reducing Pol III even in late adulthood is sufficient to extend lifespan. This demonstrates the importance of Pol III for lifespan and age-related health in adult C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Longevity , Mechanistic Target of Rapamycin Complex 1 , RNA Polymerase III , Signal Transduction , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Longevity/genetics , RNA Polymerase III/metabolism , RNA Polymerase III/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , TOR Serine-Threonine Kinases/metabolism , Aging/metabolism , Aging/genetics , Aging/physiology
2.
Sci Rep ; 14(1): 7638, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561452

ABSTRACT

Hypomyelinating leukodystrophy (HLD) is a rare genetic heterogeneous disease that can affect myelin development in the central nervous system. This study aims to analyze the clinical phenotype and genetic function of a family with HLD-7 caused by POLR3A mutation. The proband (IV6) in this family mainly showed progressive cognitive decline, dentin dysplasia, and hypogonadotropic hypogonadism. Her three old brothers (IV1, IV2, and IV4) also had different degrees of ataxia, dystonia, or dysarthria besides the aforementioned manifestations. Their brain magnetic resonance imaging showed bilateral periventricular white matter atrophy, brain atrophy, and corpus callosum atrophy and thinning. The proband and her two living brothers (IV2 and IV4) were detected to carry a homozygous mutation of the POLR3A (NM_007055.4) gene c. 2300G > T (p.Cys767Phe), and her consanguineous married parents (III1 and III2) were p.Cys767Phe heterozygous carriers. In the constructed POLR3A wild-type and p.Cys767Phe mutant cells, it was seen that overexpression of wild-type POLR3A protein significantly enhanced Pol III transcription of 5S rRNA and tRNA Leu-CAA. However, although the mutant POLR3A protein overexpression was increased compared to the wild-type protein overexpression, it did not show the expected further enhancement of Pol III function. On the contrary, Pol III transcription function was frustrated (POLR3A, BC200, and tRNA Leu-CAA expression decreased), and MBP and 18S rRNA expressions were decreased. This study indicates that the POLR3A p.Cys767Phe variant caused increased expression of mutated POLR3A protein and abnormal expression of Pol III transcripts, and the mutant POLR3A protein function was abnormal.


Subject(s)
Hereditary Central Nervous System Demyelinating Diseases , Male , Female , Humans , Hereditary Central Nervous System Demyelinating Diseases/genetics , Mutation , Phenotype , Atrophy , RNA, Transfer , RNA Polymerase III/genetics , RNA Polymerase III/metabolism
3.
J Ovarian Res ; 17(1): 83, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627856

ABSTRACT

Ovarian cancer, among all gynecologic malignancies, exhibits the highest incidence and mortality rate, primarily because it is often presents with non-specific or no symptoms during its early stages. For the advancement of Ovarian Cancer Diagnosis, it is crucial to identify the potential molecular signatures that could significantly differentiate between healthy and ovarian cancerous tissues and can be used further as a diagnostic biomarker for detecting ovarian cancer. In this study, we investigated the genome-wide methylation patterns in ovarian cancer patients using Methylated DNA Immunoprecipitation (MeDIP-Seq) followed by NGS. Identified differentially methylated regions (DMRs) were further validated by targeted bisulfite sequencing for CpG site-specific methylation profiles. Furthermore, expression validation of six genes by Quantitative Reverse Transcriptase-PCR was also performed. Out of total 120 differentially methylated genes (DMGs), 68 genes were hypermethylated, and 52 were hypomethylated in their promoter region. After analysis, we identified the top 6 hub genes, namely POLR3B, PLXND1, GIGYF2, STK4, BMP2 and CRKL. Interestingly we observed Non-CpG site methylation in the case of POLR3B and CRKL which was statistically significant in discriminating ovarian cancer samples from normal controls. The most significant pathways identified were focal adhesion, the MAPK signaling pathway, and the Ras signaling pathway. Expression analysis of hypermethylated genes was correlated with the downregulation of the genes. POLR3B and GIGYF2 turned out to be the novel genes associated with the carcinogenesis of EOC. Our study demonstrated that methylation profiling through MeDIP-sequencing has effectively identified six potential hub genes and pathways that might exacerbate our understanding of underlying molecular mechanisms of ovarian carcinogenesis.


Subject(s)
DNA Methylation , Ovarian Neoplasms , Humans , Female , DNA Methylation/genetics , Carcinoma, Ovarian Epithelial/genetics , CpG Islands , Ovarian Neoplasms/genetics , Carcinogenesis/genetics , RNA Polymerase III/genetics , Protein Serine-Threonine Kinases/genetics , Intracellular Signaling Peptides and Proteins/genetics
4.
Nature ; 628(8008): 639-647, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570691

ABSTRACT

Prime editing enables the precise modification of genomes through reverse transcription of template sequences appended to the 3' ends of CRISPR-Cas guide RNAs1. To identify cellular determinants of prime editing, we developed scalable prime editing reporters and performed genome-scale CRISPR-interference screens. From these screens, a single factor emerged as the strongest mediator of prime editing: the small RNA-binding exonuclease protection factor La. Further investigation revealed that La promotes prime editing across approaches (PE2, PE3, PE4 and PE5), edit types (substitutions, insertions and deletions), endogenous loci and cell types but has no consistent effect on genome-editing approaches that rely on standard, unextended guide RNAs. Previous work has shown that La binds polyuridine tracts at the 3' ends of RNA polymerase III transcripts2. We found that La functionally interacts with the 3' ends of polyuridylated prime editing guide RNAs (pegRNAs). Guided by these results, we developed a prime editor protein (PE7) fused to the RNA-binding, N-terminal domain of La. This editor improved prime editing with expressed pegRNAs and engineered pegRNAs (epegRNAs), as well as with synthetic pegRNAs optimized for La binding. Together, our results provide key insights into how prime editing components interact with the cellular environment and suggest general strategies for stabilizing exogenous small RNAs therein.


Subject(s)
Gene Editing , RNA-Binding Proteins , Humans , CRISPR-Cas Systems/genetics , Gene Editing/methods , K562 Cells , Poly U/genetics , Poly U/metabolism , RNA Polymerase III/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , RNA-Binding Proteins/metabolism
6.
Hum Genet ; 143(3): 437-453, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38520561

ABSTRACT

General transcription factor IIIC subunit 5 (GTF3C5) encodes transcription factor IIIC63 (TFIIIC63). It binds to DNA to recruit another transcription factor, TFIIIB, and RNA polymerase III (Pol III) to mediate the transcription of small noncoding RNAs, such as tRNAs. Here, we report four individuals from three families presenting with a multisystem developmental disorder phenotype with biallelic variants in GTF3C5. The overlapping features include growth retardation, developmental delay, intellectual disability, dental anomalies, cerebellar malformations, delayed bone age, skeletal anomalies, and facial dysmorphism. Using lymphoblastoid cell lines (LCLs) from two affected individuals, we observed a reduction in TFIIIC63 protein levels compared to control LCLs. Genome binding of TFIIIC63 protein is also reduced in LCL from one of the affected individuals. Additionally, approximately 40% of Pol III binding regions exhibited reduction in the level of Pol III occupancy in the mutant genome relative to the control, while approximately 54% of target regions showed comparable levels of Pol III occupancy between the two, indicating partial impairment of Pol III occupancy in the mutant genome. Yeasts with subject-specific variants showed temperature sensitivity and impaired growth, supporting the notion that the identified variants have deleterious effects. gtf3c5 mutant zebrafish showed developmental defects, including a smaller body, head, and eyes. Taken together, our data show that GTF3C5 plays an important role in embryonic development, and that biallelic variants in this gene cause a multisystem developmental disorder. Our study adds GTF3C5-related disorder to the growing list of genetic disorders associated with Pol III transcription machinery.


Subject(s)
Developmental Disabilities , RNA Polymerase III , Transcription Factors, TFIII , Animals , Child , Child, Preschool , Female , Humans , Male , Alleles , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Intellectual Disability/genetics , Mutation , Pedigree , Phenotype , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , Transcription Factors, TFII/genetics , Transcription Factors, TFII/metabolism , Transcription Factors, TFIII/genetics , Transcription Factors, TFIII/metabolism , Transcription, Genetic , Zebrafish/genetics
7.
Stem Cell Res ; 76: 103363, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437768

ABSTRACT

Spastic Ataxias (SA) are a group of neurodegenerative disorders with combined pyramidal and cerebellar system affection, leading to an overlap phenotype between Hereditary Spastic Paraplegias (HSP) and Cerebellar Ataxias (CA). Here we describe the generation of iPSCs from three unrelated patients with an ultra-rare subtype of SA caused by compound heterozygous mutations in POLR3A, that encodes the largest subunit of RNA polymerase III. iPSCs were reprogrammed from normal human dermal fibroblasts (NHDFs) using episomal reprogramming with integration-free plasmid vectors: HIHRSi004-A, derived from a 44 year-old male carrying the mutations c.1909 + 22G > A/c.3944_3945delTG, HIHRSi005-A obtained from a 66 year-old male carrying the mutations c.1909 + 22G > A/c.1531C > T, and HIHRSi006-A from a 27 year-old male carrying the mutations c.1909 + 22G > A/c.2472_2472delC (ENST00000372371.8).


Subject(s)
Induced Pluripotent Stem Cells , Intellectual Disability , Optic Atrophy , Spinocerebellar Ataxias , Adult , Aged , Humans , Male , Cell Line , Induced Pluripotent Stem Cells/metabolism , Muscle Spasticity/genetics , Mutation , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , Spinocerebellar Ataxias/genetics
8.
J Biol Chem ; 300(3): 105737, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336292

ABSTRACT

Transcription is a tightly regulated, complex, and essential cellular process in all living organisms. Transcription is comprised of three steps, transcription initiation, elongation, and termination. The distinct transcription initiation and termination mechanisms of eukaryotic RNA polymerases I, II, and III (Pols I, II, and III) have long been appreciated. Recent methodological advances have empowered high-resolution investigations of the Pols' transcription elongation mechanisms. Here, we review the kinetic similarities and differences in the individual steps of Pol I-, II-, and III-catalyzed transcription elongation, including NTP binding, bond formation, pyrophosphate release, and translocation. This review serves as an important summation of Saccharomyces cerevisiae (yeast) Pol I, II, and III kinetic investigations which reveal that transcription elongation by the Pols is governed by distinct mechanisms. Further, these studies illustrate how basic, biochemical investigations of the Pols can empower the development of chemotherapeutic compounds.


Subject(s)
Drug Therapy , RNA Polymerase III , RNA Polymerase II , RNA Polymerase I , Saccharomyces cerevisiae , Transcription Elongation, Genetic , Biocatalysis/drug effects , Kinetics , RNA Polymerase I/metabolism , RNA Polymerase II/metabolism , RNA Polymerase III/metabolism , Saccharomyces cerevisiae/enzymology , Transcription Elongation, Genetic/drug effects
9.
Nucleic Acids Res ; 52(8): 4151-4166, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38340348

ABSTRACT

In cancer therapy, DNA intercalators are mainly known for their capacity to kill cells by inducing DNA damage. Recently, several DNA intercalators have attracted much interest given their ability to inhibit RNA Polymerase I transcription (BMH-21), evict histones (Aclarubicin) or induce chromatin trapping of FACT (Curaxin CBL0137). Interestingly, these DNA intercalators lack the capacity to induce DNA damage while still retaining cytotoxic effects and stabilize p53. Herein, we report that these DNA intercalators impact chromatin biology by interfering with the chromatin stability of RNA polymerases I, II and III. These three compounds have the capacity to induce degradation of RNA polymerase II and they simultaneously enable the trapping of Topoisomerases TOP2A and TOP2B on the chromatin. In addition, BMH-21 also acts as a catalytic inhibitor of Topoisomerase II, resembling Aclarubicin. Moreover, BMH-21 induces chromatin trapping of the histone chaperone FACT and propels accumulation of Z-DNA and histone eviction, similarly to Aclarubicin and CBL0137. These DNA intercalators have a cumulative impact on general transcription machinery by inducing accumulation of topological defects and impacting nuclear chromatin. Therefore, their cytotoxic capabilities may be the result of compounding deleterious effects on chromatin homeostasis.


Subject(s)
Chromatin , DNA Topoisomerases, Type II , Intercalating Agents , Poly-ADP-Ribose Binding Proteins , RNA Polymerase II , Chromatin/metabolism , Intercalating Agents/pharmacology , Intercalating Agents/chemistry , DNA Topoisomerases, Type II/metabolism , RNA Polymerase II/metabolism , Humans , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , DNA-Binding Proteins/metabolism , High Mobility Group Proteins/metabolism , High Mobility Group Proteins/genetics , Histones/metabolism , Topoisomerase II Inhibitors/pharmacology , Transcriptional Elongation Factors/metabolism , Transcriptional Elongation Factors/genetics , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , DNA Damage , DNA/metabolism , DNA/chemistry , RNA Polymerase I/metabolism , RNA Polymerase I/antagonists & inhibitors , RNA Polymerase III/metabolism , Transcription, Genetic/drug effects , Carbazoles , Diketopiperazines
10.
Neuron ; 112(9): 1397-1415.e6, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38377989

ABSTRACT

Defects in tRNA biogenesis are associated with multiple neurological disorders, yet our understanding of these diseases has been hampered by an inability to determine tRNA expression in individual cell types within a complex tissue. Here, we developed a mouse model in which RNA polymerase III is conditionally epitope tagged in a Cre-dependent manner, allowing us to accurately profile tRNA expression in any cell type in vivo. We investigated tRNA expression in diverse nervous system cell types, revealing dramatic heterogeneity in the expression of tRNA genes between populations. We found that while maintenance of levels of tRNA isoacceptor families is critical for cellular homeostasis, neurons are differentially vulnerable to insults to distinct tRNA isoacceptor families. Cell-type-specific translatome analysis suggests that the balance between tRNA availability and codon demand may underlie such differential resilience. Our work provides a platform for investigating the complexities of mRNA translation and tRNA biology in the brain.


Subject(s)
Brain , Homeostasis , Neurons , RNA, Transfer , Animals , RNA, Transfer/genetics , RNA, Transfer/metabolism , Homeostasis/physiology , Mice , Brain/metabolism , Neurons/metabolism , RNA Polymerase III/metabolism , RNA Polymerase III/genetics , Mice, Transgenic
11.
Mol Cell ; 84(4): 619-620, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38364780

ABSTRACT

Leone et al.1 reveal that Pol III transcription complexes recruit a chaperone, HSP70, to execute cotranscriptional cleavage of precursor tRNA. HSP70 binds to the polymerase and translocates to nascent precursor tRNA and then tRNA. The last complex facilitates Pol III to engage in a new, efficient transcription cycle with another HSP70.


Subject(s)
RNA, Transfer , Transcription, Genetic , RNA, Transfer/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , RNA Polymerase III/metabolism
12.
Mol Genet Genomic Med ; 12(3): e2274, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38348603

ABSTRACT

Wiedemann-Rautenstrauch Syndrome (WRS; MIM 264090) is an extremely rare and highly heterogeneous syndrome that is inherited in a recessive fashion. The patients have hallmark features such as prenatal and postnatal growth retardation, short stature, a progeroid appearance, hypotonia, facial dysmorphology, hypomyelination leukodystrophy, and mental impairment. Biallelic disease-causing variants in the RNA polymerase III subunit A (POLR3A) have been associated with WRS. Here, we report the first identified cases of WRS syndrome with novel phenotypes in three consanguineous families (two Omani and one Saudi) characterized by biallelic variants in POLR3A. Using whole-exome sequencing, we identified one novel homozygous missense variant (NM_007055: c.2456C>T; p. Pro819Leu) in two Omani families and one novel homozygous variant (c.1895G>T; p Cys632Phe) in Saudi family that segregates with the disease in the POLR3A gene. In silico homology modeling of wild-type and mutated proteins revealed a substantial change in the structure and stability of both proteins, demonstrating a possible effect on function. By identifying the homozygous variants in the exon 14 and 18 of the POLR3A gene, our findings will contribute to a better understanding of the phenotype-genotype relationship and molecular etiology of WRS syndrome.


Subject(s)
Progeria , Pregnancy , Female , Humans , Phenotype , Progeria/genetics , Fetal Growth Retardation/genetics , Mutation, Missense , Syndrome , RNA Polymerase III/genetics
13.
Genes (Basel) ; 15(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38397171

ABSTRACT

Bi-allelic pathogenic variations within POLR3A have been associated with a spectrum of hereditary disorders. Among these, a less frequently observed condition is Wiedemann-Rautenstrauch syndrome (WRS), also known as neonatal progeroid syndrome. This syndrome typically manifests neonatally and is characterized by growth retardation, evident generalized lipodystrophy with distinctively localized fat accumulations, sparse scalp hair, and atypical facial features. Our objective was to elucidate the underlying molecular mechanisms of Wiedemann-Rautenstrauch syndrome (WRS). In this study, we present a clinical case of a 7-year-old female patient diagnosed with WRS. Utilizing whole-exome sequencing (WES), we identified a novel missense variant c.3677T>C (p.Leu1226Pro) in the POLR3A gene (NM_007055.4) alongside two cis intronic variants c.1909+22G>A and c.3337-11T>C. Via the analysis of mRNA derived from fibroblasts, we reconfirmed the splicing-affecting nature of the c.3337-11T>C variant. Furthermore, our investigation led to the reclassification of the c.3677T>C (p.Leu1226Pro) variant as a likely pathogenic variant. Therefore, this is the first case demonstrating the molecular genetics of a patient with Wiedemann-Rautenstrauch syndrome from the Russian Federation. A limited number of clinical cases have been documented until this moment; therefore, broadening the linkage between phenotype and molecular changes in the POLR3A gene will significantly contribute to the comprehensive understanding of the molecular basis of POLR3A-related disorders.


Subject(s)
Progeria , Infant, Newborn , Female , Humans , Child , Progeria/genetics , Progeria/diagnosis , Progeria/pathology , Fetal Growth Retardation/pathology , Mutation , Russia , RNA Polymerase III/genetics
14.
Mol Cell ; 84(4): 687-701.e7, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38266641

ABSTRACT

Molecular chaperones are critical for protein homeostasis and are implicated in several human pathologies such as neurodegeneration and cancer. While the binding of chaperones to nascent and misfolded proteins has been studied in great detail, the direct interaction between chaperones and RNA has not been systematically investigated. Here, we provide the evidence for widespread interaction between chaperones and RNA in human cells. We show that the major chaperone heat shock protein 70 (HSP70) binds to non-coding RNA transcribed by RNA polymerase III (RNA Pol III) such as tRNA and 5S rRNA. Global chromatin profiling revealed that HSP70 binds genomic sites of transcription by RNA Pol III. Detailed biochemical analyses showed that HSP70 alleviates the inhibitory effect of cognate tRNA transcript on tRNA gene transcription. Thus, our study uncovers an unexpected role of HSP70-RNA interaction in the biogenesis of a specific class of non-coding RNA with wider implications in cancer therapeutics.


Subject(s)
HSP70 Heat-Shock Proteins , Neoplasms , Humans , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , RNA , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , RNA, Transfer/genetics , RNA, Untranslated/genetics
15.
Nat Cell Biol ; 26(1): 100-112, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38191669

ABSTRACT

Transfer RNAs are essential for translating genetic information into proteins. The human genome contains hundreds of predicted tRNA genes, many in multiple copies. How their expression is regulated to control tRNA repertoires is unknown. Here we combined quantitative tRNA profiling and chromatin immunoprecipitation with sequencing to measure tRNA expression following the differentiation of human induced pluripotent stem cells into neuronal and cardiac cells. We find that tRNA transcript levels vary substantially, whereas tRNA anticodon pools, which govern decoding rates, are more stable among cell types. Mechanistically, RNA polymerase III transcribes a wide range of tRNA genes in human induced pluripotent stem cells but on differentiation becomes constrained to a subset we define as housekeeping tRNAs. This shift is mediated by decreased mTORC1 signalling, which activates the RNA polymerase III repressor MAF1. Our data explain how tRNA anticodon pools are buffered to maintain decoding speed across cell types and reveal that mTORC1 drives selective tRNA expression during differentiation.


Subject(s)
Anticodon , Induced Pluripotent Stem Cells , Humans , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , Induced Pluripotent Stem Cells/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Gene Expression
16.
Cerebellum ; 23(2): 688-701, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36997834

ABSTRACT

The association of hypogonadism and cerebellar ataxia was first recognized in 1908 by Gordon Holmes. Since the seminal description, several heterogeneous phenotypes have been reported, differing for age at onset, associated features, and gonadotropins levels. In the last decade, the genetic bases of these disorders are being progressively uncovered. Here, we review the diseases associating ataxia and hypogonadism and the corresponding causative genes. In the first part of this study, we focus on clinical syndromes and genes (RNF216, STUB1, PNPLA6, AARS2, SIL1, SETX) predominantly associated with ataxia and hypogonadism as cardinal features. In the second part, we mention clinical syndromes and genes (POLR3A, CLPP, ERAL1, HARS, HSD17B4, LARS2, TWNK, POLG, ATM, WFS1, PMM2, FMR1) linked to complex phenotypes that include, among other features, ataxia and hypogonadism. We propose a diagnostic algorithm for patients with ataxia and hypogonadism, and we discuss the possible common etiopathogenetic mechanisms.


Subject(s)
Amino Acyl-tRNA Synthetases , Cerebellar Ataxia , Fragile X Mental Retardation Protein , Hypogonadism , RNA Polymerase III , Humans , Cerebellar Ataxia/genetics , Ataxia/genetics , Phenotype , Hypogonadism/genetics , Hypogonadism/pathology , Mutation , Guanine Nucleotide Exchange Factors/genetics , Ubiquitin-Protein Ligases/genetics , DNA Helicases/genetics , RNA Helicases/genetics , Multifunctional Enzymes/genetics
17.
J Biochem ; 175(2): 205-213, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-37963603

ABSTRACT

TFIIIC is a multi-subunit complex required for tRNA transcription by RNA polymerase III. Human TFIIIC holo-complex possesses lysine acetyltransferase activity that aids in relieving chromatin-mediated repression for RNA polymerase III-mediated transcription and chromatin assembly. Here we have characterized the acetyltransferase activity of the largest and DNA-binding subunit of TFIIIC complex, TFIIIC220. Purified recombinant human TFIIIC220 acetylated core histones H3, H4 and H2A in vitro. Moreover, we have identified the putative catalytic domain of TFIIIC220 that efficiently acetylates core histones in vitro. Mutating critical residues of the putative acetyl-CoA binding 'P loop' drastically reduced the catalytic activity of the acetyltransferase domain. Further analysis showed that the knockdown of TFIIIC220 in mammalian cell lines dramatically reduces global H3K18 acetylation level, which was rescued by overexpression of the putative acetyltransferase domain of human TFIIIC220. Our findings indicated a possibility of a crucial role for TFIIIC220 in maintaining acetylation homeostasis in the cell.


Subject(s)
Histones , Lysine Acetyltransferases , Transcription Factors, TFIII , Animals , Humans , Histones/metabolism , Lysine Acetyltransferases/metabolism , RNA Polymerase III/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Acetylation , Mammals
18.
Arthritis Rheumatol ; 76(1): 68-77, 2024 01.
Article in English | MEDLINE | ID: mdl-37488962

ABSTRACT

OBJECTIVES: We examined whether an array of scleroderma autoantibodies associates with risk of cancer and could be useful tools for risk stratification. METHODS: Scleroderma cancer cases and scleroderma controls without cancer from the Johns Hopkins Scleroderma Center and the University of Pittsburgh Scleroderma Center were studied. Sera were assayed by Lineblot and enzyme-linked immunosorbent assay (ELISA) for autoantibodies against centromere, topoisomerase 1, RNA polymerase (POLR) 3, PM/Scl, Th/To, NOR90, U3 RNP, Ku, Ro52, U1RNP, and RNPC3. Logistic regression models were constructed to examine whether distinct autoantibodies associated with overall cancer at any time and cancer-associated scleroderma (cancer occurring three years before and after scleroderma onset). The effects of having more than one autoantibody on cancer were further examined using random forest analysis. RESULTS: A total of 676 cases and 687 controls were studied. After adjusting for relevant covariates, anti-POLR3 (odds ratio [OR] 1.47, 95% confidence interval [CI] 1.03-2.11) and monospecific anti-Ro52 (OR 2.19, 95% CI 1.29-3.74) were associated with an increased overall cancer risk, whereas anticentromere (OR 0.69, 95% CI 0.51-0.93) and anti-U1RNP (OR 0.63, 95% CI 0.43-0.93) were associated with lower risk. When examining risk of cancer-associated scleroderma, these immune responses remained associated with increased or decreased risk: anti-POLR3 (OR 2.28, 95% CI 1.33-3.91), monospecific anti-Ro52 (OR 2.58, 95% CI 1.05-6.30), anticentromere (OR 0.39, 95% CI 0.20-0.74), and anti-U1RNP (OR 0.32, 95% CI 0.11-0.93). Anti-Ro52 plus anti-U1RNP or anti-Th/To was associated with decreased cancer risk compared with anti-Ro52 alone. CONCLUSIONS: These data suggest that five distinct scleroderma immune responses, alone or in combination, may be useful tools to stratify the risk of cancer for scleroderma patients. Further study examining cancer risk in autoantibody subgroups relative to the general population is warranted.


Subject(s)
Neoplasms , Scleroderma, Localized , Scleroderma, Systemic , Humans , Autoantibodies , Scleroderma, Localized/complications , Disease Progression , Logistic Models , RNA Polymerase III , Scleroderma, Systemic/complications , Nuclear Proteins , RNA-Binding Proteins
19.
Gene ; 893: 147958, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37923095

ABSTRACT

Several covalent modifications are found associated with the transcriptionally active chromatin regions constituted by the genes transcribed by RNA polymerase (pol) II. Pol III-transcribed genes code for the small, stable RNA species, which participate in many cellular processes, essential for survival. Pol III transcription is repressed under most of the stress conditions by its negative regulator Maf1. We found that most of the histone acetylations increase with starvation-induced repression on several genes transcribed by the yeast pol III. On one of these genes, SNR6 (coding for the U6snRNA), a strongly positioned nucleosome in the gene upstream region plays regulatory role under repression. On this nucleosome, the changes in H3K9 and H3K14 acetylations show different dynamics. During repression, acetylation levels on H3K9 show steady increase whereas H3K14 acetylation increases with a peak at 40 min after which levels reduce. Both the levels settle by 2 hr to a level higher than the active state, which revert to normal levels with nutrient repletion. The increase in H3 acetylations is seen in the mutants reported to show reduced SNR6 transcription but not in the maf1Δ cells. This increase on a regulatory nucleosome may be part of the signaling mechanisms, which prepare cells for the stress-related quick repression as well as reactivation. The contrasting association of the histone acetylations with pol II and pol III transcription may be an important consideration to make in research studies focused on drug developments targeting histone modifications.


Subject(s)
Nucleosomes , Transcription, Genetic , Nucleosomes/genetics , Histones/genetics , Histones/metabolism , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , Acetylation , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
20.
FASEB J ; 37(12): e23260, 2023 12.
Article in English | MEDLINE | ID: mdl-37933949

ABSTRACT

RNA Polymerase III Subunit G (POLR3G) promotes tumorigenesis, metastasis, cancer stemness, and chemoresistance of breast cancer and lung cancer; however, its biological function in bladder cancer (BLCA) remains unclear. Through bioinformatic analyses, we found that POLR3G expression was significantly elevated in BLCA tumor tissues and was associated with decreased survival. Multivariate Cox analysis indicated that POLR3G could serve as an independent prognostic risk factor. Our functional investigations revealed that POLR3G deficiency resulted in reduced migration and invasion of BLCA cells both in vitro and in vivo. Additionally, the expressions of EMT-related mesenchymal markers were also downregulated in POLR3G knockdown cells. Mechanistically, we showed that POLR3G could activate the PI3K/AKT signaling pathway. Inhibition of this pathway with LY294002 reduced the enhanced migration and invasion of BLCA cells induced by POLR3G overexpression, whereas the activation of this pathway using 740Y-P restored the abilities that were inhibited by POLR3G knockdown. Taken together, our findings suggested that POLR3G is a prognostic predictor for BLCA and promotes EMT of BLCA through activation of the PI3K/AKT signaling pathway.


Subject(s)
Epithelial-Mesenchymal Transition , RNA Polymerase III , Signal Transduction , Urinary Bladder Neoplasms , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Urinary Bladder Neoplasms/metabolism , RNA Polymerase III/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...