Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Cell Rep Methods ; 3(6): 100508, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37426752

ABSTRACT

Understanding how the RNA-binding domains of a protein regulator are used to recognize its RNA targets is a key problem in RNA biology, but RNA-binding domains with very low affinity do not perform well in the methods currently available to characterize protein-RNA interactions. Here, we propose to use conservative mutations that enhance the affinity of RNA-binding domains to overcome this limitation. As a proof of principle, we have designed and validated an affinity-enhanced K-homology (KH) domain mutant of the fragile X syndrome protein FMRP, a key regulator of neuronal development, and used this mutant to determine the domain's sequence preference and to explain FMRP recognition of specific RNA motifs in the cell. Our results validate our concept and our nuclear magnetic resonance (NMR)-based workflow. While effective mutant design requires an understanding of the underlying principles of RNA recognition by the relevant domain type, we expect the method will be used effectively in many RNA-binding domains.


Subject(s)
Fragile X Mental Retardation Protein , RNA , RNA/genetics , Fragile X Mental Retardation Protein/genetics , Proteins/genetics , Mutation , RNA-Binding Motifs/genetics
2.
Sci Rep ; 13(1): 5238, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37002329

ABSTRACT

Thousands of RNA-binding proteins (RBPs) crosslink to cellular mRNA. Among these are numerous unconventional RBPs (ucRBPs)-proteins that associate with RNA but lack known RNA-binding domains (RBDs). The vast majority of ucRBPs have uncharacterized RNA-binding specificities. We analyzed 492 human ucRBPs for intrinsic RNA-binding in vitro and identified 23 that bind specific RNA sequences. Most (17/23), including 8 ribosomal proteins, were previously associated with RNA-related function. We identified the RBDs responsible for sequence-specific RNA-binding for several of these 23 ucRBPs and surveyed whether corresponding domains from homologous proteins also display RNA sequence specificity. CCHC-zf domains from seven human proteins recognized specific RNA motifs, indicating that this is a major class of RBD. For Nudix, HABP4, TPR, RanBP2-zf, and L7Ae domains, however, only isolated members or closely related homologs yielded motifs, consistent with RNA-binding as a derived function. The lack of sequence specificity for most ucRBPs is striking, and we suggest that many may function analogously to chromatin factors, which often crosslink efficiently to cellular DNA, presumably via indirect recruitment. Finally, we show that ucRBPs tend to be highly abundant proteins and suggest their identification in RNA interactome capture studies could also result from weak nonspecific interactions with RNA.


Subject(s)
RNA-Binding Proteins , RNA , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA/metabolism , Ribosomal Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Motifs/genetics , Protein Binding , Myogenic Regulatory Factors/metabolism
3.
Proteins ; 90(11): 1837-1850, 2022 11.
Article in English | MEDLINE | ID: mdl-35514080

ABSTRACT

RNA binding proteins (RBPs) regulate many important cellular processes through their interactions with RNA molecules. RBPs are critical for posttranscriptional mechanisms keeping gene regulation in a fine equilibrium. Conversely, dysregulation of RBPs and RNA metabolism pathways is an established hallmark of tumorigenesis. Human nucleolin (NCL) is a multifunctional RBP that interacts with different types of RNA molecules, in part through its four RNA binding domains (RBDs). Particularly, NCL interacts directly with microRNAs (miRNAs) and is involved in their aberrant processing linked with many cancers, including breast cancer. Nonetheless, molecular details of the NCL-miRNA interaction remain obscure. In this study, we used an in silico approach to characterize how NCL targets miRNAs and whether this specificity is imposed by a definite RBD-interface. Here, we present structural models of NCL-RBDs and miRNAs, as well as predict scenarios of NCL-miRNA interactions generated using docking algorithms. Our study suggests a predominant role of NCL RBDs 3 and 4 (RBD3-4) in miRNA binding. We provide detailed analyses of specific motifs/residues at the NCL-substrate interface in both these RBDs and miRNAs. Finally, we propose that the evolutionary emergence of more than two RBDs in NCL in higher organisms coincides with its additional role/s in miRNA processing. Our study shows that RBD3-4 display sequence/structural determinants to specifically recognize miRNA precursor molecules. Moreover, the insights from this study can ultimately support the design of novel antineoplastic drugs aimed at regulating NCL-dependent biological pathways with a causal role in tumorigenesis.


Subject(s)
Antineoplastic Agents , MicroRNAs , Carcinogenesis , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA-Binding Motifs/genetics , RNA-Binding Proteins/chemistry , Nucleolin
4.
PLoS One ; 16(10): e0256070, 2021.
Article in English | MEDLINE | ID: mdl-34653190

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) is a significant pathogen in respiratory disease and otitis media. Important for NTHi survival, colonization and persistence in vivo is the Sap (sensitivity to antimicrobial peptides) ABC transporter system. Current models propose a direct role for Sap in heme and antimicrobial peptide (AMP) transport. Here, the crystal structure of SapA, the periplasmic component of Sap, in a closed, ligand bound conformation, is presented. Phylogenetic and cavity volume analysis predicts that the small, hydrophobic SapA central ligand binding cavity is most likely occupied by a hydrophobic di- or tri- peptide. The cavity is of insufficient volume to accommodate heme or folded AMPs. Crystal structures of SapA have identified surface interactions with heme and dsRNA. Heme binds SapA weakly (Kd 282 µM) through a surface exposed histidine, while the dsRNA is coordinated via residues which constitute part of a conserved motif (estimated Kd 4.4 µM). The RNA affinity falls within the range observed for characterized RNA/protein complexes. Overall, we describe in molecular-detail the interactions of SapA with heme and dsRNA and propose a role for SapA in the transport of di- or tri-peptides.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Carrier Proteins/metabolism , Haemophilus influenzae/metabolism , Heme/metabolism , RNA, Double-Stranded/metabolism , ATP-Binding Cassette Transporters/genetics , Anti-Bacterial Agents/pharmacology , Carrier Proteins/genetics , Crystallography, X-Ray , Drug Resistance, Multiple, Bacterial/genetics , Haemophilus Infections/microbiology , Haemophilus Infections/pathology , Haemophilus influenzae/drug effects , Haemophilus influenzae/genetics , Otitis Media/microbiology , Otitis Media/pathology , Protein Conformation , Protein Transport/physiology , RNA, Double-Stranded/genetics , RNA-Binding Motifs/genetics , Virulence Factors/metabolism
5.
Medicine (Baltimore) ; 100(22): e26194, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34087888

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) can work as microRNA (miRNA) sponges through a competitive endogenous RNA (ceRNA) mechanism. LncRNAs and miRNAs are important components of competitive endogenous binding, and their expression imbalance in hepatocellular carcinoma (HCC) is closely related to tumor development, diagnosis, and prognosis. This study explored the potential impact of the ceRNA regulatory network in HCC on the prognosis of HCC patients. METHODS: We thoroughly researched the differential expression profiles of lncRNAs, miRNAs, and mRNAs from 2 HCC Gene Expression Omnibus datasets (GSE98269 and GSE60502). Then, a dysregulated ceRNA network was constructed by bioinformatics. In addition, hub genes in the ceRNA network were screened by Cytoscape, these hub genes functional analysis was performed by gene set enrichment analysis, and the expression of these hub genes in tumors and their correlation with patient prognosis were verified with Gene Expression Profiling Interactive Analysis. RESULTS: A ceRNA network was successfully constructed in this study including 4 differentially expressed (DE) lncRNAs, 7 DEmiRNAs, and 166 DEmRNAs. Importantly, 4 core genes (CCNA2, CHEK1, FOXM1, and MCM2) that were significantly associated with HCC prognosis were identified. CONCLUSIONS: Our study provides comprehensive and meaningful insights into HCC tumorigenesis and the underlying molecular mechanisms of ceRNA. Furthermore, the specific ceRNAs can be further used as potential therapeutic targets and prognostic biomarkers for HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Computational Biology/methods , Gene Expression Regulation, Neoplastic/genetics , Liver Neoplasms/pathology , RNA, Long Noncoding/genetics , Adult , Biomarkers, Tumor/metabolism , Carcinogenesis/genetics , Carcinoma, Hepatocellular/diagnosis , Checkpoint Kinase 1/genetics , Cyclin A2/genetics , Female , Forkhead Box Protein M1/genetics , Gene Expression Profiling/methods , Humans , Male , MicroRNAs/genetics , Middle Aged , Minichromosome Maintenance Complex Component 2/genetics , Prognosis , RNA, Messenger/genetics , RNA-Binding Motifs/genetics
6.
Nucleic Acids Res ; 49(10): 5985-5997, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34037778

ABSTRACT

Pentatricopeptide repeat (PPR) proteins are helical repeat-proteins that bind RNA in a modular fashion with a sequence-specificity that can be manipulated by the use of an amino acid code. As such, PPR repeats are promising scaffolds for the design of RNA binding proteins for synthetic biology applications. However, the in vivo functional capabilities of artificial PPR proteins built from consensus PPR motifs are just starting to be explored. Here, we report in vivo functions of an artificial PPR protein, dPPRrbcL, made of consensus PPR motifs that were designed to bind a sequence near the 5' end of rbcL transcripts in Arabidopsis chloroplasts. We used a functional complementation assay to demonstrate that this protein bound its intended RNA target with specificity in vivo and that it substituted for a natural PPR protein by stabilizing processed rbcL mRNA. We targeted a second protein of analogous design to the petL 5' UTR, where it substituted for the native stabilizing PPR protein PGR3, albeit inefficiently. These results showed that artificial PPR proteins can be engineered to functionally mimic the class of native PPR proteins that serve as physical barriers against exoribonucleases.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Chloroplasts/metabolism , Protein Engineering/methods , RNA, Chloroplast/metabolism , RNA-Binding Motifs/genetics , 5' Untranslated Regions , Arabidopsis/genetics , Chloroplasts/genetics , Gene Expression , Plants, Genetically Modified , Protein Binding , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Recombinant Proteins , Ribulose-Bisphosphate Carboxylase/genetics
7.
BMC Res Notes ; 14(1): 10, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407800

ABSTRACT

OBJECTIVE: This study describes the occurrence of a silent mutation in the RNA binding domain of nucleocapsid phosphoprotein (N protein) coding gene from SARS-CoV-2 that may consequence to a missense mutation by onset of another single nucleotide mutation. RESULTS: In the DNA sequence isolated from severe acute respiratory syndrome (SARS-CoV-2) in Iran, a coding sequence for the RNA binding domain of N protein was detected. The comparison of Chinese and Iranian DNA sequences displayed that a thymine (T) was mutated to cytosine (C), so "TTG" from China was changed to "CTG" in Iran. Both DNA sequences from Iran and China have been encoded for leucine. In addition, the second T in "CTG" in the DNA or uracil (U) in "CUG" in the RNA sequences from Iran can be mutated to another C by a missense mutation resulting from thymine DNA glycosylase (TDG) of human and base excision repair mechanism to produce "CCG" encoding for proline, which consequently may increase the affinity of the RNA binding domain of N protein to viral RNA and improve the transcription rate, pathogenicity, evasion from human immunity system, spreading in the human body, and risk of human-to-human transmission rate of SARS-CoV-2.


Subject(s)
COVID-19/genetics , Coronavirus Nucleocapsid Proteins/genetics , RNA, Viral/genetics , RNA-Binding Motifs/genetics , SARS-CoV-2/genetics , China , Databases, Genetic , Humans , Iran , Mutation, Missense , Phosphoproteins/genetics , Sequence Analysis, DNA , Silent Mutation
8.
Biochem Biophys Res Commun ; 541: 50-55, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33477032

ABSTRACT

SARS-CoV-2 is a highly contagious coronavirus causing the ongoing pandemic. Very recently its genomic RNA of ∼30 kb was decoded to be packaged with nucleocapsid (N) protein into phase separated condensates. Interestingly, viruses have no ability to generate ATP but host cells have very high ATP concentrations of 2-12 mM. A key question thus arises whether ATP modulates liquid-liquid phase separation (LLPS) of the N protein. Here we discovered that ATP not only biphasically modulates LLPS of the viral N protein as we previously found on human FUS and TDP-43, but also dissolves the droplets induced by oligonucleic acid. Residue-specific NMR characterization showed ATP specifically binds the RNA-binding domain (RBD) of the N protein with the average Kd of 3.3 ± 0.4 mM. The ATP-RBD complex structure was constructed by NMR-derived constraints, in which ATP occupies a pocket within the positive-charged surface utilized for binding nucleic acids. Our study suggests that ATP appears to be exploited by SARS-CoV-2 to promote its life cycle by facilitating the uncoating, localizing and packing of its genomic RNA. Therefore the interactions of ATP with the viral RNA and N protein might represent promising targets for design of drugs and vaccines to terminate the pandemic.


Subject(s)
Adenosine Triphosphate/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Liquid-Liquid Extraction , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Adenosine Triphosphate/chemistry , Binding Sites , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , RNA-Binding Motifs/genetics , SARS-CoV-2/chemistry
9.
J Biochem ; 169(1): 87-100, 2021 Feb 06.
Article in English | MEDLINE | ID: mdl-32785674

ABSTRACT

Nucleolin (NCL) is a nucleolar protein i.e. involved in the regulation of the nucleolar structure and functions, and consists of three distinct regions: the N-terminal region; the middle region, which contains four RNA-recognition motifs (RRMs); and the C-terminal glycine- and arginine-rich (GAR) region. The primary function of the RRMs and GAR is thought to be specific RNA binding. However, it is not well understood how these RNA-binding regions of NCL separately or cooperatively regulate its nucleolar localization and functions. To address this issue, we constructed mutant proteins carrying point mutations at the four RRMs individually or deletion of the C-terminal GAR region. We found that the GAR deletion and the mutations in the fourth RRM (RRM4) decreased the nucleolar localization of NCL. Biochemical analyses showed that NCL interacted directly with ribosomal RNAs (rRNAs) and G-rich oligonucleotides, and that this interaction was decreased by mutations at RRM1 and RRM4 and GAR deletion. Although GAR deletion decreased the rRNA-binding activity of NCL, the mutant was efficiently coprecipitated with rRNAs and nucleolar proteins from cell extracts. These contradictory results suggest that NCL stably localizes to the nucleoli via the interactions with rRNAs and nucleolar proteins via GAR, RRM1 and RRM4.


Subject(s)
Arginine/metabolism , Cell Nucleolus/metabolism , Glycine/metabolism , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , RNA-Binding Motifs/genetics , RNA-Binding Proteins/metabolism , Amino Acid Sequence/genetics , Arginine/genetics , Glycine/genetics , HeLa Cells , Humans , Nuclear Proteins/genetics , Phosphoproteins/genetics , Point Mutation , Protein Transport , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA-Binding Proteins/genetics , Nucleolin
10.
RNA Biol ; 18(6): 843-853, 2021 06.
Article in English | MEDLINE | ID: mdl-32924750

ABSTRACT

Proper base-pairing of a miRNA with its target mRNA is a key step in miRNA-mediated mRNA repression. RNA remodelling by RNA-binding proteins (RBPs) can improve access of miRNAs to their target mRNAs. The largest isoform p45 of the RBP AUF1 has previously been shown to remodel viral or AU-rich RNA elements. Here, we show that AUF1 is capable of directly promoting the binding of the miRNA let-7b to its target site within the 3'UTR of the POLR2D mRNA. Our data suggest this occurs in two ways. First, the helix-destabilizing RNA chaperone activity of AUF1 disrupts a stem-loop structure of the target mRNA and thus exposes the miRNA target site. Second, the RNA annealing activity of AUF1 drives hybridization of the miRNA and its target site within the mRNA. Interestingly, the RNA remodelling activities of AUF1 were found to be isoform-specific. AUF1 isoforms containing a YGG motif are competent RNA chaperones, whereas isoforms lacking the YGG motif are not. Overall, our study demonstrates that AUF1 has the ability to modulate a miRNA-target site interaction, thus revealing a new regulatory function for AUF1 proteins during post-transcriptional control of gene expression. Moreover, tests with other RBPs suggest the YGG motif acts as a key element of RNA chaperone activity.


Subject(s)
Alternative Splicing , Heterogeneous Nuclear Ribonucleoprotein D0/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , RNA-Binding Motifs/genetics , 3' Untranslated Regions/genetics , Algorithms , Amino Acid Sequence , Gene Expression Regulation , Heterogeneous Nuclear Ribonucleoprotein D0/metabolism , Humans , Kinetics , MicroRNAs/metabolism , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA, Messenger/metabolism
11.
Nucleic Acids Res ; 48(16): 9262-9272, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32766792

ABSTRACT

LOTUS domains are helix-turn-helix protein folds identified in essential germline proteins and are conserved in prokaryotes and eukaryotes. Despite originally predicted as an RNA binding domain, its molecular binding activity towards RNA and protein is controversial. In particular, the most conserved binding property for the LOTUS domain family remains unknown. Here, we uncovered an unexpected specific interaction of LOTUS domains with G-rich RNA sequences. Intriguingly, LOTUS domains exhibit high affinity to RNA G-quadruplex tertiary structures implicated in diverse cellular processes including piRNA biogenesis. This novel LOTUS domain-RNA interaction is conserved in bacteria, plants and animals, comprising the most ancient binding feature of the LOTUS domain family. By contrast, LOTUS domains do not preferentially interact with DNA G-quadruplexes. We further show that a subset of LOTUS domains display both RNA and protein binding activities. These findings identify the LOTUS domain as a specialized RNA binding domain across phyla and underscore the molecular mechanism underlying the function of LOTUS domain-containing proteins in RNA metabolism and regulation.


Subject(s)
G-Quadruplexes , Protein Conformation , RNA Recognition Motif Proteins/genetics , RNA/genetics , Amino Acid Sequence/genetics , Base Sequence/genetics , Circular Dichroism , Germ Cells , HEK293 Cells , Helix-Turn-Helix Motifs/genetics , Humans , Protein Structure, Tertiary , RNA/metabolism , RNA/ultrastructure , RNA-Binding Motifs/genetics
12.
Genes Cells ; 25(8): 523-537, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32415897

ABSTRACT

Although several nucleo(s)tide analogs are available for treatment of HBV infection, long-term treatment with these drugs can lead to the emergence of drug-resistant viruses. Recent HIV-1 studies suggest that combination therapies using nucleo(s)tide reverse transcriptase inhibitors (NRTIs) and non-nucleo(s)tide reverse transcriptase inhibitors (NNRTIs) could drastically inhibit the viral genome replication of NRTI-resistant viruses. In order to carry out such combinational therapy against HBV, several new NRTIs and NNRTIs should be developed. Here, we aimed to identify novel NNRTIs targeting the HBV polymerase terminal protein (TP)-reverse transcriptase (RT) (TP-RT) domain, which is a critical domain for HBV replication. We expressed and purified the HBV TP-RT with high purity using an Escherichia coli expression system and established an in vitro ε RNA-binding assay system. Then, we used TP-RT in cell-free assays to screen candidate inhibitors from a chemical compound library, and identified two compounds, 6-hydroxy-DL-DOPA and N-oleoyldopamine, which inhibited the binding of ε RNA with the HBV polymerase. Furthermore, these drugs reduced HBV DNA levels in cell-based assays as well by inhibiting packaging of pregenome RNA into capsids. The novel screening system developed herein should open a new pathway the discovery of drugs targeting the HBV TP-RT domain to treat HBV infection.


Subject(s)
Drug Evaluation, Preclinical/methods , Reverse Transcriptase Inhibitors/pharmacology , Virus Replication/drug effects , Carrier Proteins/metabolism , DNA Polymerase II/genetics , DNA Polymerase II/metabolism , Gene Products, pol/genetics , Gene Products, pol/metabolism , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Humans , Protein Binding , RNA/metabolism , RNA-Binding Motifs/genetics , RNA-Directed DNA Polymerase/chemistry , RNA-Directed DNA Polymerase/genetics , Small Molecule Libraries
13.
Proc Natl Acad Sci U S A ; 117(21): 11624-11635, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32385154

ABSTRACT

Activation-induced cytidine deaminase (AID) is the key enzyme for class switch recombination (CSR) and somatic hypermutation (SHM) to generate antibody memory. Previously, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was shown to be required for AID-dependent DNA breaks. Here, we defined the function of major RNA-binding motifs of hnRNP K, GXXGs and RGGs in the K-homology (KH) and the K-protein-interaction (KI) domains, respectively. Mutation of GXXG, RGG, or both impaired CSR, SHM, and cMyc/IgH translocation equally, showing that these motifs were necessary for AID-dependent DNA breaks. AID-hnRNP K interaction is dependent on RNA; hence, mutation of these RNA-binding motifs abolished the interaction with AID, as expected. Some of the polypyrimidine sequence-carrying prototypical hnRNP K-binding RNAs, which participate in DNA breaks or repair bound to hnRNP K in a GXXG and RGG motif-dependent manner. Mutation of the GXXG and RGG motifs decreased nuclear retention of hnRNP K. Together with the previous finding that nuclear localization of AID is necessary for its function, lower nuclear retention of these mutants may worsen their functional deficiency, which is also caused by their decreased RNA-binding capacity. In summary, hnRNP K contributed to AID-dependent DNA breaks with all of its major RNA-binding motifs.


Subject(s)
Antibodies , Cytidine Deaminase , DNA Breaks , Heterogeneous-Nuclear Ribonucleoprotein K , RNA-Binding Motifs/genetics , Animals , Antibodies/chemistry , Antibodies/genetics , Antibodies/metabolism , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Heterogeneous-Nuclear Ribonucleoprotein K/chemistry , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Humans , Immunoglobulin Class Switching/genetics , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , Mice , Somatic Hypermutation, Immunoglobulin/genetics
14.
Mol Microbiol ; 114(2): 348-360, 2020 08.
Article in English | MEDLINE | ID: mdl-32314426

ABSTRACT

The ANTAR domain harnesses RNA-binding activity to promote transcription attenuation. Although several ANTAR proteins have been analyzed by high-resolution structural analyses, the residues involved in RNA-recognition and transcription attenuation have not been identified. Nor is it clear how signal-responsive domains are allosterically coupled with ANTAR domains for control of gene expression. Herein, we examined the sequence conservation of ANTAR domains to find residues that may associate with RNA. We subjected the corresponding positions of Klebsiella oxytoca NasR to site-directed alanine substitutions and measured RNA-binding activity. This revealed a functionally important patch of residues that forms amino acid pairing interactions with residues from NasR's nitrate-sensing NIT domain. We hypothesize these amino acid pairing interactions are part of an autoinhibitory mechanism that holds the structure in an "off" state in the absence of nitrate signal. Indeed, mutational disruption of these interactions resulted in constitutively active proteins, freed from autoinhibition and no longer influenced by nitrate. Moreover, sequence analyses suggested the autoinhibitory mechanism has been evolutionarily maintained by NasR proteins. These data reveal a molecular mechanism for how NasR couples its nitrate signal to RNA-binding activity, and generally show how signal-responsive domains of one-component regulatory proteins have evolved to exert control over RNA-binding ANTAR domains.


Subject(s)
Bacterial Proteins/metabolism , RNA Recognition Motif Proteins/metabolism , Trans-Activators/metabolism , Amino Acid Sequence/genetics , Bacterial Proteins/genetics , Klebsiella oxytoca/genetics , Klebsiella oxytoca/metabolism , Nitrates/metabolism , Nitrites/metabolism , Operon/genetics , RNA/genetics , RNA Recognition Motif Proteins/genetics , RNA-Binding Motifs/genetics , Trans-Activators/genetics , Transcription Factors/metabolism , Transcription, Genetic/genetics
15.
Nucleic Acids Res ; 48(6): 3103-3118, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32025695

ABSTRACT

Micro (mi)RNAs are 20-22nt long non-coding RNA molecules involved in post-transcriptional silencing of targets having high base-pair complementarity. Plant miRNAs are processed from long Pol II-transcripts with specific stem-loop structures by Dicer-like (DCL) 1 protein. Although there were reports indicating how a specific region is selected for miRNA biogenesis, molecular details were unclear. Here, we show that the presence of specific GC-rich sequence signature within miRNA/miRNA* region is required for the precise miRNA biogenesis. The involvement of GC-rich signatures in precise processing and abundance of miRNAs was confirmed through detailed molecular and functional analysis. Consistent with the presence of the miRNA-specific GC signature, target RNAs of miRNAs also possess conserved complementary sequence signatures in their miRNA binding motifs. The selection of these GC signatures was dependent on an RNA binding protein partner of DCL1 named HYL1. Finally, we demonstrate a direct application of this discovery for enhancing the abundance and efficiency of artificial miRNAs that are popular in plant functional genomic studies.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Cell Cycle Proteins/genetics , MicroRNAs/biosynthesis , RNA-Binding Proteins/genetics , Ribonuclease III/genetics , Conserved Sequence/genetics , GC Rich Sequence/genetics , Gene Expression Regulation, Plant/genetics , MicroRNAs/genetics , RNA, Plant/genetics , RNA-Binding Motifs/genetics
16.
J Fish Dis ; 43(2): 197-206, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31845350

ABSTRACT

The Isavirus is an orthomyxovirus with a genome composed of eight segments of negative single-strand RNA (-ssRNA). It has been proposed that the eight genomic segments of the Isavirus are organized as a ribonucleoprotein (RNP) complex called a minigenome, which contains all the viral RNA segments, a viral heterotrimeric polymerase and multiple copies of the viral nucleoprotein (NP). Here, we develop an Isavirus minigenome system and show the importance of the formation of active RNPs and the role of viral NP R189, R194, R302 and K325 residues in the NP RNA-binding domain in the context of RNPs. The results indicate it is possible to generate a minigenome in salmon cells, a composite ISAV RNPs with EGFP-based chimeric vRNA with heterotrimeric polymerase (PB1, PB2, PA) and NP protein using CMV-based auxiliary plasmids. It was also shown that NP R189, R194, R302 and K325 residues are important to generate viral mRNA from the constituted RNPs and a detectable reporter protein. This work is the first salmon cell-based minigenome assay for the Isavirus, which was evaluated by a bioinformatic and functional study of the NP protein in viral RNPs, which showed that correct NP-vRNA interaction is key to the functioning of RNPs.


Subject(s)
Genome, Viral , Isavirus/genetics , RNA-Binding Motifs/genetics , Ribonucleoproteins/genetics , Salmo salar/virology , Viral Proteins/genetics , Animals , Genomics
17.
J Virol ; 94(4)2020 01 31.
Article in English | MEDLINE | ID: mdl-31776279

ABSTRACT

On-site translation of mRNAs provides an efficient means of subcellular protein localization. In eukaryotic cells, the transport of cellular mRNAs to membraneless sites usually occurs prior to translation and involves specific sequences known as zipcodes that interact with RNA binding and motor proteins. Poxviruses replicate in specialized cytoplasmic factory regions where DNA synthesis, transcription, translation, and virion assembly occur. Some poxviruses embed infectious virus particles outside of factories in membraneless protein bodies with liquid gel-like properties known as A-type inclusions (ATIs) that are comprised of numerous copies of the viral 150-kDa ATI protein. Here, we demonstrate by fluorescent in situ hybridization that these inclusions are decorated with ATI mRNA. On-site translation is supported by the localization of a translation initiation factor eIF4E and by ribosome-bound nascent chain ribopuromycylation. Nascent peptide-mediated anchoring of ribosome-mRNA translation complexes to the inclusions is suggested by release of the mRNA by puromycin, a peptide chain terminator. Following puromycin washout, relocalization of ATI mRNA at inclusions depends on RNA and protein synthesis but requires neither microtubules nor actin polymerization. Further studies show that the ATI mRNAs remain near the sites of transcription in the factory regions when stop codons are introduced near the N terminus of the ATI or large truncations are made at the N or C termini. Instead of using a zipcode, we propose that ATI mRNA localization is mediated by ribosome-bound nascent ATI polypeptides that interact with ATI protein in inclusions and thereby anchor the complex for multiple rounds of mRNA translation.IMPORTANCE Poxvirus genome replication, transcription, translation, and virion assembly occur at sites within the cytoplasm known as factories. Some poxviruses sequester infectious virions outside of the factories in inclusion bodies comprised of numerous copies of the 150-kDa ATI protein, which can provide stability and protection in the environment. We provide evidence that ATI mRNA is anchored by nascent peptides and translated at the inclusion sites rather than in virus factories. Association of ATI mRNA with inclusion bodies allows multiple rounds of local translation and prevents premature ATI protein aggregation and trapping of virions within the factory.


Subject(s)
Vaccinia virus/metabolism , Viral Proteins/metabolism , Virus Replication/genetics , Cytoplasm/metabolism , DNA Replication , Eukaryotic Initiation Factor-4E/metabolism , HeLa Cells , Humans , Inclusion Bodies/metabolism , Inclusion Bodies, Viral/virology , Poxviridae/genetics , Poxviridae/metabolism , RNA Recognition Motif Proteins/genetics , RNA, Messenger/genetics , RNA-Binding Motifs/genetics , Ribosomes/metabolism , Vaccinia virus/genetics , Viral Proteins/genetics , Virion/metabolism , Virus Assembly/genetics
18.
Nucleic Acids Res ; 48(2): 847-861, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31802130

ABSTRACT

RNase E is a 472-kDa homo-tetrameric essential endoribonuclease involved in RNA processing and turnover in Escherichia coli. In its N-terminal half (NTH) is the catalytic active site, as also a substrate 5'-sensor pocket that renders enzyme activity maximal on 5'-monophosphorylated RNAs. The protein's non-catalytic C-terminal half (CTH) harbours RNA-binding motifs and serves as scaffold for a multiprotein degradosome complex, but is dispensable for viability. Here, we provide evidence that a full-length hetero-tetramer, composed of a mixture of wild-type and (recessive lethal) active-site mutant subunits, exhibits identical activity in vivo as the wild-type homo-tetramer itself ('recessive resurrection'). When all of the cognate polypeptides lacked the CTH, the active-site mutant subunits were dominant negative. A pair of C-terminally truncated polypeptides, which were individually inactive because of additional mutations in their active site and 5'-sensor pocket respectively, exhibited catalytic function in combination, both in vivo and in vitro (i.e. intragenic or allelic complementation). Our results indicate that adjacent subunits within an oligomer are separately responsible for 5'-sensing and cleavage, and that RNA binding facilitates oligomerization. We propose also that the CTH mediates a rate-determining initial step for enzyme function, which is likely the binding and channelling of substrate for NTH's endonucleolytic action.


Subject(s)
Catalytic Domain/genetics , Endoribonucleases/genetics , RNA/genetics , Binding Sites/genetics , Catalysis , Endoribonucleases/chemistry , Escherichia coli/chemistry , Escherichia coli/genetics , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Mutation/genetics , Peptides/genetics , Polyribonucleotide Nucleotidyltransferase/chemistry , Polyribonucleotide Nucleotidyltransferase/genetics , Protein Conformation , Protein Multimerization/genetics , RNA/chemistry , RNA Helicases/chemistry , RNA Helicases/genetics , RNA-Binding Motifs/genetics
19.
Nat Commun ; 10(1): 2682, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31213602

ABSTRACT

RNA-protein complexes play essential regulatory roles at nearly all levels of gene expression. Using in vivo crosslinking and RNA capture, we report a comprehensive RNA-protein interactome in a metazoan at four levels of resolution: single amino acids, domains, proteins and multisubunit complexes. We devise CAPRI, a method to map RNA-binding domains (RBDs) by simultaneous identification of RNA interacting crosslinked peptides and peptides adjacent to such crosslinked sites. CAPRI identifies more than 3000 RNA proximal peptides in Drosophila and human proteins with more than 45% of them forming new interaction interfaces. The comparison of orthologous proteins enables the identification of evolutionary conserved RBDs in globular domains and intrinsically disordered regions (IDRs). By comparing the sequences of IDRs through evolution, we classify them based on the type of motif, accumulation of tandem repeats, conservation of amino acid composition and high sequence divergence.


Subject(s)
Evolution, Molecular , Proteomics/methods , RNA-Binding Motifs/genetics , RNA-Binding Proteins/genetics , RNA/metabolism , Amino Acid Sequence/genetics , Animals , Cell Line , Conserved Sequence/genetics , Cross-Linking Reagents/chemistry , Drosophila , Humans , Peptides/chemistry , Peptides/genetics , Protein Binding/genetics , Proteome/genetics , RNA/chemistry , RNA-Binding Proteins/chemistry
20.
Arch Virol ; 164(7): 1851-1855, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31055651

ABSTRACT

The RNA genome of human parainfluenza virus type 2 (hPIV2) is encapsidated by nucleoprotein (NP) to act as a template for RNA synthesis. We examined the importance of individual amino acids in the RNA-binding domain of hPIV2 NP for polymerase activity using a mini-replicon assay. We showed that substitution of tyrosine at amino acid position 260, located in the RNA-binding pocket of NP, severely reduced polymerase activity. The aromatic side-chain of Y260 may be required for the formation of stable contacts between nucleotides and basic amino acids, thereby affecting promoter recognition by the viral polymerase.


Subject(s)
Nucleoproteins/genetics , Parainfluenza Virus 2, Human/genetics , RNA, Viral/metabolism , RNA-Binding Motifs/genetics , RNA-Dependent RNA Polymerase/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Genome, Viral/genetics , Humans , Tyrosine/genetics , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...