Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.403
Filter
1.
J Gene Med ; 26(7): e3711, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967638

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of upper and lower motor neurons with an unknown etiology. The difficulty of recovering biological material from patients led to employ lymphoblastoid cell lines (LCLs) as a model for ALS because many pathways, typically located in neurons, are also activated in these cells. METHODS: To investigate the expression of coding and long non-coding RNAs in LCLs, a transcriptomic profiling of sporadic ALS (SALS) and mutated patients (FUS, TARDBP, C9ORF72 and SOD1) and matched controls was realized. Thus, differentially expressed genes (DEGs) were investigated among the different subgroups of patients. Peripheral blood mononuclear cells (PBMCs) were isolated and immortalized into LCLs via Epstein-Barr virus infection; RNA was extracted, and RNA-sequencing analysis was performed. RESULTS: Gene expression profiles of LCLs were genetic-background-specific; indeed, only 12 genes were commonly deregulated in all groups. Nonetheless, pathways enriched by DEGs in each group were also compared, and a total of 89 Kyoto Encyclopedia of Genes and Genomes (KEGG) terms were shared among all patients. Eventually, the similarity of affected pathways was also assessed when our data were matched with a transcriptomic profile realized in the PBMCs of the same patients. CONCLUSIONS: We conclude that LCLs are a good model for the study of RNA deregulation in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Gene Expression Profiling , Mutation , Transcriptome , Humans , Amyotrophic Lateral Sclerosis/genetics , Female , Male , Middle Aged , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Leukocytes, Mononuclear/metabolism , Superoxide Dismutase-1/genetics , Cell Line , Aged , Gene Expression Regulation , DNA-Binding Proteins , RNA-Binding Protein FUS
2.
Gen Physiol Biophys ; 43(4): 301-312, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953570

ABSTRACT

Vascular endothelial growth factor A (VEGFA) is an important regulator for non-small cell lung cancer (NSCLC). Our study aimed to reveal its upstream pathway to provide new ideas for developing the therapeutic targets of NSCLC. The mRNA and protein levels of VEGFA, ubiquitin-specific peptidase 35 (USP35), and FUS were determined by quantitative real-time PCR and Western blot. Cell proliferation, apoptosis, invasion and angiogenesis were detected using CCK8 assay, EdU assay, flow cytometry, transwell assay and tube formation assay. The interaction between USP35 and VEGFA was assessed by Co-IP assay and ubiquitination assay. Animal experiments were performed to assess USP35 and VEGFA roles in vivo. VEGFA had elevated expression in NSCLC tissues and cells. Interferences of VEGFA inhibited NSCLC cell proliferation, invasion, angiogenesis, and increased apoptosis. USP35 could stabilize VEGFA protein level by deubiquitination, and USP35 knockdown suppressed NSCLC cell growth, invasion and angiogenesis via reducing VEGFA expression. FUS interacted with USP35 to promote its mRNA stability, thereby positively regulating VEGFA expression. Also, USP35 silencing could reduce NSCLC tumorigenesis by downregulating VEGFA. FUS-stabilized USP35 facilitated NSCLC cell growth, invasion and angiogenesis through deubiquitinating VEGFA, providing a novel idea for NSCLC treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Lung Neoplasms , Neoplasm Invasiveness , Neovascularization, Pathologic , RNA-Binding Protein FUS , Ubiquitination , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Cell Proliferation/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Neoplasm Invasiveness/genetics , Cell Line, Tumor , Mice , Animals , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/genetics , Mice, Nude , Angiogenesis
3.
Cell Mol Biol Lett ; 29(1): 95, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956466

ABSTRACT

BACKGROUND: An increasing number of studies have demonstrated the association of circular RNAs (circRNAs) with the pathological processes of various diseases and their involvement in the onset and progression of multiple cancers. Nevertheless, the functional roles and underlying mechanisms of circRNAs in the autophagy regulation of gastric cancer (GC) have not been fully elucidated. METHODS: We used transmission electron microscopy and the mRFP-GFP-LC3 dual fluorescent autophagy indicator to investigate autophagy regulation. The cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, Transwell assay, and Western blot assay were conducted to confirm circPTPN22's influence on GC progression. Dual luciferase reporter assays validated the binding between circPTPN22 and miR-6788-5p, as well as miR-6788-5p and p21-activated kinase-1 (PAK1). Functional rescue experiments assessed whether circPTPN22 modulates PAK1 expression by competitively binding miR-6788-5p, affecting autophagy and other biological processes in GC cells. We investigated the impact of circPTPN22 on in vivo GC tumors using a nude mouse xenograft model. Bioinformatics tools predicted upstream regulatory transcription factors and binding proteins of circPTPN22, while chromatin immunoprecipitation and ribonucleoprotein immunoprecipitation assays confirmed the binding status. RESULTS: Upregulation of circPTPN22 in GC has been shown to inhibit autophagy and promote cell proliferation, migration, and invasion. Mechanistically, circPTPN22 directly binds to miR-6788-5p, subsequently regulating the expression of PAK1, which activates protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) phosphorylation. This modulation ultimately affects autophagy levels in GC cells. Additionally, runt-related transcription factor 1 (RUNX1) negatively regulates circPTPN22 expression, while RNA-binding proteins such as FUS (fused in sarcoma) and ELAVL1 (recombinant ELAV-like protein 1) positively regulate its expression. Inhibition of the autophagy pathway can increase FUS expression, further upregulating circPTPN22 in GC cells, thereby exacerbating the progression of GC. CONCLUSION: Under the regulation of the transcription factor RUNX1 and RNA-binding proteins FUS and ELAVL1, circPTPN22 activates the phosphorylation of Akt and Erk through the miR-6788-5p/PAK1 axis, thereby modulating autophagy in GC cells. Inhibition of autophagy increases FUS, which in turn upregulates circPTPN22, forming a positive feedback loop that ultimately accelerates the progression of GC.


Subject(s)
Autophagy , Cell Movement , Cell Proliferation , Core Binding Factor Alpha 2 Subunit , ELAV-Like Protein 1 , MicroRNAs , RNA, Circular , RNA-Binding Protein FUS , Stomach Neoplasms , p21-Activated Kinases , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Autophagy/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Cell Proliferation/genetics , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Cell Movement/genetics , Cell Line, Tumor , Animals , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Mice , Neoplasm Invasiveness , Mice, Inbred BALB C
4.
Structure ; 32(7): 854-855, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996511

ABSTRACT

In a recent issue of Nature Chemical Biology, Emmanouilidis et al. (2024) investigate the maturation of biomolecular condensates of FUS1-267 and probe the molecular details of droplet aging. They observe that the liquid-to-solid transition of the droplet is mediated at the surface by FUS1-267 molecules that have adopted ß-strand conformations.


Subject(s)
RNA-Binding Protein FUS , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/chemistry , Biophysics , Biomolecular Condensates/metabolism , Biomolecular Condensates/chemistry , Humans , Protein Conformation, beta-Strand
5.
Nat Commun ; 15(1): 5686, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971830

ABSTRACT

The assembly and disassembly of biomolecular condensates are crucial for the subcellular compartmentalization of biomolecules in the control of cellular reactions. Recently, a correlation has been discovered between the phase transition of condensates and their maturation (aggregation) process in diseases. Therefore, modulating the phase of condensates to unravel the roles of condensation has become a matter of interest. Here, we create a peptide-based phase modulator, JSF1, which forms droplets in the dark and transforms into amyloid-like fibrils upon photoinitiation, as evidenced by their distinctive nanomechanical and dynamic properties. JSF1 is found to effectively enhance the condensation of purified fused in sarcoma (FUS) protein and, upon light exposure, induce its fibrilization. We also use JSF1 to modulate the biophysical states of FUS condensates in live cells and elucidate the relationship between FUS phase transition and FUS proteinopathy, thereby shedding light on the effect of protein phase transition on cellular function and malfunction.


Subject(s)
Peptides , Phase Transition , RNA-Binding Protein FUS , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/chemistry , RNA-Binding Protein FUS/genetics , Humans , Peptides/chemistry , Peptides/metabolism , Amyloid/metabolism , Amyloid/chemistry , Biomolecular Condensates/metabolism , Biomolecular Condensates/chemistry , Light
6.
Biol Res ; 57(1): 36, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822414

ABSTRACT

BACKGROUND: Helicase for meiosis 1 (HFM1), a putative DNA helicase expressed in germ-line cells, has been reported to be closely associated with premature ovarian insufficiency (POI). However, the underlying molecular mechanism has not been clearly elucidated. The aim of this study was to investigate the function of HFM1 in the first meiotic prophase of mouse oocytes. RESULTS: The results suggested that the deficiency of HFM1 resulting in increased apoptosis and depletion of oocytes in mice, while the oocytes were arrested in the pachytene stage of the first meiotic prophase. In addition, impaired DNA double-strand break repair and disrupted synapsis were observed in the absence of HFM1. Further investigation revealed that knockout of HFM1 promoted ubiquitination and degradation of FUS protein mediated by FBXW11. Additionally, the depletion of HFM1 altered the intranuclear localization of FUS and regulated meiotic- and oocyte development-related genes in oocytes by modulating the expression of BRCA1. CONCLUSIONS: These findings elaborated that the critical role of HFM1 in orchestrating the regulation of DNA double-strand break repair and synapsis to ensure meiosis procession and primordial follicle formation. This study provided insights into the pathogenesis of POI and highlighted the importance of HFM1 in maintaining proper meiotic function in mouse oocytes.


Subject(s)
Meiotic Prophase I , Oocytes , Ubiquitination , Animals , Female , Mice , Apoptosis/physiology , DNA Breaks, Double-Stranded , DNA Repair/physiology , Meiosis/physiology , Meiotic Prophase I/physiology , Mice, Knockout , Oocytes/metabolism , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics
7.
Nat Commun ; 15(1): 4893, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849340

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with the disease. Here, we show that males exhibit more pronounced changes in molecular pathways compared to females. Our integrated analysis of transcriptomes, (phospho)proteomes, and miRNAomes also identified distinct ALS subclusters in humans, characterized by variations in immune response, extracellular matrix composition, mitochondrial function, and RNA processing. The molecular signatures of human subclusters were reflected in specific mouse models. Our study highlighted the mitogen-activated protein kinase (MAPK) pathway as an early disease mechanism. We further demonstrate that trametinib, a MAPK inhibitor, has potential therapeutic benefits in vitro and in vivo, particularly in females, suggesting a direction for developing targeted ALS treatments.


Subject(s)
Amyotrophic Lateral Sclerosis , Disease Models, Animal , MAP Kinase Signaling System , Mice, Transgenic , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Humans , Female , Animals , Male , Mice , MAP Kinase Signaling System/drug effects , Pyridones/pharmacology , Pyridones/therapeutic use , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Prefrontal Cortex/metabolism , Transcriptome , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Middle Aged , MicroRNAs/genetics , MicroRNAs/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Sex Characteristics , Aged , Sex Factors , Pyrimidinones
8.
Nat Commun ; 15(1): 5033, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866783

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease due to gradual motoneurons (MN) degeneration. Among the processes associated to ALS pathogenesis, there is the formation of cytoplasmic inclusions produced by aggregation of mutant proteins, among which the RNA binding protein FUS. Here we show that, in neuronal cells and in iPSC-derived MN expressing mutant FUS, such inclusions are significantly reduced in number and dissolve faster when the RNA m6A content is diminished. Interestingly, stress granules formed in ALS conditions showed a distinctive transcriptome with respect to control cells, which reverted to similar to control after m6A downregulation. Notably, cells expressing mutant FUS were characterized by higher m6A levels suggesting a possible link between m6A homeostasis and pathological aggregates. Finally, we show that FUS inclusions are reduced also in patient-derived fibroblasts treated with STM-2457, an inhibitor of METTL3 activity, paving the way for its possible use for counteracting aggregate formation in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Motor Neurons , RNA-Binding Protein FUS , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Humans , Motor Neurons/metabolism , Motor Neurons/pathology , Induced Pluripotent Stem Cells/metabolism , Cytoplasmic Granules/metabolism , Fibroblasts/metabolism , Adenosine/metabolism , Adenosine/analogs & derivatives , Methyltransferases/metabolism , Methyltransferases/genetics , Mutation , Inclusion Bodies/metabolism , Stress Granules/metabolism , Transcriptome
9.
Mol Neurodegener ; 19(1): 46, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862967

ABSTRACT

RNA binding proteins have emerged as central players in the mechanisms of many neurodegenerative diseases. In particular, a proteinopathy of fused in sarcoma (FUS) is present in some instances of familial Amyotrophic lateral sclerosis (ALS) and about 10% of sporadic Frontotemporal lobar degeneration (FTLD). Here we establish that focal injection of sonicated human FUS fibrils into brains of mice in which ALS-linked mutant or wild-type human FUS replaces endogenous mouse FUS is sufficient to induce focal cytoplasmic mislocalization and aggregation of mutant and wild-type FUS which with time spreads to distal regions of the brain. Human FUS fibril-induced FUS aggregation in the mouse brain of humanized FUS mice is accelerated by an ALS-causing FUS mutant relative to wild-type human FUS. Injection of sonicated human FUS fibrils does not induce FUS aggregation and subsequent spreading after injection into naïve mouse brains containing only mouse FUS, indicating a species barrier to human FUS aggregation and its prion-like spread. Fibril-induced human FUS aggregates recapitulate pathological features of FTLD including increased detergent insolubility of FUS and TAF15 and amyloid-like, cytoplasmic deposits of FUS that accumulate ubiquitin and p62, but not TDP-43. Finally, injection of sonicated FUS fibrils is shown to exacerbate age-dependent cognitive and behavioral deficits from mutant human FUS expression. Thus, focal seeded aggregation of FUS and further propagation through prion-like spread elicits FUS-proteinopathy and FTLD-like disease progression.


Subject(s)
Disease Progression , Frontotemporal Dementia , Mice, Transgenic , RNA-Binding Protein FUS , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Brain/metabolism , Brain/pathology , Disease Models, Animal , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/genetics , Protein Aggregation, Pathological/metabolism , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics
10.
Acta Neuropathol Commun ; 12(1): 97, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879502

ABSTRACT

Wasteosomes (or corpora amylacea) are polyglucosan bodies that appear in the human brain with aging and in some neurodegenerative diseases, and have been suggested to have a potential role in a nervous system cleaning mechanism. Despite previous studies in several neurodegenerative disorders, their status in frontotemporal lobar degeneration (FTLD) remains unexplored. Our study aims to characterize wasteosomes in the three primary FTLD proteinopathies, assessing frequency, distribution, protein detection, and association with aging or disease duration. Wasteosome scores were obtained in various brain regions from 124 post-mortem diagnosed sporadic FTLD patients, including 75 participants with tau (FTLD-tau), 42 with TAR DNA-binding protein 43 (FTLD-TDP), and 7 with Fused in Sarcoma (FTLD-FUS) proteinopathies, along with 29 control subjects. The wasteosome amount in each brain region for the different FLTD patients was assessed with a permutation test with age at death and sex as covariables, and multiple regressions explored associations with age at death and disease duration. Double immunofluorescence studies examined altered proteins linked to FTLD in wasteosomes. FTLD patients showed a higher accumulation of wasteosomes than control subjects, especially those with FTLD-FUS. Unlike FTLD-TDP and control subjects, wasteosome accumulation did not increase with age in FTLD-tau and FTLD-FUS. Cases with shorter disease duration in FTLD-tau and FTLD-FUS seemed to exhibit higher wasteosome quantities, whereas FTLD-TDP appeared to show an increase with disease progression. Immunofluorescence studies revealed the presence of tau and phosphorylated-TDP-43 in the periphery of isolated wasteosomes in some patients with FTLD-tau and FTLD-TDP, respectively. Central inclusions of FUS were observed in a higher number of wasteosomes in FTLD-FUS patients. These findings suggest a role of wasteosomes in FTLD, especially in the more aggressive forms of FLTD-FUS. Detecting these proteins, particularly FUS, in wasteosomes from cerebrospinal fluid could be a potential biomarker for FTLD.


Subject(s)
DNA-Binding Proteins , Frontotemporal Lobar Degeneration , RNA-Binding Protein FUS , tau Proteins , Humans , Frontotemporal Lobar Degeneration/pathology , Frontotemporal Lobar Degeneration/metabolism , Female , Male , RNA-Binding Protein FUS/metabolism , Aged , tau Proteins/metabolism , Middle Aged , Aged, 80 and over , DNA-Binding Proteins/metabolism , Brain/pathology , Brain/metabolism
11.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38760174

ABSTRACT

Amyotrophic lateral sclerosis (ALS) leads to death within 2-5 yr. Currently, available drugs only slightly prolong survival. We present novel insights into the pathophysiology of Superoxide Dismutase 1 (SOD1)- and in particular Fused In Sarcoma (FUS)-ALS by revealing a supposedly central role of glycolic acid (GA) and D-lactic acid (DL)-both putative products of the Parkinson's disease associated glyoxylase DJ-1. Combined, not single, treatment with GA/DL restored axonal organelle phenotypes of mitochondria and lysosomes in FUS- and SOD1-ALS patient-derived motoneurons (MNs). This was not only accompanied by restoration of mitochondrial membrane potential but even dependent on it. Despite presenting an axonal transport deficiency as well, TDP43 patient-derived MNs did not share mitochondrial depolarization and did not respond to GA/DL treatment. GA and DL also restored cytoplasmic mislocalization of FUS and FUS recruitment to DNA damage sites, recently reported being upstream of the mitochondrial phenotypes in FUS-ALS. Whereas these data point towards the necessity of individualized (gene-) specific therapy stratification, it also suggests common therapeutic targets across different neurodegenerative diseases characterized by mitochondrial depolarization.


Subject(s)
Amyotrophic Lateral Sclerosis , Glycolates , Lactic Acid , Mitochondria , Protein Deglycase DJ-1 , RNA-Binding Protein FUS , Superoxide Dismutase-1 , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Glycolates/metabolism , Glycolates/pharmacology , Mitochondria/metabolism , Protein Deglycase DJ-1/metabolism , Protein Deglycase DJ-1/genetics , Lactic Acid/metabolism , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics , Membrane Potential, Mitochondrial , Motor Neurons/metabolism , Lysosomes/metabolism
12.
J Neurosci ; 44(27)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38692734

ABSTRACT

Aberrant condensation and localization of the RNA-binding protein (RBP) fused in sarcoma (FUS) occur in variants of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Changes in RBP function are commonly associated with changes in axonal cytoskeletal organization and branching in neurodevelopmental disorders. Here, we asked whether branching defects also occur in vivo in a model of FUS-associated disease. We use two reported Xenopus models of ALS/FTD (of either sex), the ALS-associated mutant FUS(P525L) and a mimic of hypomethylated FUS, FUS(16R). Both mutants strongly reduced axonal complexity in vivo. We also observed an axon looping defect for FUS(P525L) in the target area, which presumably arises due to errors in stop cue signaling. To assess whether the loss of axon complexity also had a cue-independent component, we assessed axonal cytoskeletal integrity in vitro. Using a novel combination of fluorescence and atomic force microscopy, we found that mutant FUS reduced actin density in the growth cone, altering its mechanical properties. Therefore, FUS mutants may induce defects during early axonal development.


Subject(s)
Amyotrophic Lateral Sclerosis , Axons , Frontotemporal Dementia , Mutation , RNA-Binding Protein FUS , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Axons/pathology , Axons/metabolism , Animals , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , Female , Male , Xenopus laevis , Growth Cones/metabolism , Humans , Disease Models, Animal
13.
Oncogene ; 43(28): 2199-2214, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38802648

ABSTRACT

The MUC1 gene evolved in mammals for adaptation of barrier tissues in response to infections and damage. Paraspeckles are nuclear bodies formed on the NEAT1 lncRNA in response to loss of homeostasis. There is no known intersection of MUC1 with NEAT1 or paraspeckles. Here, we demonstrate that the MUC1-C subunit plays an essential role in regulating NEAT1 expression. MUC1-C activates the NEAT1 gene with induction of the NEAT1_1 and NEAT1_2 isoforms by NF-κB- and MYC-mediated mechanisms. MUC1-C/MYC signaling also induces expression of the SFPQ, NONO and FUS RNA binding proteins (RBPs) that associate with NEAT1_2 and are necessary for paraspeckle formation. MUC1-C integrates activation of NEAT1 and RBP-encoding genes by recruiting the PBAF chromatin remodeling complex and increasing chromatin accessibility of their respective regulatory regions. We further demonstrate that MUC1-C and NEAT1 form an auto-inductive pathway that drives common sets of genes conferring responses to inflammation and loss of homeostasis. Of functional significance, we find that the MUC1-C/NEAT1 pathway is of importance for the cancer stem cell (CSC) state and anti-cancer drug resistance. These findings identify a previously unrecognized role for MUC1-C in the regulation of NEAT1, RBPs, and paraspeckles that has been co-opted in promoting cancer progression.


Subject(s)
Disease Progression , Gene Expression Regulation, Neoplastic , Mucin-1 , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Mucin-1/genetics , Mucin-1/metabolism , Animals , Cell Line, Tumor , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Mice , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , PTB-Associated Splicing Factor/genetics , PTB-Associated Splicing Factor/metabolism , Signal Transduction/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , DNA-Binding Proteins
14.
Biochem Soc Trans ; 52(3): 961-972, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38813817

ABSTRACT

The dysfunction of many RNA-binding proteins (RBPs) that are heavily disordered, including TDP-43 and FUS, are implicated in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). These proteins serve many important roles in the cell, and their capacity to form biomolecular condensates (BMCs) is key to their function, but also a vulnerability that can lead to misregulation and disease. Matrin-3 (MATR3) is an intrinsically disordered RBP implicated both genetically and pathologically in ALS/FTD, though it is relatively understudied as compared with TDP-43 and FUS. In addition to binding RNA, MATR3 also binds DNA and is implicated in many cellular processes including the DNA damage response, transcription, splicing, and cell differentiation. It is unclear if MATR3 localizes to BMCs under physiological conditions, which is brought further into question due to its lack of a prion-like domain. Here, we review recent studies regarding MATR3 and its roles in numerous physiological processes, as well as its implication in a range of diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Nuclear Matrix-Associated Proteins , RNA-Binding Proteins , Humans , RNA-Binding Proteins/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Nuclear Matrix-Associated Proteins/metabolism , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/genetics , DNA-Binding Proteins/metabolism , Animals , DNA Damage , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/chemistry
15.
Sci Rep ; 14(1): 8914, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38632300

ABSTRACT

Intracellular aggregation of fused in sarcoma (FUS) is associated with the pathogenesis of familial amyotrophic lateral sclerosis (ALS). Under stress, FUS forms liquid droplets via liquid-liquid phase separation (LLPS). Two types of wild-type FUS LLPS exist in equilibrium: low-pressure LLPS (LP-LLPS) and high-pressure LLPS (HP-LLPS); the former dominates below 2 kbar and the latter over 2 kbar. Although several disease-type FUS variants have been identified, the molecular mechanism underlying accelerated cytoplasmic granule formation in ALS patients remains poorly understood. Herein, we report the reversible formation of the two LLPS states and the irreversible liquid-solid transition, namely droplet aging, of the ALS patient-type FUS variant R495X using fluorescence microscopy and ultraviolet-visible absorption spectroscopy combined with perturbations in pressure and temperature. Liquid-to-solid phase transition was accelerated in the HP-LLPS of R495X than in the wild-type variant; arginine slowed the aging of droplets at atmospheric conditions by inhibiting the formation of HP-LLPS more selectively compared to that of LP-LLPS. Our findings provide new insight into the mechanism by which R495X readily forms cytoplasmic aggregates. Targeting the aberrantly formed liquid droplets (the HP-LLPS state) of proteins with minimal impact on physiological functions could be a novel therapeutic strategy for LLPS-mediated protein diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , RNA-Binding Protein FUS , Sarcoma , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Phase Transition , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism
16.
Biochem Biophys Res Commun ; 710: 149862, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38593618

ABSTRACT

Zinc is an important trace element in the human body, and its homeostasis is closely related to amyotrophic lateral sclerosis (ALS). Cytoplasmic FUS proteins from patients with ALS aggregate their important pathologic markers. Liquid-liquid phase separation (LLPS) of FUS can lead to its aggregation. However, whether and how zinc homeostasis affects the aggregation of disease-associated FUS proteins in the cytoplasm remains unclear. Here, we found that zinc ion enhances LLPS and promotes the aggregation in the cytoplasm for FUS protein. In the FUS, the cysteine of the zinc finger (ZnF), recognizes and binds to zinc ions, reducing droplet mobility and enhancing protein aggregation in the cytoplasm. The mutation of FUS cysteine disrupts the dynamic regulatory switch of zinc ions and ZnF, resulting in insensitivity to zinc ions. These results suggest that the dynamic regulation of LLPS by binding with zinc ions may be a widespread mechanism and provide a new understanding of neurological diseases such as ALS and other ZnF protein-related diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , RNA-Binding Protein FUS , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Cysteine/genetics , Mutation , Phase Separation , RNA-Binding Protein FUS/chemistry , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Zinc/metabolism , Zinc Fingers , Protein Aggregates
18.
Biochemistry (Mosc) ; 89(Suppl 1): S34-S56, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38621743

ABSTRACT

Mutations that disrupt the function of the DNA/RNA-binding protein FUS could cause amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. One of the key features in ALS pathogenesis is the formation of insoluble protein aggregates containing aberrant isoforms of the FUS protein in the cytoplasm of upper and lower motor neurons. Reproduction of human pathology in animal models is the main tool for studying FUS-associated pathology and searching for potential therapeutic agents for ALS treatment. In this review, we provide a systematic analysis of the role of FUS protein in ALS pathogenesis and an overview of the results of modelling FUS-proteinopathy in animals.


Subject(s)
Amyotrophic Lateral Sclerosis , Animals , Humans , Amyotrophic Lateral Sclerosis/genetics , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Motor Neurons/metabolism , Motor Neurons/pathology , Cytoplasm/metabolism , Mutation , Disease Models, Animal
19.
J Cell Mol Med ; 28(9): e18209, 2024 May.
Article in English | MEDLINE | ID: mdl-38682349

ABSTRACT

Ferroptosis is a new type of programmed cell death, which has been involved in the progression of tumours. However, the regulatory network of ferroptosis in pancreatic cancer is still largely unknown. Here, using datasets from GEO and TCGA, we screened HSPB1, related to the P450 monooxygenase signalling, a fuel of ferroptosis, to be a candidate gene for regulating pancreatic cancer cell ferroptosis. We found that HSPB1 was enriched in the exosomes derived from human pancreatic cancer cell lines SW1990 and Panc-1. Then, hypoxic SW1990 cells were incubated with exosomes alone or together with HSPB1 siRNA (si-HSPB1), and we observed that exosomes promoted cell proliferation and invasion and suppressed ferroptosis, which was reversed by si-HSPB1. Moreover, we found a potential binding affinity between HSPB1 and FUS, verified their protein interaction by using dual-colour fluorescence colocalization and co-IP assays, and demonstrated the promoting effect of FUS on oxidative stress and ferroptosis in hypoxic SW1990 cells. Subsequently, FUS was demonstrated to bind with and stabilize the mRNA of Nrf2, a famous anti-ferroptosis gene that negatively regulates the level of P450. Furthermore, overexpressing FUS and activating the Nrf2/HO-1 pathway (using NK-252) both reversed the inhibitory effect of si-HSPB1 on exosome functions. Finally, our in vivo studies showed that exosome administration promote tumour growth in nude mice of xenotransplantation, which was able to be eliminated by knockdown of HSPB1. In conclusion, exosomal HSPB1 interacts with the RNA binding protein FUS and decreases FUS-mediated stability of Nrf2 mRNA, thus suppressing hypoxia-induced ferroptosis in pancreatic cancer.


Subject(s)
Ferroptosis , HSP27 Heat-Shock Proteins , NF-E2-Related Factor 2 , Pancreatic Neoplasms , RNA-Binding Protein FUS , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Exosomes/metabolism , Ferroptosis/genetics , Gene Expression Regulation, Neoplastic , Heat-Shock Proteins , HSP27 Heat-Shock Proteins/metabolism , HSP27 Heat-Shock Proteins/genetics , Mice, Nude , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Protein Binding , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics
20.
J Transl Med ; 22(1): 389, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671504

ABSTRACT

BACKGROUND: Myxoid liposarcoma (MLS) displays a distinctive tumor microenvironment and is characterized by the FUS::DDIT3 fusion oncogene, however, the precise functional contributions of these two elements remain enigmatic in tumor development. METHODS: To study the cell-free microenvironment in MLS, we developed an experimental model system based on decellularized patient-derived xenograft tumors. We characterized the cell-free scaffold using mass spectrometry. Subsequently, scaffolds were repopulated using sarcoma cells with or without FUS::DDIT3 expression that were analyzed with histology and RNA sequencing. RESULTS: Characterization of cell-free MLS scaffolds revealed intact structure and a large variation of protein types remaining after decellularization. We demonstrated an optimal culture time of 3 weeks and showed that FUS::DDIT3 expression decreased cell proliferation and scaffold invasiveness. The cell-free MLS microenvironment and FUS::DDIT3 expression both induced biological processes related to cell-to-cell and cell-to-extracellular matrix interactions, as well as chromatin remodeling, immune response, and metabolism. Data indicated that FUS::DDIT3 expression more than the microenvironment determined the pre-adipocytic phenotype that is typical for MLS. CONCLUSIONS: Our experimental approach opens new means to study the tumor microenvironment in detail and our findings suggest that FUS::DDIT3-expressing tumor cells can create their own extracellular niche.


Subject(s)
Liposarcoma, Myxoid , Oncogene Proteins, Fusion , RNA-Binding Protein FUS , Tumor Microenvironment , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Extracellular Matrix/metabolism , Gene Expression Regulation, Neoplastic , Liposarcoma, Myxoid/pathology , Liposarcoma, Myxoid/metabolism , Liposarcoma, Myxoid/genetics , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/genetics , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Tissue Scaffolds/chemistry , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...