ABSTRACT
Sulfur amino acids are essential for the proper development of broilers and are required throughout the bird's life to perform important physiological functions. Studies that seek to understand the actions of sulfur amino acids in the body of birds are essential. The present study evaluated the influence of sulfur amino acid supplementation using DL-Methionine (DL-Met) and DL-Methionine hydroxy analogue (DL-HMTBA), on the performance and expression of genes related to methionine metabolism, in the jejunum of broilers. Four hundred and fifty male broilers (Cobb-700 slow feathering) were distributed in a completely randomized design, in a factorial scheme (2x3), with two sources of methionine (DL-Met and DL-HMTBA) and three levels of methionine (deficiency, requirement and excess). The mRNA expression of the MAT1, MTR, BHMT, MTRR, CBG and GSS genes, and performance data such as feed intake, weight gain, and feed conversion were evaluated. DL-HMTBA increased the expression of BHMT (p = 0.0072) and MTRR (p = 0.0003) in the jejunum of the birds. Methionine deficiency increased the expression of BHMT (p = 0.0805) and MTRR (p = 0.0018). Higher expression of GSS was observed in birds that were supplemented with DL-HMTBA (p = 0.0672). Analyzing our results, it is preferable to supplement sulfur amino acids with DL-Met at the requirement level. Birds fed with DL-HMTBA showed worse weight gain (p = 0.0117) and higher feed conversion (p = 0.0170); methionine deficiency resulted in higher feed intake (p = 0.0214), lower weight gain (p<0.0001) and consequently higher feed conversion (p<0.0001). Based on the information found in this work, it is recommended to supplement sulfur amino acids with DL-Met at the level of compliance with the requirement.
Subject(s)
Chickens , Homocysteine , Animals , Male , Homocysteine/metabolism , Jejunum/metabolism , Methionine , Diet/veterinary , Racemethionine/metabolism , Dietary Supplements , Weight Gain , Animal Feed/analysis , Animal Nutritional Physiological PhenomenaABSTRACT
Tambaqui (Colossoma macropomum) is a species of great cultural and economic importance in aquaculture in the Amazon region. Methionine is considered the first limiting sulfur amino acid in practical fish diets, which encourages investigating its use in diets for tambaqui. This study aimed to verify the digestible methionine plus cystine (Met + Cys) requirement in diets for tambaqui (89.52 ± 0.53 g) for 60 days. The treatments investigated were: 6.50, 7.80, 9.10, 10.40, 11.70, and 13.00 g Met + Cys kg diet-1. The estimated requirement based on final weight, weight gain, feed conversion ratio, and specific growth rate was 9.04, 8.92, 8.91, and 8.58 g Met + Cys kg diet-1, respectively, while on body protein deposition, body fat deposition, body ash deposition, and nitrogen retention efficiency was 9.29, 9.20, 9.19, and 8.72 g Met + Cys kg diet-1, respectively. Linear regression demonstrated that increased digestible Met + Cys in the diet decreased plasma total protein, globulin, and liver total protein levels. Quadratic regression showed that the highest value for liver glycogen was found with a 10.40 g Met + Cys kg diet-1. Another quadratic regression demonstrated a lower hepatic aspartate aminotransferase (AST) enzymatic activity in fish fed between 7.80 and 11.70 g Met + Cys kg diet-1. The different treatments did not influence the erythrogram. In conclusion, when considering an integrative view of the results for growth performance, whole-body deposition, and liver parameters without harming the physiological and metabolic status, we recommended choosing a diet with digestible Met + Cys between 8.58 and 9.29 g kg- 1 for tambaqui.
Subject(s)
Amino Acids, Sulfur , Methionine , Animals , Methionine/metabolism , Cystine/metabolism , Amino Acids, Sulfur/metabolism , Racemethionine/metabolism , Diet/veterinary , Body Composition , Liver/metabolism , Animal Feed/analysisABSTRACT
Supplementation of rumen-protected amino acids may improve dairy cow performance but few studies have evaluated the implications of supplementing low-forage diets. Our objective was to evaluate the effects of supplementing rumen-protected methionine (Met) and lysine (Lys) on milk production and composition as well as on mammary gland health of mid-lactating Holstein cows from a commercial dairy farm feeding a high by-product low-forage diet. A total of 314 multiparous cows were randomly assigned to control (CON; 107 g of dry distillers' grains) or rumen-protected Met and Lys (RPML; 107 g dry distillers' grains + 107 g of RPML). All study cows were grouped in a single dry-lot pen and fed the same total mixed ration diet twice a day for a total of 7 weeks. Treatments were top-dressed on the total mix ration immediately after morning delivery with 107 g of dry distillers' grains for 1 week (adaptation period) and then with CON and RPML treatments for 6 weeks. Blood samples were taken from a subset of 22 cows per treatment to determine plasma AA (d 0 and 14) and plasma urea nitrogen and minerals (d 0, 14, and 42). Milk yield and clinical mastitis cases were recorded daily, and milk components were determined bi-weekly. Body condition score change was evaluated from d 0 to 42 of the study. Milk yield and components were analyzed by multiple linear regression. Treatment effects were evaluated at the cow level considering parity and milk yield and composition taken at baseline as a covariate in the models. Clinical mastitis risk was assessed by Poisson regression. Plasma Met increased (26.9 vs 36.0 µmol/L), Lys tended to increase (102.5 vs 121.1 µmol/L), and Ca increased (2.39 vs 2.46 mmol/L) with RPML supplementation. Cows supplemented with RPML had higher milk yield (45.4 vs 46.0 kg/d) and a lower risk of clinical mastitis (risk ratio = 0.39; 95% CI = 0.17-0.90) compared to CON cows. Milk components yield and concentrations, somatic cell count, body condition score change, plasma urea nitrogen, and plasma minerals other than Ca were not affected by RPML supplementation. Results suggest that RPML supplementation increases milk yield and decreases the risk of clinical mastitis in mid-lactation cows fed a high by-product low-forage diet. Further studies are needed to clarify the biological mechanisms for mammary gland responses to RPML supplementation.
Subject(s)
Lactation , Lysine , Pregnancy , Female , Cattle , Animals , Lysine/metabolism , Lactation/physiology , Methionine/metabolism , Parity , Rumen/metabolism , Diet/veterinary , Dietary Supplements , Milk/metabolism , Racemethionine/metabolism , Nitrogen/metabolism , Minerals/metabolism , Urea/metabolism , Animal Feed/analysisABSTRACT
This study investigated the hypothesis that methionine supplementation of Japanese quail (Coturnix coturnix japonica) hens can reduce the effects of oxidative stress and improve the performance of the offspring exposed to heat stress during growth. For that, the quail hens were fed with three diets related to the methionine supplementation: methionine-deficient diet (Md); diet supplemented with the recommended methionine level (Met1); and diet supplemented with methionine above the recommended level (Met2). Their chicks were identified, weighed, and housed according to the maternal diet group from 1 to 14 d of age. On 15 d of age, chicks were weighed and divided into two groups: thermoneutral ambient (constant temperature of 23 °C) and intermittent heat stress ambient (daily exposure to 34 °C for 6 h). Methionine-supplemented (Met1 and Met2) hens had higher egg production, better feed conversion ratio, higher hatchability of total and fertile eggs, and offspring with higher body weight. Supplemented (Met1 and Met2) hens showed greater expression of glutathione synthase (GSS) and methionine sulfoxide reductase A (MSRA) genes, greater total antioxidant capacity, and lower lipid peroxidation in the liver. The offspring of hens fed the Met2 diet had lower death rate (1 to 14 d), higher weight on 15 d of age, weight gain, and better feed conversion ratio from 1 to 14 d of age. Among chicks reared under heat stress, the progeny of methionine-supplemented hens had higher weight on 35 d, weight gain, expression of GSS, MSRA, and thermal shock protein 70 (HSP70) genes, and total antioxidant capacity in the liver, as well as lower heterophil/lymphocyte ratio. Positive correlations between expression of glutathione peroxidase 7 (GPX7) and MSRA genes in hens and offspring were observed. Our results show that maternal methionine supplementation contributes to offspring development and performance in early stages and that, under conditions of heat stress during growth, chicks from methionine-supplemented hens respond better to hot environmental conditions than chicks from nonsupplemented hens. Supplementation of quail hens diets with methionine promoted activation of different metabolic pathways in offspring subjected to stress conditions.
The deficiency of nutrients such as methionine in the diet of birds is affecting fertility rate, egg production, egg weight, and progeny weight. In addition, the maternal environment influences gene expression through epigenetic mechanisms, where the conditions experienced by the parental generation during embryonic development can produce effects on the progeny. This study investigates how methionine supplementation in the diet of quail hens can reduce the effects of oxidative stress and improve the performance of progeny subjected to heat stress during growth. For that, the quail hens were fed with diets containing three different levels of methionine; and their chicks were created (15 on 35 d of age) into thermoneutral and/or intermittent heat stress ambient. It was observed that methionine supplementation in the quail hens had a positive effect on mortality during the initial phase and greater weight gain in the progeny growth phase. In addition, genetic inheritance was observed through the positive correlation between the expression of genes (maternal and progeny) related to oxidative stress. The results show that methionine supplementation in the maternal diet contributes to the development and performance of the progeny when subjected to heat stress during the growth phase.
Subject(s)
Antioxidants , Coturnix , Animals , Female , Antioxidants/metabolism , Coturnix/physiology , Diet/veterinary , Dietary Supplements , Heat-Shock Response , Methionine/pharmacology , Methionine/metabolism , Ovum , Quail , Racemethionine/metabolism , Weight GainABSTRACT
High levels of methionine (Met) and its metabolites, such as methionine sulfoxide (MetO), found in hypermethioninemia, can be detrimental to the body; however, the underlying mechanisms are still uncertain. Using a recently standardized protocol, the aim of this study was to investigate the effects of chronic administration of Met and/or MetO on parameters of oxidative damage in the total brain, liver, and kidney of young mice. Swiss male mice were subcutaneously injected with Met and MetO at concentrations of 0.35-1.2 g/kg body weight and 0.09-0.3 g/kg body weight, respectively, from the 10th-38th day post-birth, while the control group was treated with saline solution. Results showed that Met and/or MetO caused an increase in reactive oxygen species (ROS) and lipoperoxidation, along with a reduction of superoxide dismutase (SOD) and catalase (CAT) activities in the brain. In the liver, Met and/or MetO enhanced ROS and nitrite levels, and reduced SOD, CAT, and delta aminolevulinic dehydratase activities. The effects on the kidney were an increase in ROS production and SOD activity, and a reduction in thiol content and CAT activity. These data demonstrated the contribution of redox imbalance to the systemic changes found in patients with hypermethioninemia. In conclusion, our findings may help future studies to better understand the pathophysiological mechanisms of hypermethioninemia as well as contribute to the search for new therapeutic agents for this pathology.