ABSTRACT
Epidemiological studies frequently classify groups based on phenotypes like self-reported skin color/race, which inaccurately represent genetic ancestry and may lead to misclassification, particularly among individuals of multiracial backgrounds. This study aimed to characterize both global and local genome-wide genetic ancestries and to assess their relationship with self-reported skin color/race in an admixed population of Sao Paulo city. We analyzed 226,346 single-nucleotide polymorphisms from 841 individuals participating in the population-based ISA-Nutrition study. Our findings confirmed the admixed nature of the population, demonstrating substantial European, significant Sub-Saharan African, and minor Native American ancestries, irrespective of skin color. A correlation was observed between global genetic ancestry and self-reported color-race, which was more evident in the extreme proportions of African and European ancestries. Individuals with higher African ancestry tended to identify as Black, those with higher European ancestry tended to identify as White, and individuals with higher Native American ancestry were more likely to self-identify as Mixed, a group with diverse ancestral compositions. However, at the individual level, this correlation was notably weak, and no deviations were observed for specific regions throughout the individual's genome. Our findings emphasize the significance of accurately defining and thoroughly analyzing race and ancestry, especially within admixed populations.
Subject(s)
Polymorphism, Single Nucleotide , Self Report , Skin Pigmentation , Humans , Brazil , Skin Pigmentation/genetics , Male , Female , Adult , White People/genetics , Urban Population , Black People/genetics , Racial Groups/genetics , Middle Aged , Genetics, PopulationABSTRACT
PURPOSE: Ethnic diversity in cancer research is crucial as race/ethnicity influences cancer incidence, survival, drug response, molecular pathways, and epigenetic phenomena. In 2018, we began a project to examine racial/ethnic diversity in cancer research, with a commitment to review these disparities every 4 years. This report is our second assessment, detailing the present state of racial/ethnic diversity in cancer genomics and clinical trials. METHODS: To study racial/ethnic inclusion in cancer genomics, we extracted ethnic records from all data sets available at cBioPortal (n = 125,128 patients) and cancer-related genome-wide association studies (n = 28,011,282 patients) between 2018 and 2022. Concerning clinical trials, we selected studies related to breast cancer (n = 125,518 patients, 181 studies), lung cancer (n = 34,329 patients, 119 studies), and colorectal cancer (n = 40,808 patients, 105 studies). RESULTS: In cancer genomics (N = 28,136,410), 3% of individuals lack racial/ethnic registries; tumor samples were collected predominantly from White patients (89.14%), followed by Asian (7%), African American (0.55%), and Hispanic (0.21%) patients and other populations (0.1%). In clinical trials (N = 200,655), data on race/ethnicity are missing for 60.14% of the participants; for individuals whose race/ethnicity was recorded, most were characterized as White (28.33%), followed by Asian (7.64%), African (1.79), other ethnicities (1.37), and Hispanic (0.73). Racial/ethnic representation significantly deviates from global ethnic proportions (P ≤ .001) across all data sets, with White patients outnumbering other ethnic groups by a factor of approximately 4-6. CONCLUSION: Our second update on racial/ethnic representation in cancer research highlights the persistent overrepresentation of White populations in cancer genomics and a notable absence of racial/ethnic information across clinical trials. To ensure more equitable and effective precision oncology, future efforts should address the reasons behind the insufficient representation of ethnically diverse populations in cancer research.
Subject(s)
Clinical Trials as Topic , Genomics , Precision Medicine , Humans , Clinical Trials as Topic/statistics & numerical data , Neoplasms/genetics , Neoplasms/ethnology , Neoplasms/therapy , Ethnicity/genetics , Ethnicity/statistics & numerical data , Medical Oncology , Racial Groups/genetics , Racial Groups/statistics & numerical dataABSTRACT
The Isthmus of Panama was a crossroads between North and South America during the continent's first peopling (and subsequent movements) also playing a pivotal role during European colonization and the African slave trade. Previous analyses of uniparental systems revealed significant sex biases in the genetic history of Panamanians, as testified by the high proportions of Indigenous and sub-Saharan mitochondrial DNAs (mtDNAs) and by the prevalence of Western European/northern African Y chromosomes. Those studies were conducted on the general population without considering any self-reported ethnic affiliations. Here, we compared the mtDNA and Y-chromosome lineages of a new sample collection from 431 individuals (301 males and 130 females) belonging to either the general population, mixed groups, or one of five Indigenous groups currently living in Panama. We found different proportions of paternal and maternal lineages in the Indigenous groups testifying to pre-contact demographic events and genetic inputs (some dated to Pleistocene times) that created genetic structure. Then, while the local mitochondrial gene pool was marginally involved in post-contact admixtures, the Indigenous Y chromosomes were differentially replaced, mostly by lineages of western Eurasian origin. Finally, our new estimates of the sub-Saharan contribution, on a more accurately defined general population, reduce an apparent divergence between genetic and historical data.
Subject(s)
Chromosomes, Human, Y , DNA, Mitochondrial , Genetic Variation , Indigenous Peoples/genetics , Racial Groups/genetics , Africa South of the Sahara , Black People/genetics , Female , Gene Pool , Genotype , Humans , Male , Panama , Pedigree , Sequence Analysis, DNAABSTRACT
Immigrants from diverse origins have arrived in Paraguay and produced important demographic changes in a territory initially inhabited by indigenous Guarani. Few studies have been performed to estimate the proportion of Native ancestry that is still preserved in Paraguay and the role of females and males in admixture processes. Therefore, 548 individuals from eastern Paraguay were genotyped for three marker sets: mtDNA, Y-SNPs and autosomal AIM-InDels. A genetic homogeneity was found between departments for each set of markers, supported by the demographic data collected, which showed that only 43% of the individuals have the same birthplace as their parents. The results show a sex-biased intermarriage, with higher maternal than paternal Native American ancestry. Within the native mtDNA lineages in Paraguay (87.2% of the total), most haplogroups have a broad distribution across the subcontinent, and only few are concentrated around the Paraná River basin. The frequency distribution of the European paternal lineages in Paraguay (92.2% of the total) showed a major contribution from the Iberian region. In addition to the remaining legacy of the colonial period, the joint analysis of the different types of markers included in this study revealed the impact of post-war migrations on the current genetic background of Paraguay.
Subject(s)
Human Migration , Pedigree , Polymorphism, Single Nucleotide , Population/genetics , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Female , Humans , Male , Microsatellite Repeats , Paraguay , Racial Groups/geneticsABSTRACT
BACKGROUND: LCAT (lecithin-cholesterol acyltransferase) deficiency is characterized by two distinct phenotypes, familial LCAT deficiency (FLD) and Fish Eye disease (FED). This is the first systematic review evaluating the ethnic distribution of LCAT deficiency, with particular emphasis on Latin America and the discussion of three Mexican-Mestizo probands. METHODS: A systematic review was conducted following the PRISMA (Preferred Reporting Items for Systematic review and Meta-Analysis) Statement in Pubmed and SciELO. Articles which described subjects with LCAT deficiency syndromes and an assessment of the ethnic group to which the subject pertained, were included. RESULTS: The systematic review revealed 215 cases (154 FLD, 41 FED and 20 unclassified) pertaining to 33 ethnic/racial groups. There was no association between genetic alteration and ethnicity. The mean age of diagnosis was 42 ± 16.5 years, with fish eye disease identified later than familial LCAT deficiency (55 ± 13.8 vs. 41 ± 14.7 years respectively). The prevalence of premature coronary heart disease was significantly greater in FED vs. FLD. In Latin America, 48 cases of LCAT deficiency have been published from six countries (Argentina (1 unclassified), Brazil (38 FLD), Chile (1 FLD), Columbia (1 FLD), Ecuador (1 FLD) and Mexico (4 FLD, 1 FED and 1 unclassified). Of the Mexican probands, one showed a novel LCAT mutation. CONCLUSIONS: The systematic review shows that LCAT deficiency syndromes are clinically and genetically heterogeneous. No association was confirmed between ethnicity and LCAT mutation. There was a significantly greater risk of premature coronary artery disease in fish eye disease compared to familial LCAT deficiency. In FLD, the emphasis should be in preventing both cardiovascular disease and the progression of renal disease, while in FED, cardiovascular risk management should be the priority. The LCAT mutations discussed in this article are the only ones reported in the Mexican- Amerindian population.
Subject(s)
Ethnicity/genetics , Lecithin Cholesterol Acyltransferase Deficiency/ethnology , Ethnicity/statistics & numerical data , Genetic Predisposition to Disease/ethnology , Genetic Predisposition to Disease/genetics , Humans , Indians, North American/genetics , Indians, North American/statistics & numerical data , Lecithin Cholesterol Acyltransferase Deficiency/genetics , Mexico , Phosphatidylcholine-Sterol O-Acyltransferase/genetics , Racial Groups/genetics , Racial Groups/statistics & numerical dataABSTRACT
Aim: We investigated the role of maternal ancestry in neoplastic hematological malignancies (HMs) risk in a population from Central Argentina. Materials & methods: We analyzed 125 cases with HMs and 310 controls from a public hospital, and a set of 202 colorectal, breast, lung, and hematologic cancer patients from a private hospital. Results: A decreased risk for HMs was associated with the Native American haplogroup B2 (odds ratio = 0.49; 95% CI: 0.25-0.92; p = 0.02). The sub-Saharan African parahaplogroup L was associated with higher susceptibility for disease (odds ratio = 3.10; 95% CI: 1.04-9.31; p = 0.043). Although the mean ancestral proportions in the total studied population was as published (61.7% Native American, 34.6% European and 3.7% African), an unequal distribution was observed between hospitals. Conclusion: We confirmed the tri-hybrid nature of the Argentinean population, with proportions varying within the country. Our finding supports the notion that associated haplogroup is population and cancer specific.
Subject(s)
Hematologic Neoplasms/ethnology , Hematologic Neoplasms/genetics , Mothers , Racial Groups/genetics , Adult , Aged , Argentina/epidemiology , Case-Control Studies , Female , Humans , Male , Middle Aged , Neoplasms/ethnology , Neoplasms/geneticsABSTRACT
Previous reports reveal that +9/-9 polymorphism of the bradykinin B2 receptor (BDKRB2) is suggestive of cardiometabolic diseases. The aim of this study was to examine the impact of BDKRB2 + 9/-9 polymorphism genotypes on the blood pressure parameters and microvascular function in prepubescent children. We screened for BDKRB2 + 9/-9 polymorphism in the DNA of 145 children (86 boys and 59 girls), and its association with body composition, blood pressure levels, biochemical parameters, and endothelial function was determined. No significant association of the BDKRB2 genotypes with gender (P=0.377), race (P=0.949) or family history of cardiovascular disease (CVD) (P=0.858) was observed. Moreover, we did not identify any interaction between BDKRB2 genotypes with a phenotype of obesity (P=0.144). Children carrying the +9/+9 genotype exhibited a significant linear trend with higher levels of systolic blood pressure and pulse pressure (P<0.001). Moreover, the presence of +9 allele resulted in a decrease of reactive hyperemia index, showing a decreasing linear trend from -9/-9 to +9/+9, wherein this parameter of endothelial function was the lowest in the +9/+9 children, intermediate in the +9/-9 children, and the highest in the -9/-9 children (P<0.001). There was a significant inverse correlation between reactive hyperemia index and systolic blood pressure (r= - 0.348, P< 0.001) and pulse pressure (r= - 0.399, P< 0.001). Our findings indicate that the +9/+9 BDKRB2 genotype was associated with high blood pressure and microvascular dysfunction in prepubescent Brazilian children.
Subject(s)
Blood Pressure/genetics , Metabolic Syndrome/genetics , Microcirculation/genetics , Polymorphism, Genetic , Receptor, Bradykinin B2/genetics , Black People/genetics , Brazil/epidemiology , Child , Female , Genotype , Humans , Hyperemia/genetics , Hyperemia/physiopathology , Hypertension/genetics , Hypertension/physiopathology , Male , Metabolic Syndrome/epidemiology , Metabolic Syndrome/physiopathology , Racial Groups/genetics , White People/geneticsABSTRACT
Interethnic variability in the drug-metabolizing capacity of CYP450 enzymes may lead to discrepancies in the relationship between genotypes and phenotypes worldwide. The present study was aimed to analyze for the first time whether there is a relationship between clinically relevant CYP450 genetic polymorphisms and their drug oxidation capacity (metabolic phenotype) in a population of healthy Nicaraguan volunteers. Two hundred and twelve participants were genotyped for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, and their actual metabolic phenotype (evaluated by the Metabolic Ratio, MR) was analyzed by using the CEIBA cocktail approach. The results showed the wide interindividual variability in all the studied enzymes and a significant difference (p < 0.004) in the activity of CYP1A2 between male and female subjects. The number of CYP2C19 (p < 0.0001) and CYP2D6 (p < 0.0001) active alleles were shown inversely correlated with their corresponding MR, although there were marked genotype-phenotype discrepancies. There was an actual enzyme capacity overlapping (MR) between genotypically Poor (gPMs) and Extensive Metabolizers (gEMs) of 3.14% subjects for CYP2D6 and 0.94% for CYP2C9. Similarly, there was an overlapping for metabolic phenotypes of 11.48% of genotypically ultrarapid metabolizers (gUMs) for CYP2C19 and 2.09% for CYP2D6 and gEMs. Therefore, the current approach for metabolic phenotype prediction based just on genotype does not predict properly for all individuals within this Nicaraguan Mestizo population, thus representing a potential barrier for the clinical implementation of personalized medicine in this region. However, it is necessary to improve the prediction of phenotype from genotype in order to improve the pharmacogenetic implementation in populations with specific ethnic backgrounds.
Subject(s)
Cytochrome P-450 Enzyme System/genetics , Adult , Alleles , Female , Gene Frequency/genetics , Genotype , Humans , Male , Nicaragua , Pharmacogenetics/methods , Phenotype , Polymorphism, Genetic/genetics , Precision Medicine , Racial Groups/genetics , Young AdultABSTRACT
BACKGROUND: Genetic variants in the SLC14A1, ACKR1, and KEL genes, which encode Kidd, Duffy, and Kell red blood cell antigens, respectively, may result in weakened expression of antigens or a null phenotype. These variants are of particular interest to individuals with sickle cell disease (SCD), who frequently undergo chronic transfusion therapy with antigen-matched units. The goal was to describe the diversity and the frequency of variants in SLC14A1, ACKR1, and KEL genes among individuals with SCD using whole genome sequencing (WGS) data. STUDY DESIGN AND METHODS: Two large SCD cohorts were studied: the Recipient Epidemiology and Donor Evaluation Study III (REDS-III) (n = 2634) and the Outcome Modifying Gene in SCD (OMG) (n = 640). Most of the studied individuals were of mixed origin. WGS was performed as part of the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program. RESULTS: In SLC14A1, variants included four encoding a weak Jka phenotype and five null alleles (JKnull ). JKA*01N.09 was the most common JKnull . One possible JKnull mutation was novel: c.812G>T. In ACKR1, identified variants included two that predicted Fyx (FY*X) and one corresponding to the c.-67T>C GATA mutation. The c.-67T>C mutation was associated with FY*A (FY*01N.01) in four participants. FY*X was identified in 49 individuals. In KEL, identified variants included three null alleles (KEL*02N.17, KEL*02N.26, and KEL*02N.04) and one allele predicting Kmod phenotype, all in heterozygosity. CONCLUSIONS: We described the diversity and distribution of SLC14A1, ACKR1, and KEL variants in two large SCD cohorts, comprising mostly individuals of mixed ancestry. This information may be useful for planning the transfusion support of patients with SCD.
Subject(s)
Anemia, Sickle Cell/genetics , Duffy Blood-Group System/genetics , Genetic Variation , Kell Blood-Group System/genetics , Kidd Blood-Group System/genetics , Membrane Glycoproteins/genetics , Membrane Transport Proteins/genetics , Metalloendopeptidases/genetics , Receptors, Cell Surface/genetics , Whole Genome Sequencing , Alleles , Anemia, Sickle Cell/ethnology , Brazil/epidemiology , Cohort Studies , Ethnicity/genetics , Gene Frequency , Genetic Association Studies , Humans , INDEL Mutation , Molecular Sequence Annotation , Mutation, Missense , National Heart, Lung, and Blood Institute (U.S.) , Polymorphism, Single Nucleotide , Racial Groups/genetics , United States , Urea TransportersABSTRACT
OBJECTIVE: The rs1008562, rs2234671 and rs3138060 polymorphisms of the CXCR1 gene have been shown to be associated with many diseases, but in breast cancer (BC) their association has not been detected. The purpose of this study was to determine the frequency and association of the rs1008562, rs2234671 and rs3138060 polymorphisms of CXCR1 gene in BC patients in the Mexican population. PATIENTS AND METHODS: The CXCR1 polymorphisms were determined by Polymerase Chain Reaction (PCR) and real time-PCR in healthy Mexican subjects and BC patients. RESULTS: The prevalent patron in BC patients was observed, the majority were overweight and obesity (72%) with metastatic lymph nodes (48%), luminal A/B subtypes (63%), and advanced stages (60%). Triple negative breast cancer (TNBC) patients: they were younger (58%) than 43 years old, overweight (33%), obesity (42%), ductal type histological (98%), metastasis to lymph nodes (47%), advanced stages III-IV (61%) and metastasis (33%). The rs2234671 polymorphism was associated with BC susceptibility when BC patients and the control group were compared for the CC genotype (p=0.037), CG (heterozygous model: p=0.018), GC/CC (dominant model: p=0.004), and the C allele (p=0.001), as well as the GC/CC genotype with hormone replace therapy (HRT, p=0.016). The rs3138060 polymorphism was associated with BC susceptibility for CG/GG genotype (dominant model: p=0.032) and G allele (p=0.018). Although the association between the dominant model of rs1008562, rs2234671, rs3138060 polymorphisms and BC patients and control was evident for tobacco and alcohol consumption (p<0.05). The rs1008562, rs2234671, and rs3138060 polymorphisms of the CXCR1 gene classified by molecular subtype and stage were also associated with BC patients, indicating that these factors may significantly contribute to BC risk. The CCC (OR 1.75, 95% CI 1.03- 2.97, p=0.046), GGG (OR 3.73, 95% CI 1.61- 8.65, p=0.0018) haplotypes were also associated with BC susceptibility. CONCLUSIONS: Rs2234671 and rs3138060 polymorphisms in the CXCR1 gene were associated with BC susceptibility in the Mexican population. The dominant model of the rs1008562, rs2234671 and rs3138060 polymorphisms could significantly contribute to BC risk in tobacco and alcohol consumption, molecular subtype and stage. The rs1008562, rs2234671 and rs3138060 polymorphisms, and the haplotypes CCC and GGG could significantly contribute to BC risk in the Mexican population analyzed.
Subject(s)
Breast Neoplasms/genetics , Receptors, Interleukin-8A/genetics , Adult , Female , Genetic Predisposition to Disease , Genotype , Humans , Mexico , Middle Aged , Polymorphism, Genetic , Racial Groups/genetics , Risk FactorsABSTRACT
Violence and drug abuse are highly destructive phenomena found world-wide, especially in Brazil. They seem to rise proportionally to one another and possibly related. Additionally, genetics may also play a role in drug abuse. This study has focused on identifying the use of cocaine within postmortem cases arriving at the Institute of Legal Medicine of Sao Paulo as well as the presence of certain single nucleotide polymorphisms (SNPs) to better understand one's susceptibility to abuse the drug. Both hair and blood samples have been extracted through a simple methanol overnight incubation or a rapid dilute-and-shoot method, respectively. The samples were then analyzed using an UPLC-ESI-MS/MS and genotyped through RT-PCR. Statistical analyses were performed via SPSS software. From 105 postmortem cases, 53% and 51% of the cases shown to be positive for cocaine in hair and blood, respectively. Genetic wise, a significant difference has been observed for SNP rs4263329 from the BCHE gene with higher frequencies of the genotypes A/G and G/G seen in cocaine users (OR=8.91; 95%CI=1.58-50.21; p=0.01). Likewise, also SNP rs6280 from the DRD3 gene presented a significant association, with both genotypes T/C and C/C being more frequent in users (OR=4.96; 95% CI=1.07-23.02; p=0.04). To conclude, a rather high proportion of cocaine has been found, which may suggest a connotation between the use of the drug and risky/violent behaviors. Additionally, significant associations were also found within two SNPs related to cocaine use, however, due to several inherent limitations, these must be confirmed.
Subject(s)
Butyrylcholinesterase/genetics , Cocaine-Related Disorders/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Receptors, Dopamine D3/genetics , Violence , Adult , Alleles , Brazil , Cocaine/analysis , Female , Forensic Genetics , Genotype , Hair/chemistry , Humans , Male , Racial Groups/geneticsABSTRACT
The Dominican Republic is one of the two countries on the Hispaniola island, which is part of the Antilles. Hispaniola was affected by the European colonization and massive deportation of African slaves since the XVI century and these events heavily shaped the genetic composition of the present-day population. To shed light about the effect of the European rules, we analyzed 92 single nucleotide polymorphisms on the Y chromosome in 182 Dominican individuals from three different locations. The Dominican Y haplogroup composition was characterized by an excess of northern African/European lineages (59%), followed by the African clades (38%), whereas the Native-American lineages were rare (3%). The comparison with the mitochondrial DNA variability, dominated by African clades, revealed a sex-biased admixture pattern, in line with the colonial society dominated by European men. When other Caribbean and non-Caribbean former colonies were also considered, we noted a difference between territories under a Spanish rule (like the Dominican Republic) and British/French rule, with the former characterized by an excess of European Y lineages reflecting the more permissive Iberian legislation about mixed people and slavery. Finally, we analyzed the distribution in Africa of the Dominican lineages with a putative African origin, mainly focusing on central and western Africa, which were the main sources of African slaves. We found that most (83%) of the African lineages observed in Santo Domingo have a central African ancestry, suggesting that most of the slaves were deported from regions.
Subject(s)
Chromosomes, Human, Y , Human Migration , Racial Groups/genetics , Dominican Republic , Genetic Variation , Haplotypes , Humans , MaleABSTRACT
Aim: To evaluate plasma endoxifen levels and metabolic phenotype-associated factors in Mexican Mestizo patients under tamoxifen treatment. Patients & methods: A total of 138 breast cancer patients under tamoxifen treatment were cross-sectionally evaluated and side effects (SE) were recorded. CYP2D6 genetic phenotypes (GP) and metabolic phenotypes (MP) were assessed (metabolic poor [mPM], intermediate [mIM], normal [mNM], and ultrarapid [mUM] metabolizer). Associations were tested in uni-multivariate models for endoxifen >5.9 ng/ml and for mNM + mUM MP. Results: The main SE was hot flashes (62%). Distribution of the CYP2D6 MP was 4.3% mPM; 14.5% mIM; 75.4% mNM; and 5.8% mUM. Endoxifen >5.9 ng/ml was partially associated with SE (p = 0.06); the mNM + mUM MP was associated with treatment time (p = 0.03). Conclusion: The endoxifen-associated factors in Mexican Mestizo patients remain inconclusive, although treatment time was associated with MP.
Subject(s)
Breast Neoplasms/blood , Breast Neoplasms/drug therapy , Tamoxifen/analogs & derivatives , Tamoxifen/therapeutic use , Adult , Aged , Aged, 80 and over , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cross-Sectional Studies , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Female , Genotype , Humans , Mexico , Middle Aged , Phenotype , Racial Groups/genetics , Tamoxifen/bloodABSTRACT
Genome-wide association studies have uncovered thousands of genetic variants that are associated with a wide variety of human traits. Knowledge of how trait-associated variants are distributed within and between populations can provide insight into the genetic basis of group-specific phenotypic differences, particularly for health-related traits. We analyzed the genetic divergence levels for 1) individual trait-associated variants and 2) collections of variants that function together to encode polygenic traits, between two neighboring populations in Colombia that have distinct demographic profiles: Antioquia (Mestizo) and Chocó (Afro-Colombian). Genetic ancestry analysis showed 62% European, 32% Native American, and 6% African ancestry for Antioquia compared with 76% African, 10% European, and 14% Native American ancestry for Chocó, consistent with demography and previous results. Ancestry differences can confound cross-population comparison of polygenic risk scores (PRS); however, we did not find any systematic bias in PRS distributions for the two populations studied here, and population-specific differences in PRS were, for the most part, small and symmetrically distributed around zero. Both genetic differentiation at individual trait-associated single nucleotide polymorphisms and population-specific PRS differences between Antioquia and Chocó largely reflected anthropometric phenotypic differences that can be readily observed between the populations along with reported disease prevalence differences. Cases where population-specific differences in genetic risk did not align with observed trait (disease) prevalence point to the importance of environmental contributions to phenotypic variance, for both infectious and complex, common disease. The results reported here are distributed via a web-based platform for searching trait-associated variants and PRS divergence levels at http://map.chocogen.com (last accessed August 12, 2020).
Subject(s)
Genetic Predisposition to Disease , Genome, Human , Multifactorial Inheritance , Phenotype , Racial Groups/genetics , Colombia , HumansABSTRACT
The incidence of cystic fibrosis (CF) and the frequency of the variants reported for CFTR depend on the population; furthermore, CF symptomatology is characterized by obstructive lung disease and pancreatic insufficiency among other symptoms, which are reliant on the individual's genotype. The Ecuadorian population is a mixture of Native Americans, Europeans, and Africans. That population admixture could be the reason for the new mutations reported in a previous study by Ruiz et al. (2019). A panel of 46 Ancestry Informative Markers was used to estimate the ancestral proportions of each available sample (12 samples in total). As a result, the Native American ancestry proportion was the most prevalent in almost all individuals, except for three patients from Guayaquil with the mutation [c.757G>A:p.Gly253Arg; c.1352G>T:p.Gly451Val] who had the highest European composition.
Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Mutation/genetics , Ecuador , Genotype , Humans , Principal Component Analysis , Racial Groups/geneticsABSTRACT
OBJECTIVE: To determine the influence of genomic ancestry (GA) and self-reportedcolor-race (SRCR) on glycemic control in adolescents with type 1 diabetes (T1D) in an admixed population. RESEARCH DESIGN AND METHODS: This multicenter nationwide study was conducted in 14 public clinics in 10 Brazilian cities. We estimated global and individual African, European, and Native Amerindian GA proportions using a panel of 46 AIM-INDEL markers. From 1760 patients, 367 were adolescents (20.9%): 184 female (50.1%), aged 16.4 ± 1.9 years, age at diagnosis 8.9 ± 4.3 years, duration of diabetes 8.1 ± 4.3 years, years of study 10.9 ± 2.5 and HbA1c of 9.6 ± 2.4%. RESULTS: Patients SRCR as White: 176 (48.0%), Brown: 159 (43.3%), Black: 19(5.2%), Asians: 5 (1.4%) and Amerindians: 8 (2.2%). The percentage of European GA prevailed in all groups: White (71.1), Brown (58.8), Black (49.6), Amerindians (46.1), and Asians (60.5). Univariate correlation was noted between A1c and African GA, r = 0.11, P = .03; years of study, r = -0.12 P = .010, and having both private and public health care insurance (r = -0.20, P < .001). After adjustments, the multivariate logistic analysis showed that SRCR or GA did not influence glycemic control. CONCLUSIONS: A high percentage of European GA was noted in our patients, even in those who self-reported as non-White, confirming the highly admixed ethnicity of the Brazilian population. Better glycemic control was associated with having both types of health care; however, there was no association between glycemic control with GA or SRCR. Future prospective studies with other admixed populations are necessary to confirm our findings.
Subject(s)
Blood Glucose/genetics , Diabetes Mellitus, Type 1 , Glycemic Control , Racial Groups/genetics , Adolescent , Age of Onset , Blood Glucose/metabolism , Brazil/epidemiology , Child , Child, Preschool , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/ethnology , Diabetes Mellitus, Type 1/genetics , Ethnicity/genetics , Ethnicity/statistics & numerical data , Female , Genetic Predisposition to Disease/ethnology , Genetics, Population , Genomics , Glycemic Control/statistics & numerical data , Humans , Male , Prospective Studies , Racial Groups/statistics & numerical dataABSTRACT
The HLA region is responsible for almost 50% of the genetic risk of type 1 diabetes (T1D). However, haplotypes and their effects on risk or protection vary among different ethnic groups, mainly in an admixed population. We aimed to evaluate the HLA class II genetic profile of Brazilian individuals with T1D and its relationship with self-reported color/race. This was a nationwide multicenter study conducted in 10 Brazilian cities. We included 1,019 T1D individuals and 5,116 controls matched for the region of birth and self-reported color/race. Control participants belonged to the bone marrow transplant donor registry of Brazil (REDOME). HLA-class II alleles (DRB1, DQA1, and DQB1) were genotyped using the SSO and NGS methods. The most frequent risk and protection haplotypes were HLA~DRB1*03:01~DQA1*05:01 g~DQB1*02:01 (OR 5.8, p < 0.00001) and HLA~DRB1*07:01~DQA1*02:01~DQB1*02:02 (OR 0.54, p < 0.0001), respectively, regardless of self-reported color/race. Haplotypes HLA~DRB1*03:01~DQA1*05:01 g~DQB1*02:01 and HLA~DRB1*04:02~DQA1*03:01 g~DQB1*03:02 were more prevalent in the self-reported White group than in the Black group (p = 0.04 and p = 0.02, respectively). The frequency of haplotype HLA~DRB1*09:01~DQA1*03:01 g~DQB1*02:02 was higher in individuals self-reported as Black than White (p = <0.00001). No difference between the Brazilian geographical regions was found. Individuals with T1D presented differences in frequencies of haplotypes within self-reported color/race, but the more prevalent haplotypes, regardless of self-reported color/race, were the ones described previously in Europeans. We hypothesize that, in the T1D population of Brazil, although highly admixed, the disease risk alleles come mostly from Europeans as a result of centuries of colonization and migration.
Subject(s)
Diabetes Mellitus, Type 1/genetics , Genes, MHC Class II , Genotyping Techniques , Racial Groups/genetics , Self Report , Adult , Alleles , Brazil , Female , Haplotypes/genetics , Humans , Male , Risk FactorsABSTRACT
We describe an ancestry-informative autosomal SNP multiplex designed to be a small-scale, flexible panel that can complement uniparental markers in assessing the American variability (i.e. pre-Colombian) found in contemporary indigenous American populations. This study centered on choosing SNPs with the specific characteristics of: 1) extreme allele frequency differences between indigenous Americans and the African, European and East Asian population groups that contribute to present-day population variation in the Americas; 2) high informativeness-for-assignment In values; and 3) well-spaced genomic distribution and chromosomal separation from existing small-scale forensic ancestry marker sets. The resulting capillary electrophoresis SNaPshot single base extension test was named: PIMA (Population Informative Multiplex for the Americas), comprising 26 autosomal SNPs, a single X-chromosome SNP plus the amelogenin sex marker adapted for SNaPshot. PIMA complements the established 34plex forensic ancestry panel to provide a powerful and simple tool for the analysis of American populations, including those with admixed histories, commonly encountered in America. Comparing the results obtained with the combined marker panels of PIMA and 34plex to SNP data from a much larger ancestry panel allowed us to gauge their relative efficiency. PIMA+34plex gives equivalent power to the 314-SNP 'LACE' genomic ancestry control panel, while requiring a much smaller genotyping effort. The ancestry profiles and genetic structure of 22 populations spread across the American continent were estimated using PIMA+34plex data, and those estimates were contrasted with information provided by uniparental markers (mtDNA and Y-chromosome loci) for a small set of admixed individuals from Venezuela. Our results indicate that an American genetic component is efficiently detected in contemporary American populations using a small set of ancestry informative SNPs, and these co-ancestry estimates are consistent with the known history and demography of the Americas. The small scale and high population differentiation power of PIMA, particularly when combined with 34plex, provides a practical and powerful tool for genetic studies of American populations as well as forensic DNA analyses.
Subject(s)
Ethnicity/genetics , Genetics, Population , Polymorphism, Single Nucleotide , Racial Groups/genetics , Amelogenin/genetics , Americas , Chromosomes, Human, Y , DNA, Mitochondrial , Electrophoresis, Capillary , Gene Frequency , Genetic Markers , Genotype , Humans , Multiplex Polymerase Chain ReactionABSTRACT
Genetic analysis of admixed populations raises special concerns with regard to study design and data processing, particularly to avoid population stratification biases. The point mutation responsible for sickle cell anaemia codes for a variant hemoglobin, sickle hemoglobin or HbS, whose presence drives the pathophysiology of disease. Here we propose to explore ancestry and population structure in a genome-wide study with particular emphasis on chromosome 11 in two SCA admixed cohorts obtained from urban populations of Brazil (Pernambuco and São Paulo) and the United States (Pennsylvania). Ancestry inference showed different proportions of European, African and American backgrounds in the composition of our samples. Brazilians were more admixed, had a lower African background (43% vs. 78% on the genomic level and 44% vs. 76% on chromosome 11) and presented a signature of positive selection and Iberian introgression in the HbS region, driving a high differentiation of this locus between the two cohorts. The genetic structures of the SCA cohorts from Brazil and US differ considerably on the genome-wide, chromosome 11 and HbS mutation locus levels.