Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34884782

ABSTRACT

Radiation-induced heart disease (RIHD) is a potential late side-effect of thoracic radiotherapy resulting in left ventricular hypertrophy (LVH) and fibrosis due to a complex pathomechanism leading to heart failure. Angiotensin-II receptor blockers (ARBs), including losartan, are frequently used to control heart failure of various etiologies. Preclinical evidence is lacking on the anti-remodeling effects of ARBs in RIHD, while the results of clinical studies are controversial. We aimed at investigating the effects of losartan in a rat model of RIHD. Male Sprague-Dawley rats were studied in three groups: (1) control, (2) radiotherapy (RT) only, (3) RT treated with losartan (per os 10 mg/kg/day), and were followed for 1, 3, or 15 weeks. At 15 weeks post-irradiation, losartan alleviated the echocardiographic and histological signs of LVH and fibrosis and reduced the overexpression of chymase, connective tissue growth factor, and transforming growth factor-beta in the myocardium measured by qPCR; likewise, the level of the SMAD2/3 protein determined by Western blot decreased. In both RT groups, the pro-survival phospho-AKT/AKT and the phospho-ERK1,2/ERK1,2 ratios were increased at week 15. The antiremodeling effects of losartan seem to be associated with the repression of chymase and several elements of the TGF-ß/SMAD signaling pathway in our RIHD model.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/therapeutic use , Heart Failure/prevention & control , Hypertrophy, Left Ventricular/drug therapy , Losartan/therapeutic use , Radiation Fibrosis Syndrome/drug therapy , Animals , Chymases/metabolism , Disease Models, Animal , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/prevention & control , Male , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Radiation Fibrosis Syndrome/pathology , Radiation Fibrosis Syndrome/prevention & control , Rats , Rats, Sprague-Dawley , Smad2 Protein/analysis , Smad3 Protein/analysis , Transforming Growth Factor beta1/analysis
2.
J Cell Mol Med ; 25(21): 10028-10038, 2021 11.
Article in English | MEDLINE | ID: mdl-34612609

ABSTRACT

The iron chelator, deferoxamine (DFO), has been shown to potentially improve dermal radiation-induced fibrosis (RIF) in mice through increased angiogenesis and reduced oxidative damage. This preclinical study evaluated the efficacy of two DFO administration modalities, transdermal delivery and direct injection, as well as temporal treatment strategies in relation to radiation therapy to address collateral soft tissue fibrosis. The dorsum of CD-1 nude mice received 30 Gy radiation, and DFO (3 mg) was administered daily via patch or injection. Treatment regimens were prophylactic, during acute recovery, post-recovery, or continuously throughout the experiment (n = 5 per condition). Measures included ROS-detection, histology, biomechanics and vascularity changes. Compared with irradiated control skin, DFO treatment decreased oxidative damage, dermal thickness and collagen content, and increased skin elasticity and vascularity. Metrics of improvement in irradiated skin were most pronounced with continuous transdermal delivery of DFO. In summary, DFO administration reduces dermal fibrosis induced by radiation. Although both treatment modalities were efficacious, the transdermal delivery showed greater effect than injection for each temporal treatment strategy. Interestingly, the continuous patch group was more similar to normal skin than to irradiated control skin by most measures, highlighting a promising approach to address detrimental collateral soft tissue injury following radiation therapy.


Subject(s)
Deferoxamine/pharmacology , Dermis/metabolism , Dermis/pathology , Dermis/radiation effects , Radiation, Ionizing , Animals , Biomarkers , Dermis/blood supply , Disease Susceptibility , Female , Fibrosis , Mice , Microvessels/diagnostic imaging , Microvessels/metabolism , Oxidative Stress , Radiation Fibrosis Syndrome/etiology , Radiation Fibrosis Syndrome/metabolism , Radiation Fibrosis Syndrome/pathology , Reactive Oxygen Species/metabolism
3.
J Tissue Eng Regen Med ; 15(12): 1105-1117, 2021 12.
Article in English | MEDLINE | ID: mdl-34582109

ABSTRACT

Radiation therapy is effective for cancer treatment but may also result in collateral soft tissue contracture, contour deformities, and non-healing wounds. Autologous fat transfer has been described to improve tissue architecture and function of radiation-induced fibrosis and these effects may be augmented by enrichment with specific adipose-derived stromal cells (ASCs) with enhanced angiogenic potential. CD34+CD146+, CD34+CD146-, or CD34+ unfractionated human ASCs were isolated by flow cytometry and used to supplement human lipoaspirate placed beneath the scalp of irradiated mice. Volume retention was followed radiographically and fat grafts as well as overlying soft tissue were harvested after eight weeks for histologic and biomechanical analyses. Radiographic evaluation revealed the highest volume retention in fat grafts supplemented with CD34+CD146+ ASCs, and these grafts were also found to have greater histologic integrity than other groups. Irradiated skin overlying CD34+CD146+ ASC-enriched grafts was significantly more vascularized than other treatment groups, had significantly less dermal thickness and collagen deposition, and the greatest improvement in fibrillin staining and return of elasticity. Radiation therapy obliterates vascularity and contributes to scarring and loss of tissue function. ASC-enrichment of fat grafts with CD34+CD146+ ASCs not only enhances fat graft vascularization and retention, but also significantly promotes improvement in overlying radiation-injured soft tissue. This regenerative effect on skin is highly promising for patients with impaired wound healing and deformities following radiotherapy.


Subject(s)
Adipose Tissue/metabolism , Cell Differentiation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Radiation Fibrosis Syndrome , Skin , Adipose Tissue/pathology , Animals , Female , Heterografts , Humans , Mesenchymal Stem Cells/pathology , Mice , Mice, Nude , Middle Aged , Radiation Fibrosis Syndrome/metabolism , Radiation Fibrosis Syndrome/pathology , Radiation Fibrosis Syndrome/therapy , Skin/metabolism , Skin/pathology
SELECTION OF CITATIONS
SEARCH DETAIL