Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.884
Filter
1.
Bull Exp Biol Med ; 176(5): 626-630, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38730109

ABSTRACT

We studied the antitumor activity of the combined use of local proton irradiation in two modes (10 and 31 Gy) with preliminary intra-tumoral injection of two types of bismuth nanoparticles differing in surface coating: coated with the amphiphilic molecule Pluronic-F127 or Silane-PEG (5 kDa)-COOH polymer. Nanoparticles were used in doses of 0.75 and 1.5 mg/mouse. In two independent series on experimental tumor model (solid Ehrlich carcinoma), bismuth nanoparticles of both modifications injected directly into the tumor enhanced the antitumor effects of proton therapy. Moreover, the radiosensitizing effect of bismuth nanoparticles administered via this route increased with the increasing the doses of nanoparticles and the doses of radiation exposure. In our opinion, these promising data obtained for the first time extend the possibilities of treating malignant neoplasms.


Subject(s)
Bismuth , Carcinoma, Ehrlich Tumor , Poloxamer , Proton Therapy , Carcinoma, Ehrlich Tumor/radiotherapy , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Animals , Bismuth/therapeutic use , Bismuth/chemistry , Mice , Proton Therapy/methods , Poloxamer/chemistry , Radiation-Sensitizing Agents/therapeutic use , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacology , Polyethylene Glycols/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Nanoparticles/chemistry , Female
2.
ACS Appl Mater Interfaces ; 16(14): 17242-17252, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38556729

ABSTRACT

Protective autophagy and DNA damage repair lead to tumor radio-resistance. Some hypoxic tumors exhibit a low radiation energy absorption coefficient in radiation therapy. High doses of X-rays may lead to side effects in the surrounding normal tissues. In order to overcome the radio-resistance and improve the efficacy of radiotherapy based on the characteristics of the tumor microenvironment, the development of radiosensitizers has attracted much attention. In this study, a Janus ACSP nanoparticle (NP) was developed for chemodynamic therapy and radiosensitization. The reactive oxygen species generated by the Fenton-like reaction regulated the distribution of cell cycles from a radioresistant phase to a radio-sensitive phase. The high-Z element, Au, enhanced the production of hydroxyl radicals (•OH) under X-ray radiation, promoting DNA damage and cell apoptosis. The NP delayed DNA damage repair by interfering with certain proteins involved in the DNA repair signaling pathway. In vivo experiments demonstrated that the combination of the copper-ion-based Fenton-like reaction and low-dose X-ray radiation enhanced the effectiveness of radiotherapy, providing a novel approach for synergistic chemodynamic and radiosensitization therapy. This study provides valuable insights and strategies for the development and application of NPs in cancer treatment.


Subject(s)
Nanoparticles , Neoplasms , Radiation-Sensitizing Agents , Humans , Neoplasms/drug therapy , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Tumor Microenvironment , Hydrogen Peroxide
3.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38612455

ABSTRACT

Recently, it was established that ferroptosis, a type of iron-dependent regulated cell death, plays a prominent role in radiotherapy-triggered cell death. Accordingly, ferroptosis inducers attracted a lot of interest as potential radio-synergizing drugs, ultimately enhancing radioresponses and patient outcomes. Nevertheless, the tumor microenvironment seems to have a major impact on ferroptosis induction. The influence of hypoxic conditions is an area of interest, as it remains the principal hurdle in the field of radiotherapy. In this review, we focus on the implications of hypoxic conditions on ferroptosis, contemplating the plausibility of using ferroptosis inducers as clinical radiosensitizers. Furthermore, we dive into the prospects of drug repurposing in the domain of ferroptosis inducers and radiosensitizers. Lastly, the potential adverse effects of ferroptosis inducers on normal tissue were discussed in detail. This review will provide an important framework for subsequent ferroptosis research, ascertaining the feasibility of ferroptosis inducers as clinical radiosensitizers.


Subject(s)
Ferroptosis , Radiation Oncology , Radiation-Sensitizing Agents , Regulated Cell Death , Humans , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Cell Death , Hypoxia
4.
ACS Nano ; 18(11): 8325-8336, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38447099

ABSTRACT

Radiotherapy is a mainstay treatment used in clinics for locoregional therapy, although it still represents a great challenge to improve the sensitivity and accuracy of radiotherapy for tumors. Here, we report the conjugated polymer, polydiiododiacetylene (PIDA), with an iodine content of 84 wt %, as a highly effective computed tomography (CT) contrast agent and tumor microenvironment-responsive radiosensitizer. PIDA exhibited several key properties that contribute to the improvement of precision radiotherapy. The integrated PIDA nanofibers confined within the tumor envelope demonstrated amplified CT intensity and prolonged retention, providing an accurate calculation of dose distribution and precise radiation delivery for CT image-guided radiotherapy. Therefore, our strategy pioneers PIDA nanofibers as a bridge to cleverly connect a fiducial marker to guide accurate radiotherapy and a radiosensitizer to improve tumor sensitivity, thereby minimizing potential damage to surrounding tissues and facilitating on-demand therapeutic intervention in tumors.


Subject(s)
Nanofibers , Neoplasms , Polyacetylene Polymer , Radiation-Sensitizing Agents , Radiotherapy, Image-Guided , Humans , Carbon , Tumor Microenvironment , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use
5.
Adv Mater ; 36(19): e2312588, 2024 May.
Article in English | MEDLINE | ID: mdl-38316447

ABSTRACT

Cancer cells can upregulate the MYC expression to repair the radiotherapy-triggered DNA damage, aggravating therapeutic resistance and tumor immunosuppression. Epigenetic treatment targeting the MYC-transcriptional abnormality may intensively solve this clinical problem. Herein, 5-Aza (a DNA methyltransferase inhibitor) and ITF-2357 (a histone deacetylase inhibitor) are engineered into a tungsten-based nano-radiosensitizer (PWAI), to suppress MYC rising and awaken robust radiotherapeutic antitumor immunity. Individual 5-Aza depletes MYC expression but cannot efficiently awaken radiotherapeutic immunity. This drawback can be overcome by the addition of ITF-2357, which triggers cancer cellular type I interferon (IFN-I) signaling. Coupling 5-Aza with ITF-2357 ensures that PWAI does not evoke the treated model with high MYC-related immune resistance while amplifying the radiotherapeutic tumor killing, and more importantly promotes the generation of IFN-I signal-related proteins involving IFN-α and IFN-ß. Unlike the radiation treatment alone, PWAI-triggered immuno-radiotherapy remarkably enhances antitumor immune responses involving the tumor antigen presentation by dendritic cells, and improves intratumoral recruitment of cytotoxic T lymphocytes and their memory-phenotype formation in 4T1 tumor-bearing mice. Downgrading the radiotherapy-induced MYC overexpression via the dual-epigenetic reprogramming strategy may elicit a robust immuno-radiotherapy.


Subject(s)
Epigenesis, Genetic , Immunotherapy , Proto-Oncogene Proteins c-myc , Radiation-Sensitizing Agents , Animals , Mice , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Epigenesis, Genetic/drug effects , Cell Line, Tumor , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/therapeutic use , Nanoparticles/chemistry , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Neoplasms/therapy , Neoplasms/immunology , Immunosuppression Therapy , Interferon Type I/metabolism
6.
Adv Sci (Weinh) ; 11(17): e2308905, 2024 May.
Article in English | MEDLINE | ID: mdl-38419379

ABSTRACT

The precise theranostics of rheumatoid arthritis (RA) remains a formidable challenge in clinical practice. Exploring novel applications of contemporary therapeutic approaches like chemo-radiotherapy is promising as a highly effective strategy for RA. Herein, a novel activatable nanoradiosensitizer-40 (denoted as IRnR-40) is developed, based on encapsulating the clinically approved drugs cisplatin (DDP) and indocyanine green (ICG) within a gelatin shell to achieve second near-infrared fluorescence (NIR-II FL) imaging-guided safe-dose synergetic chemo-radiotherapy. The high concentration of matrix metalloproteinase-9 (MMP-9) in the RA microenvironment plays a pivotal role in triggering the responsive degradation of IRnR-40, leading to the rapid release of functional molecules DDP and ICG. The released ICG serves the dual purpose of illuminating the inflamed joints to facilitate accurate target volume delineation for guiding radiotherapy, as well as acting as a real-time reporter for quantifying the release of DDP to monitor efficacy. Meanwhile, the released DDP achieves highly effective synergistic chemotherapy and radiosensitization for RA via the dual reactive oxygen species (ROS)-mediated mitochondrial apoptotic pathway. To sum up, this activatable nanoradiosensitizer IRnR-40 is believed to be the first attempt to achieve efficient NIR-II FL imaging-guided safe-dose chemo-radiotherapy for RA, which provides a new paradigm for precise theranostics of refractory benign diseases.


Subject(s)
Arthritis, Rheumatoid , Cisplatin , Indocyanine Green , Optical Imaging , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/drug therapy , Animals , Indocyanine Green/administration & dosage , Mice , Optical Imaging/methods , Cisplatin/administration & dosage , Cisplatin/therapeutic use , Disease Models, Animal , Radiation-Sensitizing Agents/administration & dosage , Radiation-Sensitizing Agents/therapeutic use , Humans , Chemoradiotherapy/methods
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(4): 159468, 2024 May.
Article in English | MEDLINE | ID: mdl-38408538

ABSTRACT

Radiotherapy is one of the most commonly used cancer therapies with many benefits including low toxicity to healthy tissues. However, a major problem in radiotherapy is cancer radioresistance. To enhance the effect of this kind of therapy several approaches have been proposed such as the use of radiosensitizers. A combined treatment of radiotherapy and radiosensitizing drugs leads to a greater effect on cancer cells than anticipated from the addition of both responses (synergism). In this study, high-definition FT-IR imaging was applied to follow lipid accumulation in prostate cancer cells as a response to X-ray irradiation, radiosensitizing drugs, and a combined treatment of X-rays and the drugs. Lipid accumulation induced in the cells by an increasing X-ray dose and the presence of the drugs was analyzed using Principal Component Analysis and lipid staining. Finally, the synergistic effect of the combined therapy (X-rays and radiosensitizers) was confirmed by calculations of the integral intensity of the 2850 cm-1 band.


Subject(s)
Prostatic Neoplasms , Radiation-Sensitizing Agents , Male , Humans , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , X-Rays , Spectroscopy, Fourier Transform Infrared , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/radiotherapy , Lipids/therapeutic use
8.
Mol Cancer Ther ; 23(5): 662-671, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38224566

ABSTRACT

Radioresistance of melanoma brain metastases limits the clinical utility of conventionally fractionated brain radiation in this disease, and strategies to improve radiation response could have significant clinical impact. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is critical for repair of radiation-induced DNA damage, and inhibitors of this kinase can have potent effects on radiation sensitivity. In this study, the radiosensitizing effects of the DNA-PKcs inhibitor peposertib were evaluated in patient-derived xenografts of melanoma brain metastases (M12, M15, M27). In clonogenic survival assays, peposertib augmented radiation-induced killing of M12 cells at concentrations ≥100 nmol/L, and a minimum of 16 hours exposure allowed maximal sensitization. This information was integrated with pharmacokinetic modeling to define an optimal dosing regimen for peposertib of 125 mpk dosed just prior to and 7 hours after irradiation. Using this drug dosing regimen in combination with 2.5 Gy × 5 fractions of radiation, significant prolongation in median survival was observed in M12-eGFP (104%; P = 0.0015) and M15 (50%; P = 0.03), while more limited effects were seen in M27 (16%, P = 0.04). These data support the concept of developing peposertib as a radiosensitizer for brain metastases and provide a paradigm for integrating in vitro and pharmacokinetic data to define an optimal radiosensitizing regimen for potent DNA repair inhibitors.


Subject(s)
Brain Neoplasms , DNA-Activated Protein Kinase , Melanoma , Radiation-Sensitizing Agents , Xenograft Model Antitumor Assays , Animals , Humans , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Mice , DNA-Activated Protein Kinase/antagonists & inhibitors , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/pharmacokinetics , Radiation-Sensitizing Agents/therapeutic use , Melanoma/drug therapy , Melanoma/pathology , Cell Line, Tumor , Sulfones/pharmacology , Female , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use
9.
Int J Nanomedicine ; 19: 709-725, 2024.
Article in English | MEDLINE | ID: mdl-38283195

ABSTRACT

Background: Radiotherapy is a widely used clinical tool for tumor treatment but can cause systemic toxicity if excessive radiation is administered. Although numerous nanoparticles have been developed as radiosensitizers to reduce the required dose of X-ray irradiation, they often have limitations, such as passive reliance on radiation-induced apoptosis in tumors, and little consider the unique tumor microenvironment that contributes radiotherapy resistance. Methods: In this study, we developed and characterized a novel self-assembled nanoparticle containing dysprosium ion and manganese ion (Dy/Mn-P). We systematically investigated the potential of Dy/Mn-P nanoparticles (NPs) as a reactive oxygen species (ROS) amplifier and radiosensitizer to enhance radiation therapy and modulate the tumor microenvironment at the cellular level. Additionally, we evaluated the effect of Dy/Mn-P on the stimulator of interferon genes (STING), an innate immune signaling pathway. Results: Physicochemical analysis demonstrated the prepared Dy/Mn-P NPs exhibited excellent dispersibility and stability, and degraded rapidly at lower pH values. Furthermore, Dy/Mn-P was internalized by cells and exhibited selective toxicity towards tumor cells compared to normal cells. Our findings also revealed that Dy/Mn-P NPs improved the tumor microenvironment and significantly increased ROS generation under ionizing radiation, resulting in a ~70% increase in ROS levels compared to radiation therapy alone. This enhanced ROS generation inhibited ~92% of cell clone formation and greatly contributed to cytoplasmic DNA exposure. Subsequently, the activation of the STING pathway was observed, leading to the secretion of pro-inflammatory immune factors and maturation of dendritic cells (DCs). Conclusion: Our study demonstrates that Dy/Mn-P NPs can potentiate tumor radiotherapy by improving the tumor microenvironment and increasing endogenous ROS levels within the tumor. Furthermore, Dy/Mn-P can amplify the activation of the STING pathway during radiotherapy, thereby triggering an anti-tumor immune response. This novel approach has the potential to expand the application of radiotherapy in tumor treatment.


Subject(s)
Nanoparticles , Neoplasms , Radiation-Sensitizing Agents , Humans , Reactive Oxygen Species/metabolism , Tumor Microenvironment , Neoplasms/radiotherapy , Neoplasms/drug therapy , Radiation-Sensitizing Agents/therapeutic use , Nanoparticles/chemistry , Hydrogen-Ion Concentration
10.
Phytother Res ; 38(2): 464-469, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36897074

ABSTRACT

Curcumin has antineoplastic properties and is considered a chemotherapeutic and chemopreventive agent. Curcumin may be associated with radiation therapy (RT) as a radiosensitizer for cancer cells and a radioprotector for normal cells. In principle, it may result in a reduction of RT dosage for the same therapeutic effect on cancer cells, and further reduced damage to normal cells. Though the overall level of evidence is modest, limited to in vivo and in vitro experiences and practically no clinical trials, as the risks of adverse effects are extremely low, it is reasonable to promote the general supplementation with curcumin during RT targeting the reduction of side effects through anti-inflammatory mechanisms.


Subject(s)
Antineoplastic Agents , Curcumin , Radiation-Sensitizing Agents , Curcumin/pharmacology , Curcumin/therapeutic use , Antineoplastic Agents/pharmacology , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use
11.
Adv Sci (Weinh) ; 11(6): e2306190, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38049204

ABSTRACT

Radiotherapy (RT) resistance is an enormous challenge in glioblastoma multiforme (GBM) treatment, which is largely associated with DNA repair, poor distribution of reactive radicals in tumors, and limited delivery of radiosensitizers to the tumor sites. Inspired by the aberrant upregulation of RAD51 (a critical protein of DNA repair), scavenger receptor B type 1 (SR-B1), and C-C motif chemokine ligand 5 (CCL5) in GBM patients, a reduction-sensitive nitric oxide (NO) donor conjugate of gemcitabine (RAD51 inhibitor) (NG) is synthesized as radio-sensitizer and a CCL5 peptide-modified bioinspired lipoprotein system of NG (C-LNG) is rationally designed, aiming to preferentially target the tumor sites and overcome the RT resistance. C-LNG can preferentially accumulate at the orthotopic GBM tumor sites with considerable intratumor permeation, responsively release the gemcitabine and NO, and then generate abundant peroxynitrite (ONOO- ) upon X-ray radiation, thereby producing a 99.64% inhibition of tumor growth and a 71.44% survival rate at 120 days in GL261-induced orthotopic GBM tumor model. Therefore, the rationally designed bioinspired lipoprotein of NG provides an essential strategy to target GBM and overcome RT resistance.


Subject(s)
Glioblastoma , Oxadiazoles , Radiation-Sensitizing Agents , Humans , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Glioblastoma/genetics , Gemcitabine , Cell Line, Tumor , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Lipoproteins
12.
Anticancer Agents Med Chem ; 24(1): 50-57, 2024.
Article in English | MEDLINE | ID: mdl-37921146

ABSTRACT

BACKGROUND: Numerous studies have proven the efficacy and safety of natural products, and are widely used as attractive cancer treatments. The investigation of effective natural products for improving cancer treatment is a promising strategy. Combination treatment with radiosensitizers and radiotherapy (RT) is considered necessary for therapeutic improvement in head and neck squamous cell carcinoma(HNSCC). OBJECTIVE: This study aims to investigate whether Ephedra sinica (ES) extract could induce selective cell death in cancer cells and serve as a radiosensitizer for HNSCC. METHODS: HNSCC cells were pretreated with ES extract before radiation, and the radiosensitizing activity was assessed using a colony formation assay. Radiation-induced cell death was evaluated using an annexinV-FITC assay. Western blotting was performed to confirm cell death-related gene expression, including apoptosis and necrosis markers. RESULTS: ES extract significantly inhibited HNSCC cell viability (FaDu and SNU1076), while having minimal effect on normal HaCaT cells. When HNSCC cells were irradiated with 2, 4, or 8 Gy and cultured with ES extract (25 µg/mL), they exhibited increased radiation sensitivity compared to non-treated cells. The combination of ES extract and radiation resulted in increased cell death compared to non-treated, ES-treated, or irradiated cells. The apoptosis marker BAX and necrosis marker p-MLKL expression levels were also elevated following the combination treatment. CONCLUSION: ES extract demonstrated significant cytotoxic potential in HNSCC cells without affecting normal cells. It enhanced the radiosensitivity of HNSCC cells by upregulating BAX and p-MLKL expression, leading to increased cell death. These results suggest ES extract exhibits a potential radiosensitizing capacity in HNSCC.


Subject(s)
Biological Products , Carcinoma, Squamous Cell , Ephedra sinica , Head and Neck Neoplasms , Radiation-Sensitizing Agents , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , bcl-2-Associated X Protein/genetics , Carcinoma, Squamous Cell/drug therapy , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/radiotherapy , Cell Line, Tumor , Cell Death , Apoptosis , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Necrosis , Biological Products/pharmacology , Protein Kinases/pharmacology , Protein Kinases/therapeutic use
13.
Int J Radiat Oncol Biol Phys ; 118(5): 1308-1314, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38104868

ABSTRACT

PURPOSE: Small cell lung cancer (SCLC) is an aggressive and lethal form of lung cancer and the overall 5-year survival (OS) for patients is a dismal 7%. Radiation therapy (RT) provides some benefit for selected patients with SCLC but could be improved with radiosensitizing agents. In this study, we identified novel radiosensitizers for SCLC by a CRISPR-Cas9 screen and evaluated the efficacy of ATM inhibitor AZD1390 as a radiosensitizer of SCLC. METHODS AND MATERIALS: We transduced the SCLC cell line SBC5 with a custom CRISPR sgRNA library focused on druggable gene targets and treated cells with RT. Cells collected at multiple timepoints were subjected to next-generation sequencing. We determined radiosensitization both in vitro with cell lines assessed by short-term viability and clonogenic assays, and in vivo mouse models by tumor growth delay. Pharmacodynamic effects of AZD1390 were quantified by ATM-Ser1981 phosphorylation, and RT-induced DNA damage by comet assay. RESULTS: Using a CRISPR dropout screen, we identified multiple radiosensitizing genes for SCLC at various timepoints with ATM as a top determinant gene for radiosensitivity. Validation by ATM knockout (KO) demonstrated increased radiosensitivity by short-term viability assay (dose modification factor [DMF]50 = 3.25-3.73 in SBC5 ATM-KO) and clonogenic assays (DMF37 1.25-1.65 in SBC5 ATM-KO). ATM inhibition by AZD1390 effectively abrogated ATM Ser1981 phosphorylation in SCLC cell lines and increased RT-induced DNA damage. AZD1390 synergistically increased the radiosensitivity of SCLC cell lines (cell viability assay: SBC5 DMF37 = 2.19, SHP77 DMF37 = 1.56, H446 DMF37 = 3.27, KP1 DMF37 = 1.65 at 100nM; clonogenic assay: SBC5 DMF37 = 4.23, H1048 DMF37 = 1.91), and in vivo murine syngeneic, KP1, and patient-derived xenograft (PDX) models, JHU-LX108 and JHU-LX33. CONCLUSIONS: In this study, we demonstrated that genetically and pharmacologically (AZD1390) inhibiting ATM markedly enhanced RT against SCLC, providing a novel pharmacologically tractable radiosensitizing strategy for patients with SCLC.


Subject(s)
Lung Neoplasms , Pyridines , Quinolones , Radiation-Sensitizing Agents , Small Cell Lung Carcinoma , Humans , Animals , Mice , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/radiotherapy , Small Cell Lung Carcinoma/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , RNA, Guide, CRISPR-Cas Systems , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Line, Tumor , Ataxia Telangiectasia Mutated Proteins/metabolism
14.
Biomaterials ; 305: 122452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38154440

ABSTRACT

Radiotherapy is still the recommended treatment for cervical cancer. However, radioresistance and radiation-induced side effects remain one of the biggest clinical problems. Selenium (Se) has been confirmed to exhibit radiation-enhancing effects for cancer treatment. However, Se species dominate the biological activities and which form of Se possesses better radiosensitizing properties and radiation safety remains elusive. Here, different Se species (the valence state of Se ranged from - 2, 0, +4 to + 6) synergy screen was carried out to identify the potential radiosensitizing effects and radiation safety of Se against cervical cancer. We found that the therapeutic effects varied with the changes in the Se valence state. Sodium selenite (+4) displayed strong cancer-killing effects but also possessed severe cytotoxicity. Sodium selenate (+6) neither enhanced the killing effects of X-ray nor possessed anticancer activity by its alone treatment. Although nano-selenium (0), especially Let-SeNPs, has better radiosensitizing activity, the - 2 organic Se, such as selenadiazole derivative SeD (-2) exhibited more potent anticancer effects and possessed a higher safe index. Overall, the selected Se drugs were able to synergize with X-ray to inhibit cell growth, clone formation, and cell migration by triggering G2/M phase arrest and apoptosis, and SeD (-2) was found to exhibit more potent enhancing capacity. Further mechanism studies showed that SeD mediated p53 pathway activation by inducing DNA damage through promoting ROS production. Additionally, SeD combined with X-ray therapy can induce an anti-tumor immune response in vivo. More importantly, SeD combined with X-ray significantly inhibited the liver metastasis of tumor cells and alleviated the side effects caused by radiation therapy in tumor-bearing mice. Taken together, this study demonstrates the radiosensitization and radiation safety effects of different Se species, which may shed light on the application of such Se-containing drugs serving as side effects-reducing agents for cervical cancer radiation treatment.


Subject(s)
Liver Neoplasms , Radiation-Sensitizing Agents , Selenium , Uterine Cervical Neoplasms , Humans , Female , Mice , Animals , Selenium/pharmacology , Selenium/therapeutic use , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/radiotherapy , Tumor Suppressor Protein p53 , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Liver Neoplasms/drug therapy
15.
Radiother Oncol ; 191: 110059, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38135186

ABSTRACT

BACKGROUND AND PURPOSE: Due to the high intrinsic radioresistance of pancreatic ductal adenocarcinoma (PDAC), radiotherapy (RT) is only beneficial in 30% of patients. Therefore, this study aimed to identify targets to improve the efficacy of RT in PDAC. MATERIALS AND METHODS: Alamar Blue proliferation and colony formation assay (CFA) were used to determine the radioresponse of a cohort of 38 murine PDAC cell lines. A gene set enrichment analysis was performed to reveal differentially expressed pathways. CFA, cell cycle distribution, γH2AX FACS analysis, and Caspase 3/7 SYTOX assay were used to examine the effect of a combination treatment using KIRA8 as an IRE1α-inhibitor and Ceapin-A7 as an inhibitor against ATF6. RESULTS: The unfolded protein response (UPR) was identified as a pathway highly expressed in radioresistant cell lines. Using the IRE1α-inhibitor KIRA8 or the ATF6-inhibitor Ceapin-A7 in combination with radiation, a radiosensitizing effect was observed in radioresistant cell lines, but no substantial alteration of the radioresponse in radiosensitive cell lines. Mechanistically, increased apoptosis by KIRA8 in combination with radiation and a cell cycle arrest in the G1 phase after ATF6 inhibition and radiation have been observed in radioresistant cell lines. CONCLUSION: So, our data show evidence that the UPR is involved in radioresistance of PDAC. Increased apoptosis and a G1 cell cycle arrest seem to be responsible for the radiosensitizing effect of UPR inhibition. These findings are supportive for developing novel combination treatment concepts in PDAC to overcome radioresistance.


Subject(s)
Benzenesulfonamides , Carcinoma, Pancreatic Ductal , Naphthalenes , Pancreatic Neoplasms , Radiation-Sensitizing Agents , Humans , Animals , Mice , Endoribonucleases/genetics , Endoribonucleases/metabolism , Endoribonucleases/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/pharmacology , Cell Line, Tumor , Pancreatic Neoplasms/radiotherapy , Carcinoma, Pancreatic Ductal/radiotherapy , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Unfolded Protein Response , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Apoptosis , Cell Proliferation
16.
ACS Nano ; 17(24): 25147-25156, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38063344

ABSTRACT

X-ray-induced radiodynamic therapy (RDT) that can significantly reduce radiation dose with an improved anticancer effect has emerged as an attractive and promising therapeutic modality for tumors. However, it is highly significant to develop safe and efficient radiosensitizing agents for tumor radiation therapy. Herein, we present a smart nanotheranostic system FA-Au-CH that consists of gold nanoradiosensitizers, photosensitizer chlorin e6 (Ce6), and folic acid (FA) as a folate-receptor-targeting ligand for improved tumor specificity. FA-Au-CH nanoparticles have been demonstrated to be able to simultaneously serve as radiosensitizers and RDT agents for enhanced computed tomography (CT) imaging-guided radiotherapy (RT) of colon carcinoma, owing to the strong X-ray attenuation capability of high-Z elements Au and Hf, as well as the characteristics of Hf that can transfer radiation energy to Ce6 to generate ROS from Ce6 under X-ray irradiation. The integration of RT and RDT in this study demonstrates great efficacy and offers a promising therapeutic modality for the treatment of malignant tumors.


Subject(s)
Carcinoma , Colonic Neoplasms , Photochemotherapy , Porphyrins , Radiation-Sensitizing Agents , Humans , Porphyrins/therapeutic use , Hafnium , Gold , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/radiotherapy , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Cell Line, Tumor
17.
Curr Oncol ; 30(11): 9895-9905, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37999139

ABSTRACT

Radiotherapy (RT) and electrochemotherapy (ECT) are established local treatments for cancer. While effective, both therapies have limitations, especially in treating bulky and poorly oxygenated tumors. ECT has emerged as a promising palliative treatment, raising interest in exploring its combination with RT to enhance tumor response. However, the potential benefits and challenges of combining these treatments remain unclear. A systematic review was conducted following PRISMA guidelines. PubMed, Scopus, and Cochrane libraries were searched. Studies were screened and selected based on predefined inclusion and exclusion criteria. Ten studies were included, comprising in vitro and in vivo experiments. Different tumor types were treated with ECT alone or in combination with RT. ECT plus RT demonstrated superior tumor response compared to that under single therapies or other combinations, regardless of the cytotoxic agent and RT dose. However, no study demonstrated a clear superadditive effect in cell survival curves, suggesting inconclusive evidence of specific ECT-induced radiosensitization. Toxicity data were limited. In conclusion, the combination of ECT and RT consistently improved tumor response compared to that with individual therapies, supporting the potential benefit of their combination. However, evidence for a specific ECT-induced radiosensitization effect is currently lacking. Additional investigations are necessary to elucidate the potential benefits of this combination therapy.


Subject(s)
Antineoplastic Agents , Electrochemotherapy , Neoplasms , Radiation-Sensitizing Agents , Humans , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/radiotherapy , Antineoplastic Agents/therapeutic use , Palliative Care
18.
Nat Commun ; 14(1): 6187, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37794000

ABSTRACT

Gadolinium (Gd3+)-coordinated texaphyrin (Gd-Tex) is a promising radiosensitizer that entered clinical trials, but temporarily fails largely due to insufficient radiosensitization efficacy. Little attention has been given to using nanovesicles to improve its efficacy. Herein, Gd-Tex is transformed into building blocks "Gd-Tex-lipids" to self-assemble nanovesicles called Gd-nanotexaphyrins (Gd-NTs), realizing high density packing of Gd-Tex in a single nanovesicle and achieving high Gd-Tex accumulation in tumors. To elucidate the impact of O2 concentration on Gd-Tex radiosensitization, myoglobin (Mb) is loaded into Gd-NTs (Mb@Gd-NTs), resulting in efficient relief of tumor hypoxia and significant enhancement of Gd-Tex radiosensitization, eventually inducing the obvious long-term antitumor immune memory to inhibit tumor recurrence. In addition to Gd3+, the versatile Mb@Gd-NTs can also chelate 177Lu3+ (Mb@177Lu/Gd-NTs), enabling SPECT/MRI dual-modality imaging for accurately monitoring drug delivery in real-time. This "one-for-all" nanoplatform with the capability of chelating various trivalent metal ions exhibits broad clinical application prospects in imaging-guided radiosensitization therapy.


Subject(s)
Neoplasms , Radiation-Sensitizing Agents , Humans , Gadolinium , Myoglobin , Oxygen , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Magnetic Resonance Imaging
19.
Int J Mol Sci ; 24(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37686211

ABSTRACT

This paper presents an assessment of nuclear reaction yields of protons, α-particles, and neutrons in human tissue-equivalentmaterial in proton therapy using a simulation with Geant 4. In this study, we also check an enhancement of nuclear reactions due to the presence of Bi, Au, 11B, and 10B radiosensitizer nanoparticles. We demonstrate that a proton beam induces a noticeable amount of nuclear reactions in the tissue. Nevertheless, the enhancement of nuclear reaction products due to radiosensitizer nanoparticles is found to be negligible.


Subject(s)
Nanoparticles , Neoplasms , Radiation-Sensitizing Agents , Humans , Protons , Neoplasms/radiotherapy , Alpha Particles , Computer Simulation , Radiation-Sensitizing Agents/therapeutic use
20.
Future Oncol ; 19(27): 1841-1851, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37753702

ABSTRACT

For patients with localized pancreatic cancer with minimal vascular involvement, optimal survivability requires a multidisciplinary approach of surgical resection and systemic chemotherapy. FOLFIRINOX is a combination chemotherapy regimen that offers promising results in the perioperative and metastatic settings; however, it can cause significant adverse effects. Such toxicity can negatively impact some patients, resulting in chemotherapy discontinuation or surgical unsuitability. In an effort to reduce toxicities and optimize outcomes, this investigation explores the safety and feasibility of substituting liposomal irinotecan (nal-IRI) for nonliposomal irinotecan to improve tumor drug delivery and potentially reduce toxicity. This regimen, NALIRIFOX, has the potential to be both safer and more effective when administered in the preoperative setting.


For patients with pancreatic cancer with little to no cancer near the blood vessels, the best life expectancy usually requires surgery and chemotherapy. FOLFIRINOX is a chemotherapy medicine that offers promising results for both patients getting surgery and for patients with widespread disease. However, it can cause harmful side effects. The side effects can be so bad that the chemotherapy has to be stopped or that surgery is no longer possible. In order to reduce the harmful side effects and improve outcomes, this investigation looks into the safety and practicality of using a different version of one of the medicines. The different version hopes to improve drug delivery and reduce harmful side effects. This regimen, NALIRIFOX, can be safer and more effective in patients awaiting surgery. Clinical Trial Registration: UF-STO-PANC-004 (NCT03483038) (ClinicalTrials.gov).


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Radiation-Sensitizing Agents , Humans , Irinotecan/therapeutic use , Pancreatic Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Oxaliplatin/therapeutic use , Adenocarcinoma/pathology , Neoadjuvant Therapy/methods , Fluorouracil/adverse effects , Leucovorin/adverse effects , Radiation-Sensitizing Agents/therapeutic use , Clinical Trials, Phase II as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...