Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
1.
Cell Rep ; 43(5): 114179, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38691455

ABSTRACT

Plant pathogens manipulate host development, facilitating colonization and proliferation. Ralstonia solanacearum is a soil-borne bacterial pathogen that penetrates roots and colonizes plants through the vascular system, causing wilting and death. Here, we find that RipAC, an effector protein from R. solanacearum, alters root development in Arabidopsis, promoting the formation of lateral roots and root hairs. RipAC interacts with CELLULOSE SYNTHASE (CESA)-INTERACTIVE PROTEIN 1 (CSI1), which regulates the activity of CESA complexes at the plasma membrane. RipAC disrupts CESA-CSI1 interaction, leading to a reduction in cellulose content, root developmental alterations, and a promotion of bacterial pathogenicity. We find that CSI1 also associates with the receptor kinase FERONIA, forming a complex that negatively regulates immunity in roots; this interaction, however, is not affected by RipAC. Our work reveals a bacterial virulence strategy that selectively affects the activities of a host target, promoting anatomical alterations that facilitate infection without causing activation of immunity.


Subject(s)
Arabidopsis , Cell Wall , Plant Diseases , Plant Roots , Ralstonia solanacearum , Plant Roots/microbiology , Plant Roots/growth & development , Arabidopsis/microbiology , Arabidopsis/growth & development , Arabidopsis/metabolism , Ralstonia solanacearum/pathogenicity , Ralstonia solanacearum/growth & development , Ralstonia solanacearum/metabolism , Plant Diseases/microbiology , Cell Wall/metabolism , Arabidopsis Proteins/metabolism , Bacterial Proteins/metabolism , Soil Microbiology , Glucosyltransferases/metabolism
2.
Pestic Biochem Physiol ; 198: 105754, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225096

ABSTRACT

Ralstonia solanacearum (R. solanacearum) is one of the most devastating pathogens in terms of losses in agricultural production. Bentonite (Bent) is a promising synergistic agent used in development of effective and environmentally friendly pesticides against plant disease. However, the synergistic mechanism of Bent nanoclays with benzothiazolinone (BIT) against R. solanacearum is unknown. In this work, acid-functionalized porous Bent and cetyltrimethylammonium bromide (CTAB) were employed as the core nanoclays, and BIT was loaded into the clay to form BIT-loaded CT-Bent (BIT@CT-Bent) for the control of bacterial wilt disease. BIT@CT-Bent exhibited pH-responsive release behavior that fit the Fickian diffusion model, rapidly releasing BIT in an acidic environment (pH = 5.5). The antibacterial effect of BIT@CT-Bent was approximately 4 times greater than that of the commercial product BIT, and its biotoxicity was much lower than that of BIT under the same conditions. Interestingly, R. solanacearum attracted BIT@CT-Bent into the nanocomposites and induced cytoplasmic leakage and changes in membrane permeability, indicating an efficient and synergistic bactericidal effect that rapidly reduced bacterial density. In addition, BIT@CT-Bent significantly inhibited R. solanacearum biofilm formation and swimming activity, by suppressing the expression of phcA, solR and vsrC. Indeed, exogenous application of BIT@CT-Bent significantly suppressed the virulence of R. solanacearum on tobacco plants, with control effect of 75.48%, 72.08% and 66.08% at 9, 11 and 13 days after inoculation, respectively. This study highlights the potential of using BIT@CT-Bent as an effective, eco-friendly bactericide to control bacterial wilt diseases and for the development of sustainable crop protection strategies.


Subject(s)
Bentonite , Ralstonia solanacearum , Bentonite/pharmacology , Bentonite/metabolism , Anti-Bacterial Agents/pharmacology , Virulence , Hydrogen-Ion Concentration , Ralstonia solanacearum/metabolism , Plant Diseases/prevention & control , Plant Diseases/microbiology
3.
Plant Biotechnol J ; 22(3): 602-616, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37870975

ABSTRACT

Ralstonia solanacearum, a species complex of bacterial plant pathogens that causes bacterial wilt, comprises four phylotypes that evolved when a founder population was split during the continental drift ~180 million years ago. Each phylotype contains strains with RipTAL proteins structurally related to transcription activator-like (TAL) effectors from the bacterial pathogen Xanthomonas. RipTALs have evolved in geographically separated phylotypes and therefore differ in sequence and potentially functionality. Earlier work has shown that phylotype I RipTAL Brg11 targets a 17-nucleotide effector binding element (EBE) and transcriptionally activates the downstream arginine decarboxylase (ADC) gene. The predicted DNA binding preferences of Brg11 and RipTALs from other phylotypes are similar, suggesting that most, if not all, RipTALs target the Brg11-EBE motif and activate downstream ADC genes. Here we show that not only phylotype I RipTAL Brg11 but also RipTALs from other phylotypes activate host genes when preceded by the Brg11-EBE motif. Furthermore, we show that Brg11 and RipTALs from other phylotypes induce the same quantitative changes of ADC-dependent plant metabolites, suggesting that most, if not all, RipTALs induce functionally equivalent changes in host cells. Finally, we report transgenic tobacco lines in which the RipTAL-binding motif Brg11-EBE mediates RipTAL-dependent transcription of the executor-type resistance (R) gene Bs4C from pepper, thereby conferring resistance to RipTAL-delivering R. solanacearum strains. Our results suggest that cell death-inducing executor-type R genes, preceded by the RipTAL-binding motif Brg11-EBE, could be used to genetically engineer broad-spectrum bacterial wilt resistance in crop plants without any apparent fitness penalty.


Subject(s)
Ralstonia solanacearum , Ralstonia solanacearum/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plants/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
4.
PLoS Pathog ; 19(12): e1011888, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38113281

ABSTRACT

Bacterial pathogens exhibit a remarkable ability to persist and thrive in diverse ecological niches. Understanding the mechanisms enabling their transition between habitats is crucial to control dissemination and potential disease outbreaks. Here, we use Ralstonia solanacearum, the causing agent of the bacterial wilt disease, as a model to investigate pathogen adaptation to water and soil, two environments that act as bacterial reservoirs, and compare this information with gene expression in planta. Gene expression in water resembled that observed during late xylem colonization, with an intriguing induction of the type 3 secretion system (T3SS). Alkaline pH and nutrient scarcity-conditions also encountered during late infection stages-were identified as the triggers for this T3SS induction. In the soil environment, R. solanacearum upregulated stress-responses and genes for the use of alternate carbon sources, such as phenylacetate catabolism and the glyoxylate cycle, and downregulated virulence-associated genes. We proved through gain- and loss-of-function experiments that genes associated with the oxidative stress response, such as the regulator OxyR and the catalase KatG, are key for bacterial survival in soil, as their deletion cause a decrease in culturability associated with a premature induction of the viable but non culturable state (VBNC). This work identifies essential factors necessary for R. solanacearum to complete its life cycle and is the first comprehensive gene expression analysis in all environments occupied by a bacterial plant pathogen, providing valuable insights into its biology and adaptation to unexplored habitats.


Subject(s)
Ralstonia solanacearum , Solanum lycopersicum , Animals , Life Cycle Stages , Soil , Water/metabolism , Gene Expression , Plant Diseases/genetics , Plant Diseases/microbiology , Ralstonia solanacearum/genetics , Ralstonia solanacearum/metabolism
5.
Nat Commun ; 14(1): 7654, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996405

ABSTRACT

Previous studies have demonstrated that bis-(3',5')-cyclic diguanosine monophosphate (bis-3',5'-c-di-GMP) is a ubiquitous second messenger employed by bacteria. Here, we report that 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) controls the important biological functions, quorum sensing (QS) signaling systems and virulence in Ralstonia solanacearum through the transcriptional regulator RSp0980. This signal specifically binds to RSp0980 with high affinity and thus abolishes the interaction between RSp0980 and the promoters of target genes. In-frame deletion of RSp0334, which contains an evolved GGDEF domain with a LLARLGGDQF motif required to catalyze 2',3'-cGMP to (2',5')(3',5')-cyclic diguanosine monophosphate (2',3'-c-di-GMP), altered the abovementioned important phenotypes through increasing the intracellular 2',3'-cGMP levels. Furthermore, we found that 2',3'-cGMP, its receptor and the evolved GGDEF domain with a LLARLGGDEF motif also exist in the human pathogen Salmonella typhimurium. Together, our work provides insights into the unusual function of the GGDEF domain of RSp0334 and the special regulatory mechanism of 2',3'-cGMP signal in bacteria.


Subject(s)
Guanosine Monophosphate , Ralstonia solanacearum , Humans , Virulence , Ralstonia solanacearum/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic GMP/metabolism , Second Messenger Systems , Gene Expression Regulation, Bacterial , Biofilms
6.
Int J Biol Macromol ; 253(Pt 3): 126891, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37709224

ABSTRACT

Ralstonia solanacearum, a bacterial plant pathogen, poses a significant threat to tomato (Solanum lycopersicum) production through destructive wilt disease. While noncoding RNA has emerged as a crucial regulator in plant disease, its specific involvement in tomato bacterial wilt remains limited. Here, we conducted a comprehensive analysis of the transcriptional landscape, encompassing both mRNAs and noncoding RNAs, in a tomato resistant line ('ZRS_7') and a susceptible line ('HTY_9') upon R. solanacearum inoculation using high-throughput RNA sequencing. Differential expression (DE) analysis revealed significant alterations in 7506 mRNAs, 997 lncRNAs, and 69 miRNAs between 'ZRS_7' and 'HTY_9' after pathogen exposure. Notably, 4548 mRNAs, 367 lncRNAs, and 26 miRNAs exhibited genotype-specific responses to R. solanacearum inoculation. GO and KEGG pathway analyses unveiled the potential involvement of noncoding RNAs in the response to bacterial wilt disease, targeting receptor-like kinases, cell wall-related genes, glutamate decarboxylases, and other key pathways. Furthermore, we constructed a comprehensive competing endogenous RNA (ceRNA) network incorporating 13 DE-miRNAs, 30 DE-lncRNAs, and 127 DEGs, providing insights into their potential contributions to the response against bacterial inoculation. Importantly, the characterization of possible endogenous target mimics (eTMs) of Sly-miR482e-3p via VIGS technology demonstrated the significant impact of eTM482e-3p-1 silencing on tomato's sensitivity to R. solanacearum. These findings support the existence of an eTM482e-3p-1-Sly-miR482e-3p-NBS-LRRs network in regulating tomato's response to the pathogen. Collectively, our findings shed light on the intricate interactions among lncRNAs, miRNAs, and mRNAs as underlying factors in conferring resistance to R. solanacearum in tomato.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Ralstonia solanacearum , Solanum lycopersicum , Ralstonia solanacearum/genetics , Ralstonia solanacearum/metabolism , Solanum lycopersicum/genetics , Transcriptome , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology
7.
Nat Commun ; 14(1): 4497, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495619

ABSTRACT

Prebiotics are compounds that selectively stimulate the growth and activity of beneficial microorganisms. The use of prebiotics is a well-established strategy for managing human gut health. This concept can also be extended to plants where plant rhizosphere microbiomes can improve the nutrient acquisition and disease resistance. However, we lack effective strategies for choosing metabolites to elicit the desired impacts on plant health. In this study, we target the rhizosphere of tomato (Solanum lycopersicum) suffering from wilt disease (caused by Ralstonia solanacearum) as source for potential prebiotic metabolites. We identify metabolites (ribose, lactic acid, xylose, mannose, maltose, gluconolactone, and ribitol) exclusively used by soil commensal bacteria (not positively correlated with R. solanacearum) but not efficiently used by the pathogen in vitro. Metabolites application in the soil with 1 µmol g-1 soil effectively protects tomato and other Solanaceae crops, pepper (Capsicum annuum) and eggplant (Solanum melongena), from pathogen invasion. After adding prebiotics, the rhizosphere soil microbiome exhibits enrichment of pathways related to carbon metabolism and autotoxin degradation, which were driven by commensal microbes. Collectively, we propose a novel pathway for mining metabolites from the rhizosphere soil and their use as prebiotics to help control soil-borne bacterial wilt diseases.


Subject(s)
Ralstonia solanacearum , Solanum lycopersicum , Solanum melongena , Humans , Prebiotics , Rhizosphere , Soil , Plant Diseases/prevention & control , Plant Diseases/microbiology , Bacteria , Ralstonia solanacearum/metabolism
8.
Nat Commun ; 14(1): 4477, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37491353

ABSTRACT

High temperature and high humidity (HTHH) conditions increase plant susceptibility to a variety of diseases, including bacterial wilt in solanaceous plants. Some solanaceous plant cultivars have evolved mechanisms to activate HTHH-specific immunity to cope with bacterial wilt disease. However, the underlying mechanisms remain poorly understood. Here we find that CaKAN3 and CaHSF8 upregulate and physically interact with each other in nuclei under HTHH conditions without inoculation or early after inoculation with R. solanacearum in pepper. Consequently, CaKAN3 and CaHSF8 synergistically confer immunity against R. solanacearum via activating a subset of NLRs which initiates immune signaling upon perception of unidentified pathogen effectors. Intriguingly, when HTHH conditions are prolonged without pathogen attack or the temperature goes higher, CaHSF8 no longer interacts with CaKAN3. Instead, it directly upregulates a subset of HSP genes thus activating thermotolerance. Our findings highlight mechanisms controlling context-specific activation of high-temperature-specific pepper immunity and thermotolerance mediated by differential CaKAN3-CaHSF8 associations.


Subject(s)
Plant Growth Regulators , Ralstonia solanacearum , Humans , Plant Growth Regulators/genetics , Disease Resistance/genetics , Hot Temperature , Humidity , Temperature , Plant Proteins/genetics , Plant Proteins/metabolism , Ralstonia solanacearum/metabolism , Plant Diseases/microbiology , Gene Expression Regulation, Plant
9.
Int J Mol Sci ; 24(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37373522

ABSTRACT

Ralstonia solanacearum, a pathogen causing widespread bacterial wilt disease in numerous crops, currently lacks an optimal control agent. Given the limitations of traditional chemical control methods, including the risk of engendering drug-resistant strains and environmental harm, there is a dire need for sustainable alternatives. One alternative is lysin proteins that selectively lyse bacteria without contributing to resistance development. This work explored the biocontrol potential of the LysP2110-HolP2110 system of Ralstonia solanacearum phage P2110. Bioinformatics analyses pinpointed this system as the primary phage-mediated host cell lysis mechanism. Our data suggest that LysP2110, a member of the Muraidase superfamily, requires HolP2110 for efficient bacterial lysis, presumably via translocation across the bacterial membrane. LysP2110 also exhibits broad-spectrum antibacterial activity in the presence of the outer membrane permeabilizer EDTA. Additionally, we identified HolP2110 as a distinct holin structure unique to the Ralstonia phages, underscoring its crucial role in controlling bacterial lysis through its effect on bacterial ATP levels. These findings provide valuable insights into the function of the LysP2110-HolP2110 lysis system and establish LysP2110 as a promising antimicrobial agent for biocontrol applications. This study underpins the potential of these findings in developing effective and environment-friendly biocontrol strategies against bacterial wilt and other crop diseases.


Subject(s)
Anti-Infective Agents , Bacteriophages , Ralstonia solanacearum , Ralstonia solanacearum/metabolism , Plant Diseases/prevention & control , Plant Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology
10.
Plant Commun ; 4(6): 100640, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37349986

ABSTRACT

Bacterial wilt disease caused by several Ralstonia species is one of the most destructive diseases in Solanaceae crops. Only a few functional resistance genes against bacterial wilt have been cloned to date. Here, we show that the broadly conserved type III secreted effector RipY is recognized by the Nicotiana benthamiana immune system, leading to cell death induction, induction of defense-related gene expression, and restriction of bacterial pathogen growth. Using a multiplexed virus-induced gene-silencing-based N. benthamiana nucleotide-binding and leucine-rich repeat receptor (NbNLR) library, we identified a coiled-coil (CC) nucleotide-binding and leucine-rich repeat receptor (CNL) required for recognition of RipY, which we named RESISTANCE TO RALSTONIA SOLANACEARUM RIPY (RRS-Y). Genetic complementation assays in RRS-Y-silenced plants and stable rrs-y knockout mutants demonstrated that RRS-Y is sufficient to activate RipY-induced cell death and RipY-induced immunity to Ralstonia pseudosolanacearum. RRS-Y function is dependent on the phosphate-binding loop motif of the nucleotide-binding domain but independent of the characterized signaling components ENHANCED DISEASE SUSCEPTIBILITY 1, ACTIVATED DISEASE RESISTANCE 1, and N REQUIREMENT GENE 1 and the NLR helpers NB-LRR REQUIRED FOR HR-ASSOCIATED CELL DEATH-2, -3, and -4 in N. benthamiana. We further show that RRS-Y localization at the plasma membrane is mediated by two cysteine residues in the CC domain and is required for RipY recognition. RRS-Y also broadly recognizes RipY homologs across Ralstonia species. Lastly, we show that the C-terminal region of RipY is indispensable for RRS-Y activation. Together, our findings provide an additional effector/receptor pair system to deepen our understanding of CNL activation in plants.


Subject(s)
Nicotiana , Ralstonia solanacearum , Nicotiana/microbiology , Plant Proteins/metabolism , Leucine , Disease Resistance/genetics , Ralstonia solanacearum/metabolism , Cell Membrane/metabolism , Nucleotides
11.
Plant Signal Behav ; 18(1): 2194747, 2023 12 31.
Article in English | MEDLINE | ID: mdl-36994774

ABSTRACT

Bacterial wilt caused by the soil-borne pathogen Ralstonia solanacearum is a destructive disease of tomato. Tomato cultivar Hawaii 7996 is well-known for its stable resistance against R. solanacearum. However, the resistance mechanism of Hawaii 7996 has not yet been revealed. Here, we showed that Hawaii 7996 activated root cell death response and exhibited stronger defense gene induction than the susceptible cultivar Moneymaker after R. solanacearum GMI1000 infection. By employing virus-induced gene silencing (VIGS) and CRISPR/Cas9 technologies, we found that SlNRG1-silenced and SlADR1-silenced/knockout mutant tomato partially or completely lost resistance to bacterial wilt, indicating that helper NLRs SlADR1 and SlNRG1, the key nodes of effector-triggered immunity (ETI) pathways, are required for Hawaii 7996 resistance. In addition, while SlNDR1 was dispensable for the resistance of Hawaii 7996 to R. solanacearum, SlEDS1, SlSAG101a/b, and SlPAD4 were essential for the immune signaling pathways in Hawaii 7996. Overall, our results suggested that robust resistance of Hawaii 7996 to R. solanacearum relied on the involvement of multiple conserved key nodes of the ETI signaling pathways. This study sheds light on the molecular mechanisms underlying tomato resistance to R. solanacearum and will accelerate the breeding of tomatoes resilient to diseases.


Subject(s)
Ralstonia solanacearum , Solanum lycopersicum , Ralstonia solanacearum/genetics , Ralstonia solanacearum/metabolism , Solanum lycopersicum/genetics , Hawaii , Gene Expression Profiling , Transcriptome , Plant Diseases/microbiology , Disease Resistance/genetics
12.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834682

ABSTRACT

Silicon (Si) has been shown to promote peanut growth and yield, but whether Si can enhance the resistance against peanut bacterial wilt (PBW) caused by Ralstonia solanacearum, identified as a soil-borne pathogen, is still unclear. A question regarding whether Si enhances the resistance of PBW is still unclear. Here, an in vitro R. solanacearum inoculation experiment was conducted to study the effects of Si application on the disease severity and phenotype of peanuts, as well as the microbial ecology of the rhizosphere. Results revealed that Si treatment significantly reduced the disease rate, with a decrement PBW severity of 37.50% as compared to non-Si treatment. The soil available Si (ASi) significantly increased by 13.62-44.87%, and catalase activity improved by 3.01-3.10%, which displayed obvious discrimination between non-Si and Si treatments. Furthermore, the rhizosphere soil bacterial community structures and metabolite profiles dramatically changed under Si treatment. Three significantly changed bacterial taxa were observed, which showed significant abundance under Si treatment, whereas the genus Ralstonia genus was significantly suppressed by Si. Similarly, nine differential metabolites were identified to involve into unsaturated fatty acids via a biosynthesis pathway. Significant correlations were also displayed between soil physiochemical properties and enzymes, the bacterial community, and the differential metabolites by pairwise comparisons. Overall, this study reports that Si application mediated the evolution of soil physicochemical properties, the bacterial community, and metabolite profiles in the soil rhizosphere, which significantly affects the colonization of the Ralstonia genus and provides a new theoretical basis for Si application in PBW prevention.


Subject(s)
Arachis , Ralstonia solanacearum , Arachis/genetics , Ralstonia solanacearum/metabolism , Silicon/metabolism , Soil/chemistry , Rhizosphere , Bacteria/metabolism , Plant Diseases/microbiology
13.
ACS Chem Biol ; 18(3): 572-582, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36811556

ABSTRACT

Ralstonia solanacearum species complex (RSSC) strains are plant pathogens that produce lipopeptides (ralstonins and ralstoamides) by the polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) enzyme hybrid. Recently, ralstonins were found to be key molecules in the parasitism of RSSC to other hosts, Aspergillus and Fusarium fungi. The PKS-NRPS genes of RSSC strains in the GenBank database suggest the production of additional lipopeptides, although it has not been confirmed to date. Here, we report the genome-driven and mass-spectrometry-guided discovery, isolation, and structural elucidation of ralstopeptins A and B from strain MAFF 211519. Ralstopeptins were found to be cyclic lipopeptides with two amino acid residues less than ralstonins. The partial deletion of the gene encoding PKS-NRPS obliterated the production of ralstopeptins in MAFF 211519. Bioinformatic analyses suggested possible evolutionary events of the biosynthetic genes of RSSC lipopeptides, where intragenomic recombination may have occurred within the PKS-NRPS genes, reducing the gene size. The chlamydospore-inducing activities of ralstopeptins A and B, ralstonins A and B, and ralstoamide A in the fungus Fusarium oxysporum indicated a structural preference for ralstonins. Altogether, we propose a model for the evolutionary processes that contribute to the chemical diversity of RSSC lipopeptides and its relation to the endoparasitism of RSSC in fungi.


Subject(s)
Ralstonia solanacearum , Ralstonia solanacearum/metabolism , Fungi/metabolism , Aspergillus/metabolism , Peptide Synthases/genetics , Peptide Synthases/metabolism , Lipopeptides/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism
14.
J Plant Res ; 136(1): 19-31, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36427093

ABSTRACT

The soil-borne Gram-negative ß-proteobacterium Ralstonia solanacearum species complex (RSSC) infects tomato roots through the wounds where secondary roots emerge, infecting xylem vessels. Because it is difficult to observe the behavior of RSSC by a fluorescence-based microscopic approach at high magnification, we have little information on its behavior at the root apexes in tomato roots. To analyze the infection route of a strain of phylotype I of RSSC, R. pseudosolanacearum strain OE1-1, which invades tomato roots through the root apexes, we first developed an in vitro pathosystem using 4 day-old-tomato seedlings without secondary roots co-incubated with the strain OE1-1. The microscopic observation of toluidine blue-stained longitudinal semi-thin resin sections of tomato roots allowed to detect attachment of the strain OE1-1 to surfaces of the meristematic and elongation zones in tomato roots. We then observed colonization of OE1-1 in intercellular spaces between epidermis and cortex in the elongation zone, and a detached epidermis in the elongation zone. Furthermore, we observed cortical and endodermal cells without a nucleus and with the cell membrane pulling away from the cell wall. The strain OE1-1 next invaded cell wall-degenerated cortical cells and formed mushroom-shaped biofilms to progress through intercellular spaces of the cortex and endodermis, infecting pericycle cells and xylem vessels. The deletion of egl encoding ß-1,4-endoglucanase, which is one of quorum sensing (QS)-inducible plant cell wall-degrading enzymes (PCDWEs) secreted via the type II secretion system (T2SS) led to a reduced infectivity in cortical cells. Furthermore, the QS-deficient and T2SS-deficient mutants lost their infectivity in cortical cells and the following infection in xylem vessels. Taking together, infection of OE1-1, which attaches to surfaces of the meristematic and elongation zones, in cortical cells of the elongation zone in tomato roots, dependently on QS-inducible PCDWEs secreted via the T2SS, leads to its subsequent infection in xylem vessels.


Subject(s)
Ralstonia solanacearum , Solanum lycopersicum , Virulence , Quorum Sensing , Ralstonia solanacearum/metabolism , Plant Diseases
15.
J Genet Genomics ; 50(5): 341-352, 2023 05.
Article in English | MEDLINE | ID: mdl-35597445

ABSTRACT

Ralstonia solanacearum is a widespread plant bacterial pathogen that can launch a range of type III effectors (T3Es) to cause disease. In this study, we isolate a pathogenic R. solanacearum strain named P380 from tomato rhizosphere. Five out of 12 core T3Es of strain P380 are introduced into Pseudomonas syringae DC3000D36E separately to determine their functions in interacting with plants. DC3000D36E that harbors each effector suppresses FliC-triggered Pti5 and ACRE31 expression, ROS burst, and callose deposition. RipAE, RipU, and RipW elicit cell death as well as upregulate the MAPK cascades in Nicotiana benthamiana. The derivatives RipC1ΔDXDX(T/V) and RipWΔDKXXQ but not RipAEK310R fail to suppress ROS burst. Moreover, RipAEK310R and RipWΔDKXXQ retain the cell death elicitation ability. RipAE and RipW are associated with salicylic acid and jasmonic acid pathways, respectively. RipAE and RipAQ significantly promote the propagation of DC3000D36E in plants. The five core T3Es localize in diverse subcellular organelles of nucleus, plasma membrane, endoplasmic reticulum, and Golgi network. The suppressor of G2 allele of Skp1 is required for RipAE but not RipU-triggered cell death in N. benthamiana. These results indicate that the core T3Es in R. solanacearum play diverse roles in plant-pathogen interactions.


Subject(s)
Ralstonia solanacearum , Ralstonia solanacearum/metabolism , Reactive Oxygen Species/metabolism , Bacterial Proteins/metabolism , Plants/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/microbiology , Plant Diseases/microbiology
16.
Int J Mol Sci ; 23(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36077125

ABSTRACT

ROPs (Rho-like GTPases from plants) belong to the Rho-GTPase subfamily and serve as molecular switches for regulating diverse cellular events, including morphogenesis and stress responses. However, the immune functions of ROPs in Solanum lycopersicum Linn. (tomato) is still largely unclear. The tomato genome contains nine genes encoding ROP-type small GTPase family proteins (namely SlRop1-9) that fall into five distinct groups as revealed by phylogenetic tree. We studied the subcellular localization and immune response induction of nine SlRops by using a transient overexpression system in Nicotiana benthamiana Domin. Except for SlRop1 and SlRop3, which are solely localized at the plasma membrane, most of the remaining ROPs have additional nuclear and/or cytoplasmic distributions. We also revealed that the number of basic residues in the polybasic region of ROPs tends to be correlated with their membrane accumulation. Though nine SlRops are highly conserved at the RHO (Ras Homology) domains, only seven constitutively active forms of SlRops were able to trigger hypersensitive responses. Furthermore, we analyzed the tissue-specific expression patterns of nine ROPs and found that the expression levels of SlRop3, 4 and 6 were generally high in different tissues. The expression levels of SlRop1, 2 and 7 significantly decreased in tomato seedlings after infection with Ralstonia solanacearum (E.F. Smith) Yabuuchi et al. (GMI1000); the others did not respond. Infection assays among nine ROPs showed that SlRop3 and SlRop4 might be positive regulators of tomato bacterial wilt disease resistance, whereas the rest of the ROPs may not contribute to defense. Our study provides systematic evidence of tomato Rho-related small GTPases for localization, immune response, and disease resistance.


Subject(s)
Monomeric GTP-Binding Proteins , Ralstonia solanacearum , Solanum lycopersicum , Disease Resistance/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Monomeric GTP-Binding Proteins/genetics , Phylogeny , Ralstonia solanacearum/metabolism , rho GTP-Binding Proteins/metabolism
17.
Mol Biol Rep ; 49(12): 11503-11514, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36097128

ABSTRACT

BACKGROUND: Tobacco is an important economic crop, but the quality and yield have been severely impaired by bacterial wilt disease (BWD) caused by Ralstonia solanacearum. METHODS AND RESULTS: Here, we describe a transgenic approach to prevent BWD in tobacco plants. A new root-specific promoter of an NtR12 gene was successfully cloned. The NtR12 promoter drove GUS reporter gene expression to a high level in roots but to less extent in stems, and no significant expression was detected in leaves. The Ribosome-inactivating proteins (RIP) gene from Momordica charantia was also cloned, and its ability to inhibit Ralstonia solanacearum was evaluated using RIP protein produced by the prokaryotic expression system. The RIP gene was constructed downstream of the NtR12 promoter and transformed into the tobacco cultivar "Cuibi No. 1" (CB-1), resulting in many descendants. The resistance against BWD was significantly improved in transgenic tobacco lines expressing NtR12::RIP. CONCLUSION: This study confirms that the RIP gene confers resistance to BWD and the NtR12 as a new promoter for its specific expression in root and stem. Our findings pave a novel avenue for transgenic engineering to prevent the harmful impact of diseases and pests in roots and stems.


Subject(s)
Nicotiana , Ralstonia solanacearum , Nicotiana/metabolism , Ribosome Inactivating Proteins/genetics , Ribosome Inactivating Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Ralstonia solanacearum/genetics , Ralstonia solanacearum/metabolism , Promoter Regions, Genetic/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Disease Resistance/genetics
18.
Mol Genet Genomics ; 297(4): 1081-1100, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35616707

ABSTRACT

Eucalyptus urophylla is an economically important tree species that widely planted in tropical and sub-tropical areas around the world, which suffers significant losses due to Ralstonia solanacearum. However, little is known about the molecular mechanism of pathogen-response of Eucalyptus. We collected the vascular tissues of a E. urophylla clone infected by R. solanacearum in the laboratory, and combined transcriptome and metabolome analysis to investigate the defense responses of Eucalyptus. A total of 11 flavonoids that differentially accumulated at the first stage or a later stage after infection. The phenylpropanoid of p-coumaraldehyde, the two alkaloids trigonelline and DL-ephedrine, two types of traditional Chinese medicine with patchouli alcohol and 3-dihydrocadambine, and the amino acid phenylalanine were differentially accumulated after infection, which could be biomarkers indicating a response to R. solanacearum. Differentially expressed genes involved in plant hormone signal transduction, phenylpropanoids, flavonoids, mitogen-activated protein kinase (MAPK) signaling, and amino acid metabolism were activated at the first stage of infection or a later stage, indicating that they may participate in the defense against infection. This study is expected to deliver several insights into the molecular mechanism in response to pathogens in E. urophylla, and the findings have far-reaching implications in the control of E. urophylla pathogens.


Subject(s)
Eucalyptus , Ralstonia solanacearum , Amino Acids/genetics , Clone Cells/metabolism , Eucalyptus/genetics , Flavonoids/metabolism , Metabolome/genetics , Plant Diseases/genetics , Ralstonia solanacearum/genetics , Ralstonia solanacearum/metabolism , Transcriptome/genetics
19.
Int J Mol Sci ; 23(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35269798

ABSTRACT

CabZIP63 and CaWRKY40 were previously found to be shared in the pepper defense response to high temperature stress (HTS) and to Ralstonia solanacearum inoculation (RSI), forming a transcriptional cascade. However, how they activate the two distinct defense responses is not fully understood. Herein, using a revised genetic approach, we functionally characterized CabZIP23 in the CabZIP63-CaWRKY40 cascade and its context specific pepper immunity activation against RSI by interaction with CabZIP63. CabZIP23 was originally found by immunoprecipitation-mass spectrometry to be an interacting protein of CabZIP63-GFP; it was upregulated by RSI and acted positively in pepper immunity against RSI by virus induced gene silencing in pepper plants, and transient overexpression in Nicotiana benthamiana plants. By chromatin immunoprecipitation (ChIP)-qPCR and electrophoresis mobility shift assay (EMSA), CabZIP23 was found to be directly regulated by CaWRKY40, and CabZIP63 was directly regulated by CabZIP23, forming a positive feedback loop. CabZIP23-CabZIP63 interaction was confirmed by co-immunoprecipitation (CoIP) and bimolecular fluorescent complimentary (BiFC) assays, which promoted CabZIP63 binding immunity related target genes, including CaPR1, CaNPR1 and CaWRKY40, thereby enhancing pepper immunity against RSI, but not affecting the expression of thermotolerance related CaHSP24. All these data appear to show that CabZIP23 integrates in the CabZIP63-CaWRKY40 cascade and the context specifically turns it on mounting pepper immunity against RSI.


Subject(s)
Capsicum , Ralstonia solanacearum , Capsicum/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Gene Silencing , Plant Diseases/genetics , Plant Growth Regulators/metabolism , Plant Immunity/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Ralstonia solanacearum/metabolism
20.
PLoS Genet ; 18(2): e1010023, 2022 02.
Article in English | MEDLINE | ID: mdl-35226664

ABSTRACT

Pepper (Capsicum annuum) responds differently to high temperature stress (HTS) and Ralstonia solanacearum infection (RSI) but employs some shared transcription factors (TFs), such as CabZIP63 and CaWRKY40, in both cases. How the plant activates and balances these distinct responses, however, was unclear. Here, we show that the protein CaSWC4 interacts with CaRUVBL2 and CaTAF14b and they all act positively in pepper response to RSI and thermotolerance. CaSWC4 activates chromatin of immunity or thermotolerance related target genes of CaWRKY40 or CabZIP63 by promoting deposition of H2A.Z, H3K9ac and H4K5ac, simultaneously recruits CabZIP63 and CaWRKY40 through physical interaction and brings them to their targets (immunity- or thermotolerance-related genes) via binding AT-rich DNA element. The above process relies on the recruitment of CaRUVBL2 and TAF14 by CaSWC4 via physical interaction, which occurs at loci of immunity related target genes only when the plants are challenged with RSI, and at loci of thermotolerance related target genes only upon HTS. Collectively, our data suggest that CaSWC4 regulates rapid, accurate responses to both RSI and HTS by modulating chromatin of specific target genes opening and recruiting the TFs, CaRUVBL2 and CaTAF14b to the specific target genes, thereby helping achieve the balance between immunity and thermotolerance.


Subject(s)
Capsicum , Ralstonia solanacearum , Thermotolerance , Capsicum/genetics , Chromatin/genetics , Chromatin/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Gene Silencing , Plant Diseases/genetics , Plant Growth Regulators/metabolism , Plant Immunity/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Ralstonia solanacearum/genetics , Ralstonia solanacearum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...