Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 19389, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39169068

ABSTRACT

As the world moves toward a green economy and sustainable agriculture, bacterial viruses or bacteriophages (phages) become attractive biocontrol agents for controlling crop diseases. Effective utilization of phages in farms requires integrated knowledge of crops, pathogens, phages, and surroundings. Phages must encounter environmental fluctuations, including temperature, and must remain infectious for successful bacteria lysis. This work studied a soilborne RSJ2 phage discovered in Thailand, which can eliminate Ralstonia solanacearum, causing bacterial wilt disease in chili. We investigated how phage infectivity and nanomechanics responded to thermal changes. The plaque-based assay showed that the infectivity of the RSJ2 phage was stable within 24-40 °C, an average temperature fluctuation in tropical regions. The structural examination also showed that the phage remained intact. The nanomechanical property of the phage was inspected by the atomic force microscopy-based nanoindentation. The result revealed that the phage stiffness within 24-40 °C was statistically similar (0.05-0.06 N/m). Upon heating at 40 °C for 1, 5, and 10 h and resting at 25 °C, the stiffness of the phage particles increased to 0.09-0.11 N/m (54-83% increase). The stiffness results suggest structural adaptation of the protein subunits as a response to thermal alteration. The study exhibits that the phage structure is highly dynamic and can nanomechanically respond to varying temperatures. The phage stiffness may reveal insight into phage adaptation to environmental factors. Equipped with the knowledge of phage infectivity, structure, and nanomechanics, we can design practical guidelines for effective phage usage in farming and propelling green and safe agriculture.


Subject(s)
Bacteriophages , Bacteriophages/physiology , Temperature , Ralstonia solanacearum/virology , Microscopy, Atomic Force , Thailand
2.
mBio ; 15(8): e0061924, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39012150

ABSTRACT

Plant bacterial wilt caused by Ralstonia solanacearum results in huge losses. Accordingly, developing an effective control method for this disease is urgently required. Filamentous phages, which do not lyse host bacteria and exert minimal burden, offer a potential biocontrol solution. A filamentous phage RSCq that infects R. solanacearum was isolated in this study through genome mining. We constructed engineered filamentous phages based on RSCq by employing our proposed approach with wide applicability to non-model phages, enabling the exogenous genes delivery into bacterial cells. CRISPR-AsCas12f1 is a miniature class 2 type V-F CRISPR-Cas system. A CRISPR-AsCas12f1-based gene editing system that targets the key virulence regulator gene hrpB was developed, generating the engineered phage RSCqCRISPR-Cas. Similar to the Greek soldiers in the Trojan Horse, our findings demonstrated that the engineered phage-delivered CRISPR-Cas system could disarm the key "weapon," hrpB, of R. solanacearum, in medium and plants. Remarkably, pretreatment with RSCqCRISPR-Cas significantly controlled tobacco bacterial wilt, highlighting the potential of engineered filamentous phages as promising biocontrol agents against plant bacterial diseases.IMPORTANCEBacterial disease, one of the major plant diseases, causes huge food and economic losses. Phage therapy, an environmentally friendly control strategy, has been frequently reported in plant bacterial disease control. However, host specificity, sensitivity to ultraviolet light and certain conditions, and bacterial resistance to phage impede the widespread application of phage therapy in crop production. Filamentous phages, which do not lyse host bacteria and exert minimal burden, offer a potential solution to overcome the limitations of lytic phage biocontrol. This study developed a genetic engineering approach with wide applicability to non-model filamentous phages and proved the application possibility of engineered phage-based gene delivery in plant bacterial disease biocontrol for the first.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Plant Diseases , Ralstonia solanacearum , Ralstonia solanacearum/genetics , Ralstonia solanacearum/virology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Gene Editing/methods , Inovirus/genetics , Inovirus/physiology , Nicotiana/microbiology
3.
mBio ; 15(6): e0301623, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38780276

ABSTRACT

Bacteriophages, viruses that specifically target plant pathogenic bacteria, have emerged as a promising alternative to traditional agrochemicals. However, it remains unclear how phages should be applied to achieve efficient pathogen biocontrol and to what extent their efficacy is shaped by indirect interactions with the resident microbiota. Here, we tested if the phage biocontrol efficacy of Ralstonia solanacearum phytopathogenic bacterium can be improved by increasing the phage cocktail application frequency and if the phage efficacy is affected by pathogen-suppressing bacteria already present in the rhizosphere. We find that increasing phage application frequency improves R. solanacearum density control, leading to a clear reduction in bacterial wilt disease in both greenhouse and field experiments with tomato. The high phage application frequency also increased the diversity of resident rhizosphere microbiota and enriched several bacterial taxa that were associated with the reduction in pathogen densities. Interestingly, these taxa often belonged to Actinobacteria known for antibiotics production and soil suppressiveness. To test if they could have had secondary effects on R. solanacearum biocontrol, we isolated Actinobacteria from Nocardia and Streptomyces genera and tested their suppressiveness to the pathogen in vitro and in planta. We found that these taxa could clearly inhibit R. solanacearum growth and constrain bacterial wilt disease, especially when combined with the phage cocktail. Together, our findings unravel an undiscovered benefit of phage therapy, where phages trigger a second line of defense by the pathogen-suppressing bacteria that already exist in resident microbial communities. IMPORTANCE: Ralstonia solanacearum is a highly destructive plant-pathogenic bacterium with the ability to cause bacterial wilt in several crucial crop plants. Given the limitations of conventional chemical control methods, the use of bacterial viruses (phages) has been explored as an alternative biological control strategy. In this study, we show that increasing the phage application frequency can improve the density control of R. solanacearum, leading to a significant reduction in bacterial wilt disease. Furthermore, we found that repeated phage application increased the diversity of rhizosphere microbiota and specifically enriched Actinobacterial taxa that showed synergistic pathogen suppression when combined with phages due to resource and interference competition. Together, our study unravels an undiscovered benefit of phages, where phages trigger a second line of defense by the pathogen-suppressing bacteria present in resident microbial communities. Phage therapies could, hence, potentially be tailored according to host microbiota composition to unlock the pre-existing benefits provided by resident microbiota.


Subject(s)
Bacteriophages , Microbiota , Plant Diseases , Ralstonia solanacearum , Rhizosphere , Soil Microbiology , Solanum lycopersicum , Ralstonia solanacearum/virology , Ralstonia solanacearum/physiology , Solanum lycopersicum/microbiology , Solanum lycopersicum/virology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Bacteriophages/physiology , Bacteriophages/isolation & purification , Actinobacteria/virology
4.
Phytopathology ; 114(7): 1462-1465, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38427684

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR) has been widely characterized as a defense system against phages and other invading elements in bacteria and archaea. A low percentage of Ralstonia solanacearum species complex (RSSC) strains possess the CRISPR array and the CRISPR-associated proteins (Cas) that would confer immunity against various phages. To provide a wide-range screen of the CRISPR presence in the RSSC, we analyzed 378 genomes of RSSC strains to find the CRISPR locus. We found that 20.1, 14.3, and 54.5% of the R. solanacearum, R. pseudosolanacearum, and R. syzygii strains, respectively, possess the CRISPR locus. In addition, we performed further analysis to identify the respective phages that are restricted by the CRISPR arrays. We found 252 different phages infecting different strains of the RSSC, by means of the identification of similarities between the protospacers in phages and spacers in bacteria. We compiled this information in a database with web access called CRISPRals (https://crisprals.yachaytech.edu.ec/). Additionally, we made available a number of tools to detect and identify CRISPR array and Cas genes in genomic sequences that could be uploaded by users. Finally, a matching tool to relate bacteria spacer with phage protospacer sequences is available. CRISPRals is a valuable resource for the scientific community that contributes to the study of bacteria-phage interaction and a starting point that will help to design efficient phage therapy strategies.


Subject(s)
Bacteriophages , Clustered Regularly Interspaced Short Palindromic Repeats , Ralstonia solanacearum , Ralstonia solanacearum/virology , Ralstonia solanacearum/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Databases, Genetic , Internet , CRISPR-Cas Systems , Genome, Bacterial/genetics , Plant Diseases/microbiology , Plant Diseases/virology
5.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: mdl-35215777

ABSTRACT

Ralstonia solanacearum is a pathogen that causes bacterial wilt producing severe damage in staple solanaceous crops. Traditional control has low efficacy and/or environmental impact. Recently, the bases of a new biotechnological method by lytic bacteriophages vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 with specific activity against R. solanacearum were established. However, some aspects remain unknown, such as the survival and maintenance of the lytic activity after submission to a preservation method as the lyophilization. To this end, viability and stability of lyophilized vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 and their capacity for bacterial wilt biocontrol have been determined against one pathogenic Spanish reference strain of R. solanacearum in susceptible tomato plants in different conditions and making use of various cryoprotectants. The assays carried out have shown satisfactory results with respect to the viability and stability of the bacteriophages after the lyophilization process, maintaining high titers throughout the experimental period, and with respect to the capacity of the bacteriophages for the biological control of bacterial wilt, controlling this disease in more than 50% of the plants. The results offer good prospects for the use of lyophilization as a conservation method for the lytic bacteriophages of R. solanacearum in view of their commercialization as biocontrol agents.


Subject(s)
Bacteriophages/chemistry , Bacteriophages/growth & development , Biological Control Agents/chemistry , Food Preservation/methods , Plant Diseases/prevention & control , Ralstonia solanacearum/virology , Solanum lycopersicum/microbiology , Food Preservation/economics , Freeze Drying , Fruit/economics , Fruit/microbiology , Solanum lycopersicum/economics , Plant Diseases/microbiology , Ralstonia solanacearum/physiology
6.
Viruses ; 13(12)2021 12 17.
Article in English | MEDLINE | ID: mdl-34960808

ABSTRACT

Ralstonia solanacearum is the causative agent of bacterial wilt, one of the most destructive plant diseases. While chemical control has an environmental impact, biological control strategies can allow sustainable agrosystems. Three lytic bacteriophages (phages) of R. solanacearum with biocontrol capacity in environmental water and plants were isolated from river water in Europe but not fully analysed, their genomic characterization being fundamental to understand their biology. In this work, the phage genomes were sequenced and subjected to bioinformatic analysis. The morphology was also observed by electron microscopy. Phylogenetic analyses were performed with a selection of phages able to infect R. solanacearum and the closely related phytopathogenic species R. pseudosolanacearum. The results indicated that the genomes of vRsoP-WF2, vRsoP-WM2 and vRsoP-WR2 range from 40,688 to 41,158 bp with almost 59% GC-contents, 52 ORFs in vRsoP-WF2 and vRsoP-WM2, and 53 in vRsoP-WR2 but, with only 22 or 23 predicted proteins with functional homologs in databases. Among them, two lysins and one exopolysaccharide (EPS) depolymerase, this type of depolymerase being identified in R. solanacearum phages for the first time. These three European phages belong to the same novel species within the Gyeongsanvirus, Autographiviridae family (formerly Podoviridae). These genomic data will contribute to a better understanding of the abilities of these phages to damage host cells and, consequently, to an improvement in the biological control of R. solanacearum.


Subject(s)
Bacteriophages/genetics , Genome, Viral , Glycoside Hydrolases/metabolism , Pest Control, Biological/methods , Ralstonia solanacearum/virology , Bacteriophages/classification , Bacteriophages/enzymology , Bacteriophages/ultrastructure , Open Reading Frames , Phylogeny , Virion/ultrastructure
7.
Int J Mol Sci ; 22(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34681713

ABSTRACT

The ϕRSA1 bacteriophage has been isolated from Ralstonia solanacearum, a gram negative bacteria having a significant economic impact on many important crops. We solved the three-dimensional structure of the ϕRSA1 mature capsid to 3.9 Šresolution by cryo-electron microscopy. The capsid shell, that contains the 39 kbp of dsDNA genome, has an icosahedral symmetry characterized by an unusual triangulation number of T = 7, dextro. The ϕRSA1 capsid is composed solely of the polymerization of the major capsid protein, gp8, which exhibits the typical "Johnson" fold first characterized in E. coli bacteriophage HK97. As opposed to the latter, the ϕRSA1 mature capsid is not stabilized by covalent crosslinking between its subunits, nor by the addition of a decoration protein. We further describe the molecular interactions occurring between the subunits of the ϕRSA1 capsid and their relationships with the other known bacteriophages.


Subject(s)
Bacteriophages/metabolism , Capsid/chemistry , Ralstonia solanacearum/virology , Capsid/metabolism , Capsid/ultrastructure , Capsid Proteins/chemistry , Cryoelectron Microscopy , Models, Molecular
8.
Sci Rep ; 11(1): 5382, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33686106

ABSTRACT

Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is among the most important plant diseases worldwide, severely affecting a high number of crops and ornamental plants in tropical regions. Only a limited number of phages infecting R. solanacearum have been isolated over the years, despite the importance of this bacterium and the associated plant disease. The antibacterial effect or morphological traits of these R. solanacearum viruses have been well studied, but not their genomic features, which need deeper consideration. This study reports the full genome of 23 new phages infecting RSSC isolated from agricultural samples collected in Mauritius and Reunion islands, particularly affected by this plant bacterial pathogen and considered biodiversity hotspots in the Southwest Indian Ocean. The complete genomic information and phylogenetic classification is provided, revealing high genetic diversity between them and weak similarities with previous related phages. The results support our proposal of 13 new species and seven new genera of R. solanacearum phages. Our findings highlight the wide prevalence of phages of RSSC in infected agricultural settings and the underlying genetic diversity. Discoveries of this kind lead more insight into the diversity of phages in general and to optimizing their use as biocontrol agents of bacterial diseases of plants in agriculture.


Subject(s)
Bacteriophages/genetics , Genetic Variation , Genome, Bacterial , Plant Diseases/microbiology , Ralstonia solanacearum , Ralstonia solanacearum/genetics , Ralstonia solanacearum/isolation & purification , Ralstonia solanacearum/virology , Reunion
9.
Arch Virol ; 166(2): 651-654, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33387023

ABSTRACT

A novel lytic bacteriophage, Ralstonia phage RP13, was isolated from tomato fields in Pang Nga, Thailand. Electron microscopic observation showed it to have the features of a myovirus with a novel triangulation number (T = 21, dextro). The RP13 DNA appeared to be heavily modified. By applying RNA sequencing and RNA-sequence-mediated DNA sequencing, the whole genome of RP31 was determined to be 170,942 bp in length with a mean G+C content of 39.2%. A total of 277 ORFs were identified as structural, functional, or hypothetical genes in addition to four tRNA genes. Phylogenetic analysis suggested that RP13 is not closely related to any other known phages. Thus, we concluded that the RP13 is a novel phage infecting R. solanacearum strains and will be a useful biocontrol agent against bacterial wilt disease.


Subject(s)
Bacteriophages/genetics , Genome, Viral/genetics , Plant Diseases/microbiology , Ralstonia solanacearum/virology , Base Composition/genetics , Genomics/methods , Host Specificity/genetics , Solanum lycopersicum/microbiology , Open Reading Frames/genetics , Phylogeny , RNA, Transfer/genetics , Thailand
10.
J Gen Virol ; 101(11): 1219-1226, 2020 11.
Article in English | MEDLINE | ID: mdl-32840476

ABSTRACT

Jumbo phages are bacteriophages that carry more than 200 kbp of DNA. In this study we characterized two jumbo phages (ΦRSL2 and ΦXacN1) and one semi-jumbo phage (ΦRP13) at the structural level by cryo-electron microscopy. Focusing on their capsids, three-dimensional structures of the heads at resolutions ranging from 16 to 9 Å were calculated. Based on these structures we determined the geometrical basis on which the icosahedral capsids of these phages are constructed, which includes the accessory and decorative proteins that complement them. A triangulation number novel to Myoviridae (ΦRP13; T=21) was discovered as well as two others, which are more common for jumbo phages (T=27 and T=28). Based on one of the structures we also provide evidence that accessory or decorative proteins are not a prerequisite for maintaining the structural integrity of very large capsids.


Subject(s)
Capsid/ultrastructure , Myoviridae/ultrastructure , Capsid Proteins/analysis , Cryoelectron Microscopy , Genome, Viral , Myoviridae/genetics , Ralstonia solanacearum/virology , Xanthomonas/virology
11.
Sci Rep ; 10(1): 12604, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32724109

ABSTRACT

Bacteriophages have potential for use as biological control agents (biocontrols) of pathogenic bacteria, but their low stability is limiting for their utilization as biocontrols. Understanding of the conditions conducive to storage of phages in which infectivity is maintained over long periods will be useful for their application as biocontrols. We employed a nanomechanical approach to study how external environmental factors affect surface properties and infectivity of the podovirus C22 phage, a candidate for biocontrol of Ralstonia solanacearum, the agent of bacterial wilt in crops. We performed atomic force microscopy (AFM)-based nano-indentation on the C22 phage in buffers with varying pH and ionic strength. The infectivity data from plaque assay in the same conditions revealed that an intermediate range of stiffness was associated with phage titer that remained consistently high, even after prolonged storage up to 182 days. The data are consistent with the model that C22 phage must adopt a metastable state for maximal infectivity, and external factors that alter the stiffness of the phage capsid lead to perturbation of this infective state.


Subject(s)
Podoviridae/pathogenicity , Biomechanical Phenomena , Buffers , Hydrogen-Ion Concentration , Microscopy, Atomic Force , Nanoparticles/chemistry , Osmolar Concentration , Podoviridae/ultrastructure , Ralstonia solanacearum/virology
12.
Nat Biotechnol ; 37(12): 1513-1520, 2019 12.
Article in English | MEDLINE | ID: mdl-31792408

ABSTRACT

Bacteriophages have been proposed as an alternative to pesticides to kill bacterial pathogens of crops. However, the efficacy of phage biocontrol is variable and poorly understood in natural rhizosphere microbiomes. We studied biocontrol efficacy of different phage combinations on Ralstonia solanacearum infection in tomato. Increasing the number of phages in combinations decreased the incidence of disease by up to 80% in greenhouse and field experiments during a single crop season. The decreased incidence of disease was explained by a reduction in pathogen density and the selection for phage-resistant but slow-growing pathogen strains, together with enrichment for bacterial species that were antagonistic toward R. solanacearum. Phage treatment did not affect the existing rhizosphere microbiota. Specific phage combinations have potential as precision tools to control plant pathogenic bacteria.


Subject(s)
Bacteriophages/genetics , Pest Control, Biological/methods , Plant Diseases/microbiology , Ralstonia solanacearum , Solanum lycopersicum/microbiology , Ralstonia solanacearum/genetics , Ralstonia solanacearum/pathogenicity , Ralstonia solanacearum/virology , Rhizosphere
13.
Arch Virol ; 164(9): 2339-2343, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31214785

ABSTRACT

We isolated a novel lytic phage of Ralstonia solanacearum, GP4. The GP4 phage has a latent period of ~ 2 h at its optimal multiplicity of infection and is stable at temperatures ranging from 40-70 °C. GP4 lysed 16 strains of R. solanacearum belonging to phylotype IV. High-throughput sequencing revealed that GP4 has a linear dsDNA genome that consists of 61,129 bp, contains 83 open reading frames, and encodes a tRNA for cysteine. The GP4 genome has low similarity to other phage sequences in the GenBank database. Phylogenetic analysis indicated that GP4 can be taxonomically classified as a member of the Bcep22-like subfamily of the family Podoviridae.


Subject(s)
Bacteriophages/genetics , Bacteriophages/isolation & purification , Genome, Viral , Podoviridae/isolation & purification , Ralstonia solanacearum/virology , Bacteriophages/classification , High-Throughput Nucleotide Sequencing , Open Reading Frames , Phylogeny , Podoviridae/genetics
14.
Mol Plant Pathol ; 20(2): 223-239, 2019 02.
Article in English | MEDLINE | ID: mdl-30251378

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPRs) are composed of an array of short DNA repeat sequences separated by unique spacer sequences that are flanked by associated (Cas) genes. CRISPR-Cas systems are found in the genomes of several microbes and can act as an adaptive immune mechanism against invading foreign nucleic acids, such as phage genomes. Here, we studied the CRISPR-Cas systems in plant-pathogenic bacteria of the Ralstonia solanacearum species complex (RSSC). A CRISPR-Cas system was found in 31% of RSSC genomes present in public databases. Specifically, CRISPR-Cas types I-E and II-C were found, with I-E being the most common. The presence of the same CRISPR-Cas types in distinct Ralstonia phylotypes and species suggests the acquisition of the system by a common ancestor before Ralstonia species segregation. In addition, a Cas1 phylogeny (I-E type) showed a perfect geographical segregation of phylotypes, supporting an ancient acquisition. Ralstoniasolanacearum strains CFBP2957 and K60T were challenged with a virulent phage, and the CRISPR arrays of bacteriophage-insensitive mutants (BIMs) were analysed. No new spacer acquisition was detected in the analysed BIMs. The functionality of the CRISPR-Cas interference step was also tested in R. solanacearum CFBP2957 using a spacer-protospacer adjacent motif (PAM) delivery system, and no resistance was observed against phage phiAP1. Our results show that the CRISPR-Cas system in R. solanacearum CFBP2957 is not its primary antiviral strategy.


Subject(s)
CRISPR-Cas Systems/genetics , Ralstonia solanacearum/genetics , Ralstonia solanacearum/virology , Adaptive Immunity/physiology , Bacteriophages/genetics , Bacteriophages/metabolism , Bacteriophages/pathogenicity
15.
Arch Virol ; 163(12): 3409-3414, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30244289

ABSTRACT

A lytic Ralstonia solanacearum-infecting phage designated Ralstonia phage RsoP1IDN was isolated from soil in Indonesia. The phage has a linear double-stranded DNA genome of 41,135 bp with 413-bp terminal repeats, and contains 41 annotated open reading frames. The phage is most closely related to Ralstonia phage RSB1, but different from RSB1 mainly in containing a putative HNH homing endonuclease and having a narrower host range. Our phylogenetic and genomic analyses revealed that both phages RsoP1IDN and RSB1 belong to the genus Pradovirus or a new genus, and not Phikmvvirus as previously reported for phage RSB1. RsoP1IDN is the first sequenced and characterized R. solanacearum-infecting phage isolated from Indonesia in the proposed species Ralstonia virus RsoP1IDN.


Subject(s)
Bacteriophages/genetics , Bacteriophages/isolation & purification , Host Specificity , Podoviridae/genetics , Ralstonia solanacearum/virology , Bacteriophages/classification , Bacteriophages/physiology , Genome, Viral , Indonesia , Open Reading Frames , Phylogeny , Plant Diseases/microbiology , Podoviridae/classification , Podoviridae/isolation & purification , Podoviridae/physiology , Ralstonia solanacearum/physiology , Solanum melongena/microbiology
16.
J Basic Microbiol ; 58(8): 658-669, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29938804

ABSTRACT

A new podovirus RsPod1EGY Ralstonia phage (GenBank accession no MG711516) with a specific action against R. solanacearum phylotype IIa, sequevar I (race 3, biovar 2) was isolated from Egyptian soil. The potential efficacy of the isolated phage to be used as biocontrol agent was evaluated in vitro and under greenhouse conditions. The podovirus phage produced a plaque size of 3.0-4.0 mm in diameter and completed its infection cycle in 180 min after infection with a burst size of ∼27 virions per infected cell. On the basis of restriction endonuclease analysis, the genome size of the phage was about 41 kb of double-stranded DNA. In vitro studies showed that RsPod1EGY is stable at higher temperatures (up to 60 °C), and at a wide pH range (5-9). SDS-PAGE analysis indicated the major structural protein to be approximately 32 kDa. Bacteriolytic activity of RsPod1EGY against R. solanacearum was detected at different multiplicity of infection (MOI). RsPod1EGY proved to be effective in reduction and prevention of formation of surface polysaccharides of R. solanacearum, during the exponential growth phase of the latter. Interestingly, RsPod1EGY was effective in suppression of R. solanacearum under greenhouse conditions. All Phage-treated tomato plants showed no wilt symptoms or any latent infection during the experimental period, whereas all untreated plants have wilted by 10 days post-infection. The lytic stability of RsPod1EGY phage at higher temperature as well as its effective suppression of wilting symptoms under greenhouse conditions would contribute to biocontrol the bacterial wilt disease in Egypt under field conditions.


Subject(s)
Bacteriolysis/physiology , Pest Control, Biological/methods , Plant Diseases/prevention & control , Podoviridae/physiology , Ralstonia solanacearum/virology , Egypt , Hot Temperature , Hydrogen-Ion Concentration , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Podoviridae/isolation & purification , Polysaccharides, Bacterial/biosynthesis , Soil Microbiology
17.
Arch Virol ; 163(8): 2271-2274, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29654374

ABSTRACT

A novel Ralstonia phage was isolated from soil in Egypt. It was designated Ralstonia phage RsoP1EGY using our phage identifier naming approach to reflect the phage's bacterial host species, characteristics and origin. When tested, this phage specifically infected only race 3 biovar 2 phylotype IIB sequevar 1, and not non-race 3 biovar 2 strains of Ralstonia solanacearum. The phage has an icosahedral capsid of 60 ± 5 nm in diameter with a short tail of 15 ± 5 nm in length, typical of a podovirus. The genome of RsoP1EGY is 41,297 bp in size, containing 50 open reading frames, with no significant sequence identity to any other reported R. solanacearum or non-Ralstonia phages, except to the recently deposited but unreported and unclassified Ralstonia phage DU_RP_I. RsoP1EGY is the first sequenced and characterized R. solanacearum phage isolated in Egypt.


Subject(s)
Bacteriophages/genetics , Genome, Viral , Ralstonia solanacearum/virology , Bacteriophages/classification , Bacteriophages/isolation & purification , Bacteriophages/physiology , Egypt , Host Specificity , Open Reading Frames , Phylogeny , Plant Diseases/microbiology , Sequence Analysis, DNA , Solanum tuberosum/microbiology
18.
Arch Virol ; 163(7): 1969-1971, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29523968

ABSTRACT

In this paper, I describe the genomic characteristics of a Ralstonia phage infecting Ralstonia solanacearum. The Ralstonia phage RPSC1 was isolated from a soil sample collected in Sichuan Province, in southwestern China. The complete genome of RPSC1 is composed of a linear double-stranded DNA 39,628 bp in length, with G+C content of 61.55%, and 43 putative protein-coding genes. All the putative protein-coding genes were on the same strand. No tRNA-encoding genes were identified. Phylogenetic and comparative genomics analyses indicate that Ralstonia phage RPSC1 should be considered a new member of the family Podoviridae. The wide host range contributes to the potential of Ralstonia phage RPSC1 as a biocontrol agent.


Subject(s)
Bacteriophages/genetics , Genome, Viral , Ralstonia solanacearum/virology , Soil Microbiology , Bacteriophages/classification , Base Composition , DNA, Viral/genetics , Host Specificity , Open Reading Frames , Phylogeny , Podoviridae/genetics , Sequence Analysis, DNA , Soil
19.
Arch Virol ; 163(1): 269-271, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28965163

ABSTRACT

DU_RP_II, a bacteriophage of the family Podoviridae, which lyses Ralstonia solanacearum, was isolated from a diseased plant sample, and its genome was completely sequenced. The genome was found to be 42,091 base pairs long and to be a circular double-stranded DNA with a GC content of 62.17% and 38 predicted coding sequences. The phage showed homology to the RSK1 phage in four coding sequences, but it was concluded that the phage differed from previously reported Ralstonia phages based on the results of both morphology and bioinformatics analysis. This suggests that the phage DU_RP_II is a new member of the family Podoviridae.


Subject(s)
Genome, Viral , Podoviridae/genetics , Ralstonia solanacearum/virology , Base Sequence , DNA, Viral/genetics
20.
Virol Sin ; 32(6): 476-484, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29168148

ABSTRACT

Bacterial wilt is a devastating disease of potato and can cause an 80% production loss. To control wilt using bacteriophage therapy, we isolated and characterized twelve lytic bacteriophages from different water sources in Kenya and China. Based on the lytic curves of the phages with the pathogen Ralstonia solanacearum, one optimal bacteriophage cocktail, P1, containing six phage isolations was formulated and used for studying wilt prevention and treatment efficiency in potato plants growing in pots. The preliminary tests showed that the phage cocktail was very effective in preventing potato bacterial wilt by injection of the phages into the plants or decontamination of sterilized soil spiked with R. solanacearum. Eighty percent of potato plants could be protected from the bacterial wilt (caused by R. solanacearum reference strain GIM1.74 and field isolates), and the P1 cocktail could kill 98% of live bacteria spiked in the sterilized soil at one week after spraying. However, the treatment efficiencies of P1 depended on the timing of application of the phages, the susceptibility of the plants to the bacterial wilt, as well as the virulence of the bacteria infected, suggesting that it is important to apply the phage therapy as soon as possible once there are early signs of the bacterial wilt. These results provide the basis for the development of bacteriophagebased biocontrol of potato bacterial wilt as an alternative to the use of antibiotics.


Subject(s)
Bacteriolysis , Bacteriophages/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Ralstonia solanacearum/physiology , Ralstonia solanacearum/virology , Solanum tuberosum/microbiology , Bacteriophages/isolation & purification , China , Kenya , Pest Control, Biological/methods , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL