Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.706
Filter
1.
Int J Mol Sci ; 25(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38892328

ABSTRACT

Curcumin is a natural compound that is considered safe and may have potential health benefits; however, its poor stability and water insolubility limit its therapeutic applications. Different strategies aim to increase its water solubility. Here, we tested the compound PVP-curcumin as a photosensitizer for antimicrobial photodynamic therapy (aPDT) as well as its potential to act as an adjuvant in antibiotic drug therapy. Gram-negative E. coli K12 and Gram-positive S. capitis were subjected to aPDT using various PVP-curcumin concentrations (1-200 µg/mL) and 475 nm blue light (7.5-45 J/cm2). Additionally, results were compared to aPDT using 415 nm blue light. Gene expression of recA and umuC were analyzed via RT-qPCR to assess effects on the bacterial SOS response. Further, the potentiation of Ciprofloxacin by PVP-curcumin was investigated, as well as its potential to prevent the emergence of antibiotic resistance. Both bacterial strains were efficiently reduced when irradiated with 415 nm blue light (2.2 J/cm2) and 10 µg/mL curcumin. Using 475 nm blue light, bacterial reduction followed a biphasic effect with higher efficacy in S. capitis compared to E. coli K12. PVP-curcumin decreased recA expression but had limited effect regarding enhancing antibiotic treatment or impeding resistance development. PVP-curcumin demonstrated effectiveness as a photosensitizer against both Gram-positive and Gram-negative bacteria but did not modulate the bacterial SOS response.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Curcumin , Photosensitizing Agents , Rec A Recombinases , Curcumin/pharmacology , Photosensitizing Agents/pharmacology , Rec A Recombinases/metabolism , Rec A Recombinases/genetics , Ciprofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Photochemotherapy/methods , SOS Response, Genetics/drug effects , Escherichia coli K12/drug effects , Escherichia coli K12/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Povidone/chemistry , Povidone/pharmacology , Microbial Sensitivity Tests , Escherichia coli/drug effects , Light , DNA-Binding Proteins
2.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38906847

ABSTRACT

AIM: Ohmic heating (OH) (i.e. heating by electric field) more effectively kills bacterial spores than traditional wet heating, yet its mechanism remains poorly understood. This study investigates the accelerated spore inactivation mechanism using genetically modified spores. METHODS AND RESULTS: We investigated the effects of OH and conventional heating (CH) on various genetically modified strains of Bacillus subtilis: isogenic PS533 (wild type_1), PS578 [lacking spores' α/ß-type small acid-soluble proteins (SASP)], PS2318 (lacking recA, encoding a DNA repair protein), isogenic PS4461 (wild type_2), and PS4462 (having the 2Duf protein in spores, which increases spore wet heat resistance and decreases spore inner membrane fluidity). Removal of SASP brought the inactivation profiles of OH and CH closer, suggesting the interaction of these proteins with the field. However, the reemergence of a difference between CH and OH killing for SASP-deficient spores at the highest tested field strength suggested there is also interaction of the field with another spore core component. Additionally, RecA-deficient spores yielded results like those with the wild-type spores for CH, while the OH resistance of this mutant increased at the lower tested temperatures, implying that RecA or DNA are a possible additional target for the electric field. Addition of the 2Duf protein markedly increased spore resistance both to CH and OH, although some acceleration of killing was observed with OH at 50 V/cm. CONCLUSIONS: In summary, both membrane fluidity and interaction of the spore core proteins with electric field are key factors in enhanced spore killing with electric field-heat combinations.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Hot Temperature , Rec A Recombinases , Spores, Bacterial , Spores, Bacterial/radiation effects , Spores, Bacterial/genetics , Bacillus subtilis/genetics , Bacillus subtilis/physiology , Bacillus subtilis/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Heating , Membrane Proteins/metabolism , Membrane Proteins/genetics
3.
Biochem Biophys Res Commun ; 716: 150009, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38697010

ABSTRACT

The SOS response is a condition that occurs in bacterial cells after DNA damage. In this state, the bacterium is able to reсover the integrity of its genome. Due to the increased level of mutagenesis in cells during the repair of DNA double-strand breaks, the SOS response is also an important mechanism for bacterial adaptation to the antibiotics. One of the key proteins of the SOS response is the SMC-like protein RecN, which helps the RecA recombinase to find a homologous DNA template for repair. In this work, the localization of the recombinant RecN protein in living Escherichia coli cells was revealed using fluorescence microscopy. It has been shown that the RecN, outside the SOS response, is predominantly localized at the poles of the cell, and in dividing cells, also localized at the center. Using in vitro methods including fluorescence microscopy and optical tweezers, we show that RecN predominantly binds single-stranded DNA in an ATP-dependent manner. RecN has both intrinsic and single-stranded DNA-stimulated ATPase activity. The results of this work may be useful for better understanding of the SOS response mechanism and homologous recombination process.


Subject(s)
DNA, Bacterial , Escherichia coli , Microscopy, Fluorescence , Single Molecule Imaging , Microscopy, Fluorescence/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Single Molecule Imaging/methods , DNA, Bacterial/metabolism , DNA, Bacterial/genetics , SOS Response, Genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Protein Binding , Rec A Recombinases/metabolism , Rec A Recombinases/genetics , Optical Tweezers
4.
Nucleic Acids Res ; 52(12): 6977-6993, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38808668

ABSTRACT

The replicative helicase, DnaB, is a central component of the replisome and unwinds duplex DNA coupled with immediate template-dependent DNA synthesis by the polymerase, Pol III. The rate of helicase unwinding is dynamically regulated through structural transitions in the DnaB hexamer between dilated and constricted states. Site-specific mutations in DnaB enforce a faster more constricted conformation that dysregulates unwinding dynamics, causing replisome decoupling that generates excess ssDNA and induces severe cellular stress. This surplus ssDNA can stimulate RecA recruitment to initiate recombinational repair, restart, or activation of the transcriptional SOS response. To better understand the consequences of dysregulated unwinding, we combined targeted genomic dnaB mutations with an inducible RecA filament inhibition strategy to examine the dependencies on RecA in mitigating replisome decoupling phenotypes. Without RecA filamentation, dnaB:mut strains had reduced growth rates, decreased mutagenesis, but a greater burden from endogenous damage. Interestingly, disruption of RecA filamentation in these dnaB:mut strains also reduced cellular filamentation but increased markers of double strand breaks and ssDNA gaps as detected by in situ fluorescence microscopy and FACS assays, TUNEL and PLUG, respectively. Overall, RecA plays a critical role in strain survival by protecting and processing ssDNA gaps caused by dysregulated helicase activity in vivo.


Subject(s)
DNA Replication , DNA, Single-Stranded , DnaB Helicases , Mutation , Rec A Recombinases , Rec A Recombinases/metabolism , Rec A Recombinases/genetics , DNA, Single-Stranded/metabolism , DnaB Helicases/metabolism , DnaB Helicases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Polymerization , DNA-Binding Proteins
5.
Commun Biol ; 7(1): 597, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762617

ABSTRACT

In gram-negative bacteria, IS26 often exists in multidrug resistance (MDR) regions, forming a pseudocompound transposon (PCTn) that can be tandemly amplified. It also generates a circular intermediate called the "translocatable unit (TU)", but the TU has been detected only by PCR. Here, we demonstrate that in a Klebsiella pneumoniae MDR clone, mono- and multimeric forms of the TU were generated from the PCTn in a preexisting MDR plasmid where the inserted form of the TU was also tandemly amplified. The two modes of amplification were reproduced by culturing the original clone under antimicrobial selection pressure, and the amplified state was maintained in the absence of antibiotics. Mono- and multimeric forms of the circularized TU were generated in a RecA-dependent manner from the tandemly amplified TU, which can be generated in RecA-dependent and independent manners. These findings provide novel insights into the dynamic processes of genome amplification in bacteria.


Subject(s)
DNA Transposable Elements , Drug Resistance, Multiple, Bacterial , Klebsiella pneumoniae , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Drug Resistance, Multiple, Bacterial/genetics , DNA Transposable Elements/genetics , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Plasmids/genetics , Anti-Bacterial Agents/pharmacology
6.
Arch Microbiol ; 206(6): 281, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805057

ABSTRACT

As a legume crop widely cultured in the world, faba bean (Vicia faba L.) forms root nodules with diverse Rhizobium species in different regions. However, the symbionts associated with this plant in Mexico have not been studied. To investigate the diversity and species/symbiovar affiliations of rhizobia associated with faba bean in Mexico, rhizobia were isolated from this plant grown in two Mexican sites in the present study. Based upon the analysis of recA gene phylogeny, two genotypes were distinguished among a total of 35 isolates, and they were identified as Rhizobium hidalgonense and Rhizobium redzepovicii, respectively, by the whole genomic sequence analysis. Both the species harbored identical nod gene cluster and the same phylogenetic positions of nodC and nifH. So, all of them were identified into the symbiovar viciae. As a minor group, R. hidalgonense was only isolated from slightly acid soil and R. redzepovicii was the dominant group in both the acid and neutral soils. In addition, several genes related to resistance to metals (zinc, copper etc.) and metalloids (arsenic) were detected in genomes of the reference isolates, which might offer them some adaptation benefits. As conclusion, the community composition of faba bean rhizobia in Mexico was different from those reported in other regions. Furthermore, our study identified sv. viciae as the second symbiovar in the species R. redzepovicii. These results added novel evidence about the co-evolution, diversification and biogeographic patterns of rhizobia in association with their host legumes in distinct geographic regions.


Subject(s)
Phylogeny , Rhizobium , Soil Microbiology , Symbiosis , Vicia faba , Vicia faba/microbiology , Rhizobium/genetics , Rhizobium/isolation & purification , Rhizobium/classification , Mexico , Bacterial Proteins/genetics , Root Nodules, Plant/microbiology , Soil/chemistry , N-Acetylglucosaminyltransferases/genetics , Oxidoreductases/genetics , Rec A Recombinases/genetics , Multigene Family
7.
Mol Microbiol ; 122(1): 1-10, 2024 07.
Article in English | MEDLINE | ID: mdl-38760330

ABSTRACT

Short-Patch Double Illegitimate Recombination (SPDIR) has been recently identified as a rare mutation mechanism. During SPDIR, ectopic DNA single-strands anneal with genomic DNA at microhomologies and get integrated during DNA replication, presumably acting as primers for Okazaki fragments. The resulting microindel mutations are highly variable in size and sequence. In the soil bacterium Acinetobacter baylyi, SPDIR is tightly controlled by genome maintenance functions including RecA. It is thought that RecA scavenges DNA single-strands and renders them unable to anneal. To further elucidate the role of RecA in this process, we investigate the roles of the upstream functions DprA, RecFOR, and RecBCD, all of which load DNA single-strands with RecA. Here we show that all three functions suppress SPDIR mutations in the wildtype to levels below the detection limit. While SPDIR mutations are slightly elevated in the absence of DprA, they are strongly increased in the absence of both DprA and RecA. This SPDIR-avoiding function of DprA is not related to its role in natural transformation. These results suggest a function for DprA in combination with RecA to avoid potentially harmful microindel mutations, and offer an explanation for the ubiquity of dprA in the genomes of naturally non-transformable bacteria.


Subject(s)
Acinetobacter , Bacterial Proteins , Mutation , Rec A Recombinases , Recombination, Genetic , Acinetobacter/genetics , Acinetobacter/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Exodeoxyribonuclease V/metabolism , Exodeoxyribonuclease V/genetics , DNA, Bacterial/genetics , DNA Replication/genetics , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Membrane Proteins
8.
Biochem Biophys Res Commun ; 710: 149890, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38608491

ABSTRACT

Low level expression in Escherichia coli of the RecA protein from the radiation resistant bacterium Deinococcus radiodurans protects a RecA deficient strain of E. coli from UV-A irradiation by up to ∼160% over basal UV-A resistance. The protection effect is inverse protein dose dependent: increasing the expression level of the D. radiodurans RecA (DrRecA) protein decreases the protection factor. This inverse protein dose dependence effect helps resolve previously conflicting reports of whether DrRecA expression is protective or toxic for E. coli. In contrast to the D. radiodurans protein effect, conspecific plasmid expression of E. coli RecA protein in RecA deficient E. coli is consistently protective over several protein expression levels, as well as consistently more protective to higher levels of UV-A exposure than that provided by the D. radiodurans protein. The results indicate that plasmid expression of D. radiodurans RecA can modestly enhance the UV resistance of living E. coli, but that the heterospecific protein shifts from protective to toxic as expression is increased.


Subject(s)
Deinococcus , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Deinococcus/genetics , Deinococcus/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Plasmids/genetics , Ultraviolet Rays , DNA Repair , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
9.
Nucleic Acids Res ; 52(9): 5195-5208, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38567730

ABSTRACT

Bacterial defence systems are tightly regulated to avoid autoimmunity. In Type I restriction-modification (R-M) systems, a specific mechanism called restriction alleviation (RA) controls the activity of the restriction module. In the case of the Escherichia coli Type I R-M system EcoKI, RA proceeds through ClpXP-mediated proteolysis of restriction complexes bound to non-methylated sites that appear after replication or reparation of host DNA. Here, we show that RA is also induced in the presence of plasmids carrying EcoKI recognition sites, a phenomenon we refer to as plasmid-induced RA. Further, we show that the anti-restriction behavior of plasmid-borne non-conjugative transposons such as Tn5053, previously attributed to their ardD loci, is due to plasmid-induced RA. Plasmids carrying both EcoKI and Chi sites induce RA in RecA- and RecBCD-dependent manner. However, inactivation of both RecA and RecBCD restores RA, indicating that there exists an alternative, RecA-independent, homologous recombination pathway that is blocked in the presence of RecBCD. Indeed, plasmid-induced RA in a RecBCD-deficient background does not depend on the presence of Chi sites. We propose that processing of random dsDNA breaks in plasmid DNA via homologous recombination generates non-methylated EcoKI sites, which attract EcoKI restriction complexes channeling them for ClpXP-mediated proteolysis.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Plasmids , Rec A Recombinases , Plasmids/genetics , Escherichia coli/genetics , Rec A Recombinases/metabolism , Rec A Recombinases/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Recombination, Genetic , Deoxyribonucleases, Type I Site-Specific/metabolism , Deoxyribonucleases, Type I Site-Specific/genetics , Endopeptidase Clp/metabolism , Endopeptidase Clp/genetics , Exodeoxyribonuclease V/metabolism , Exodeoxyribonuclease V/genetics , DNA, Bacterial/metabolism , DNA Transposable Elements/genetics , DNA Restriction Enzymes , DNA-Binding Proteins
10.
Drug Resist Updat ; 75: 101087, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678745

ABSTRACT

In recent years, new evidence has shown that the SOS response plays an important role in the response to antimicrobials, with involvement in the generation of clinical resistance. Here we evaluate the impact of heterogeneous expression of the SOS response in clinical isolates of Escherichia coli on response to the fluoroquinolone, ciprofloxacin. In silico analysis of whole genome sequencing data showed remarkable sequence conservation of the SOS response regulators, RecA and LexA. Despite the genetic homogeneity, our results revealed a marked differential heterogeneity in SOS response activation, both at population and single-cell level, among clinical isolates of E. coli in the presence of subinhibitory concentrations of ciprofloxacin. Four main stages of SOS response activation were identified and correlated with cell filamentation. Interestingly, there was a correlation between clinical isolates with higher expression of the SOS response and further progression to resistance. This heterogeneity in response to DNA damage repair (mediated by the SOS response) and induced by antimicrobial agents could be a new factor with implications for bacterial evolution and survival contributing to the generation of antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Escherichia coli Proteins , Escherichia coli , Microbial Sensitivity Tests , Rec A Recombinases , SOS Response, Genetics , SOS Response, Genetics/drug effects , Escherichia coli/drug effects , Escherichia coli/genetics , Ciprofloxacin/pharmacology , Humans , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Drug Resistance, Bacterial/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Damage/drug effects , Whole Genome Sequencing , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Gene Expression Regulation, Bacterial/drug effects , Adaptation, Physiological , DNA Repair/drug effects , DNA-Binding Proteins
11.
Microbiol Res ; 284: 127713, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38608339

ABSTRACT

Deinococcus radiodurans, with its high homologous recombination (HR) efficiency of double-stranded DNA breaks (DSBs), is a model organism for studying genome stability maintenance and an attractive microbe for industrial applications. Here, we developed an efficient CRISPR/Cpf1 genome editing system in D. radiodurans by evaluating and optimizing double-plasmid strategies and four Cas effector proteins from various organisms, which can precisely introduce different types of template-dependent mutagenesis without off-target toxicity. Furthermore, the role of DNA repair genes in determining editing efficiency in D. radiodurans was evaluated by introducing the CRISPR/Cpf1 system into 13 mutant strains lacking various DNA damage response and repair factors. In addition to the crucial role of RecA-dependent HR required for CRISPR/Cpf1 editing, D. radiodurans showed higher editing efficiency when lacking DdrB, the single-stranded DNA annealing (SSA) protein involved in the RecA-independent DSB repair pathway. This suggests a possible competition between HR and SSA pathways in the CRISPR editing of D. radiodurans. Moreover, off-target effects were observed during the genome editing of the pprI knockout strain, a master DNA damage response gene in Deinococcus species, which suggested that precise regulation of DNA damage response is critical for a high-fidelity genome editing system.


Subject(s)
CRISPR-Cas Systems , DNA Repair , Deinococcus , Gene Editing , Deinococcus/genetics , Gene Editing/methods , DNA Repair/genetics , Genome, Bacterial , DNA Breaks, Double-Stranded , Homologous Recombination , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plasmids/genetics , Mutagenesis , Genomic Instability , Clustered Regularly Interspaced Short Palindromic Repeats , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , DNA Damage
12.
Antimicrob Agents Chemother ; 68(5): e0146223, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38534113

ABSTRACT

Although the mechanistic connections between SOS-induced mutagenesis and antibiotic resistance are well established, our current understanding of the impact of SOS response levels, recovery durations, and transcription/translation activities on mutagenesis remains relatively limited. In this study, when bacterial cells were exposed to mutagens like ultraviolet light for defined time intervals, a compelling connection between the rate of mutagenesis and the RecA-mediated SOS response levels became evident. Our observations also indicate that mutagenesis primarily occurs during the subsequent recovery phase following the removal of the mutagenic agent. When transcription/translation was inhibited or energy molecules were depleted at the onset of treatment or during the early recovery phase, there was a noticeable decrease in SOS response activation and mutagenesis. However, targeting these processes later in the recovery phase does not have the same effect in reducing mutagenesis, suggesting that the timing of inhibiting transcription/translation or depleting energy molecules is crucial for their efficacy in reducing mutagenesis. Active transcription, translation, and energy availability within the framework of SOS response and DNA repair mechanisms appear to be conserved attributes, supported by their consistent manifestation across diverse conditions, including the use of distinct mutagens such as fluoroquinolones and various bacterial strains.


Subject(s)
Escherichia coli , Mutagenesis , Rec A Recombinases , SOS Response, Genetics , Ultraviolet Rays , SOS Response, Genetics/drug effects , SOS Response, Genetics/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Anti-Bacterial Agents/pharmacology , DNA Repair , Mutagens/pharmacology , Escherichia coli Proteins/genetics , Drug Resistance, Bacterial/genetics , Transcription, Genetic
13.
Int J Biol Macromol ; 261(Pt 2): 129843, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302027

ABSTRACT

Homologous recombination plays a key role in double-strand break repair, stalled replication fork repair, and meiosis. The RecA/Rad51 family recombinases catalyze the DNA strand invasion reaction that occurs during homologous recombination. However, the high sequence differences between homologous groups have hindered the thoroughly studies of this ancient protein family. The dynamic mechanisms of the family, particularly at the residual level, remain poorly understood. In this work, five representative RecA/Rad51 recombinase family members from all major kingdoms of living organisms: prokaryotes, eukaryotes, archaea, and viruses, were selected to explore the molecular mechanisms behind their conserved biological significance. A variety of techniques, including all-atom molecular dynamics simulation, perturbation response scanning, and protein structure network analysis, were used to examine the flexibility and correlation of protein domains, distribution of sensors and effectors and conserved hub residues. Furthermore, the potential communication routes between the ATP-binding region and the DNA-binding region of each recombinase were identified. Our results demonstrate the conserved molecular dynamics of these recombinases in the early stage of homologous recombination, including cooperative motions between regions, conserved sensing and effecting functional residue distribution, and conserved hub residues. Meanwhile, the unique ATP-DNA communication routes of each recombinase was also revealed. These results provide new insights into the mechanism of RecA/Rad51 family proteins, and provide new theoretical guidance for the development of allosteric inhibitors and the application of RecA/Rad51 family proteins.


Subject(s)
Rad51 Recombinase , Rec A Recombinases , Rad51 Recombinase/genetics , Rad51 Recombinase/chemistry , Rad51 Recombinase/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/chemistry , Rec A Recombinases/metabolism , DNA-Binding Proteins/metabolism , DNA, Single-Stranded , DNA/chemistry , Recombinases/genetics , Recombinases/metabolism , Adenosine Triphosphate
14.
Nucleic Acids Res ; 52(5): 2565-2577, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38214227

ABSTRACT

RecA protein and RecA/Rad51 orthologues are required for homologous recombination and DNA repair in all living creatures. RecA/Rad51 catalyzes formation of the D-loop, an obligatory recombination intermediate, through an ATP-dependent reaction consisting of two phases: homology recognition between double-stranded (ds)DNA and single-stranded (ss)DNA to form a hybrid-duplex core of 6-8 base pairs and subsequent hybrid-duplex/D-loop processing. How dsDNA recognizes homologous ssDNA is controversial. The aromatic residue at the tip of the ß-hairpin loop (L2) was shown to stabilize dsDNA-strand separation. We tested a model in which dsDNA strands were separated by the aromatic residue before homology recognition and found that the aromatic residue was not essential to homology recognition, but was required for D-loop processing. Contrary to the model, we found that the double helix was not unwound even a single turn during search for sequence homology, but rather was unwound only after the homologous sequence was recognized. These results suggest that dsDNA recognizes its homologous ssDNA before strand separation. The search for homologous sequence with homologous ssDNA without dsDNA-strand separation does not generate stress within the dsDNA; this would be an advantage for dsDNA to express homology-dependent functions in vivo and also in vitro.


Subject(s)
DNA, Single-Stranded , Homologous Recombination , Rad51 Recombinase , Base Pairing , DNA/chemistry , DNA, Single-Stranded/genetics , Rec A Recombinases/metabolism
15.
Nucleic Acids Res ; 52(5): 2578-2589, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38261972

ABSTRACT

The loading of RecA onto ssDNA by RecBCD is an essential step of RecBCD-mediated homologous recombination. RecBCD facilitates RecA-loading onto ssDNA in a χ-dependent manner via its RecB nuclease domain (RecBn). Before recognition of χ, RecBn is sequestered through interactions with RecBCD. It was proposed that upon χ-recognition, RecBn undocks, allowing RecBn to swing out via a contiguous 70 amino acid linker to reveal the RecA-loading surface, and then recruit and load RecA onto ssDNA. We tested this hypothesis by examining the interactions between RecBn (RecB928-1180) and truncated RecBCD (RecB1-927CD) lacking the nuclease domain. The reconstituted complex of RecB1-927CD and RecBn is functional in vitro and in vivo. Our results indicate that despite being covalently severed from RecB1-927CD, RecBn can still load RecA onto ssDNA, establishing that RecBn does not function while only remaining tethered to the RecBCD complex via the linker. Instead, RecBCD undergoes a χ-induced intramolecular rearrangement to reveal the RecA-loading surface.


Subject(s)
Escherichia coli Proteins , Exodeoxyribonuclease V , Rec A Recombinases , DNA, Single-Stranded/genetics , Endonucleases/metabolism , Escherichia coli Proteins/metabolism , Exodeoxyribonuclease V/metabolism , Exodeoxyribonucleases/metabolism , Rec A Recombinases/metabolism
16.
J Biomol Struct Dyn ; 42(4): 2043-2057, 2024.
Article in English | MEDLINE | ID: mdl-38093709

ABSTRACT

Mycobacterium tuberculosis RecA (MtRecA), a protein involved in DNA repair, homologous recombination and SOS pathway, contributes to the development of multidrug resistance. ATP binding-site in RecA has been a drug target to disable RecA dependent DNA repair. For the first time, experiments have shown the existence and binding of c-di-AMP to a novel allosteric site in the C-terminal-Domain (CTD) of Mycobacterium smegmatis RecA (MsRecA), a close homolog of MtRecA. In addition, it was observed that the c-di-AMP was not binding to Escherichia coli RecA (EcRecA). This article analyses the possible interactions of the three RecA homologs with the various c-di-AMP conformations to gain insights into the structural basis of the natural preference of c-di-AMP to MsRecA and not to EcRecA, using the structural biology tools. The comparative analysis, based on amino acid composition, homology, motifs, residue types, docking, molecular dynamics simulations and binding free energy calculations, indeed, conclusively indicates strong binding of c-di-AMP to MsRecA. Having very similar results as MsRecA, it is highly plausible for c-di-AMP to strongly bind MtRecA as well. These insights from the in-silico studies adds a new therapeutic approach against TB through design and development of novel allosteric inhibitors for the first time against MtRecA.Communicated by Ramaswamy H. Sarma.


Subject(s)
Dinucleoside Phosphates , Mycobacterium smegmatis , Mycobacterium tuberculosis , Binding Sites , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/genetics , Allosteric Site , Rec A Recombinases/chemistry , Bacterial Proteins/chemistry
17.
Int J Mol Sci ; 24(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38003280

ABSTRACT

Linear dichroism (LD) is a differential polarized light absorption spectroscopy used for studying filamentous molecules such as DNA and protein filaments. In this study, we review the applications of LD for the analysis of DNA-protein interactions. LD signals can be measured in a solution by aligning the sample using flow-induced shear force or a strong electric field. The signal generated is related to the local orientation of chromophores, such as DNA bases, relative to the filament axis. LD can thus assess the tilt and roll of DNA bases and distinguish intercalating from groove-binding ligands. The intensity of the LD signal depends upon the degree of macroscopic orientation. Therefore, DNA shortening and bending can be detected by a decrease in LD signal intensity. As examples of LD applications, we present a kinetic study of DNA digestion by restriction enzymes and structural analyses of homologous recombination intermediates, i.e., RecA and Rad51 recombinase complexes with single-stranded DNA. LD shows that the DNA bases in these complexes are preferentially oriented perpendicular to the filament axis only in the presence of activators, suggesting the importance of organized base orientation for the reaction. LD measurements detect DNA bending by the CRP transcription activator protein, as well as by the UvrB DNA repair protein. LD can thus provide information about the structures of protein-DNA complexes under various conditions and in real time.


Subject(s)
DNA , Rec A Recombinases , Rec A Recombinases/metabolism , DNA/chemistry , DNA, Single-Stranded , Spectrum Analysis/methods , Rad51 Recombinase/metabolism
18.
J Biol Chem ; 299(12): 105466, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979912

ABSTRACT

RecN, a bacterial structural maintenance of chromosomes-like protein, plays an important role in maintaining genomic integrity by facilitating the repair of DNA double-strand breaks (DSBs). However, how RecN-dependent chromosome dynamics are integrated with DSB repair remains unclear. Here, we investigated the dynamics of RecN in response to DNA damage by inducing RecN from the PBAD promoter at different time points. We found that mitomycin C (MMC)-treated ΔrecN cells exhibited nucleoid fragmentation and reduced cell survival; however, when RecN was induced with arabinose in MMC-exposed ΔrecN cells, it increased a level of cell viability to similar extent as WT cells. Furthermore, in MMC-treated ΔrecN cells, arabinose-induced RecN colocalized with RecA in nucleoid gaps between fragmented nucleoids and restored normal nucleoid structures. These results suggest that the aberrant nucleoid structures observed in MMC-treated ΔrecN cells do not represent catastrophic chromosome disruption but rather an interruption of the RecA-mediated process. Thus, RecN can resume DSB repair by stimulating RecA-mediated homologous recombination, even when chromosome integrity is compromised. Our data demonstrate that RecA-mediated presynapsis and synapsis are spatiotemporally separable, wherein RecN is involved in facilitating both processes presumably by orchestrating the dynamics of both RecA and chromosomes, highlighting the essential role of RecN in the repair of DSBs.


Subject(s)
Bacterial Proteins , DNA Breaks, Double-Stranded , DNA Repair , DNA Restriction Enzymes , Rec A Recombinases , Arabinose/metabolism , Bacterial Proteins/metabolism , DNA Damage , DNA Restriction Enzymes/metabolism , DNA, Bacterial/metabolism , Homologous Recombination , Microbial Viability/drug effects , Mitomycin/pharmacology , Rec A Recombinases/metabolism
19.
Int J Mol Sci ; 24(19)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37834348

ABSTRACT

Homologous recombination (HR) is a fundamental process common to all species. HR aims to faithfully repair DNA double strand breaks. HR involves the formation of nucleoprotein filaments on DNA single strands (ssDNA) resected from the break. The nucleoprotein filaments search for homologous regions in the genome and promote strand exchange with the ssDNA homologous region in an unbroken copy of the genome. HR has been the object of intensive studies for decades. Because multi-scale dynamics is a fundamental aspect of this process, studying HR is highly challenging, both experimentally and using computational approaches. Nevertheless, knowledge has built up over the years and has recently progressed at an accelerated pace, borne by increasingly focused investigations using new techniques such as single molecule approaches. Linking this knowledge to the atomic structure of the nucleoprotein filament systems and the succession of unstable, transient intermediate steps that takes place during the HR process remains a challenge; modeling retains a very strong role in bridging the gap between structures that are stable enough to be observed and in exploring transition paths between these structures. However, working on ever-changing long filament systems submitted to kinetic processes is full of pitfalls. This review presents the modeling tools that are used in such studies, their possibilities and limitations, and reviews the advances in the knowledge of the HR process that have been obtained through modeling. Notably, we will emphasize how cooperative behavior in the HR nucleoprotein filament enables modeling to produce reliable information.


Subject(s)
Homologous Recombination , Rec A Recombinases , Rec A Recombinases/metabolism , DNA, Single-Stranded/genetics , Nucleoproteins/genetics , DNA Breaks, Double-Stranded
20.
PLoS One ; 18(7): e0288611, 2023.
Article in English | MEDLINE | ID: mdl-37440583

ABSTRACT

In E. coli, double strand breaks (DSBs) are resected and loaded with RecA protein. The genome is then rapidly searched for a sequence that is homologous to the DNA flanking the DSB. Mismatches in homologous partners are rare, suggesting that RecA should rapidly reject mismatched recombination products; however, this is not the case. Decades of work have shown that long lasting recombination products can include many mismatches. In this work, we show that in vitro RecA forms readily observable recombination products when 16% of the bases in the product are mismatched. We also consider various theoretical models of mismatch-tolerant homology testing. The models test homology by comparing the sequences of Ltest bases in two single-stranded DNAs (ssDNA) from the same genome. If the two sequences pass the homology test, the pairing between the two ssDNA becomes permanent. Stringency is the fraction of permanent pairings that join ssDNA from the same positions in the genome. We applied the models to both randomly generated genomes and bacterial genomes. For both randomly generated genomes and bacterial genomes, the models show that if no mismatches are accepted stringency is ∼ 99% when Ltest = 14 bp. For randomly generated genomes, stringency decreases with increasing mismatch tolerance, and stringency improves with increasing Ltest. In contrast, in bacterial genomes when Ltest ∼ 75 bp, stringency is ∼ 99% for both mismatch-intolerant and mismatch-tolerant homology testing. Furthermore, increasing Ltest does not improve stringency because most incorrect pairings join different copies of repeats. In sum, for bacterial genomes highly mismatch tolerant homology testing of 75 bp provides the same stringency as homology testing that rejects all mismatches and testing more than ∼75 base pairs is not useful. Interestingly, in vivo commitment to recombination typically requires homology testing of ∼ 75 bp, consistent with highly mismatch intolerant testing.


Subject(s)
DNA , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Base Pairing , DNA, Single-Stranded/genetics , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL