Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.977
Filter
1.
Clin Sci (Lond) ; 138(16): 1009-1022, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39106080

ABSTRACT

Diabetes mediates endothelial dysfunction and increases the risk of Alzheimer's disease and related dementias. Diabetes also dysregulates the ET system. ET-1-mediated constriction of brain microvascular pericytes (BMVPCs) has been shown to contribute to brain hypoperfusion. Cellular senescence, a process that arrests the proliferation of harmful cells and instigates phenotypical changes and proinflammatory responses in endothelial cells that impact their survival and function. Thus, we hypothesized that ET-1 mediates BMVPC senescence and phenotypical changes in diabetes-like conditions. Human BMVPCs were incubated in diabetes-like conditions with or without ET-1 (1 µmol/L) for 3 and 7 days. Hydrogen peroxide (100 µmol/L H2O2) was used as a positive control for senescence and to mimic ischemic conditions. Cells were stained for senescence-associated ß-galactosidase or processed for immunoblotting and quantitative real-time PCR analyses. In additional experiments, cells were stimulated with ET-1 in the presence or absence of ETA receptor antagonist BQ-123 (20 µmol/L) or ETB receptor antagonist BQ-788 (20 µmol/L). ET-1 stimulation increased ß-galactosidase accumulation which was prevented by BQ-123. ET-1 also increased traditional senescence marker p16 protein and pericyte-specific senescence markers, TGFB1i1, PP1CA, and IGFBP7. Furthermore, ET-1 stimulated contractile protein α-SMA and microglial marker ostepontin in high glucose suggesting a shift toward an ensheathing or microglia-like phenotype. In conclusion, ET-1 triggers senescence, alters ETA and ETB receptors, and causes phenotypical changes in BMVPCs under diabetes-like conditions. These in vitro findings need to be further studied in vivo to establish the role of ETA receptors in the progression of pericyte senescence and phenotypical changes in VCID.


Subject(s)
Brain , Cellular Senescence , Endothelin-1 , Pericytes , Receptor, Endothelin A , Humans , Brain/metabolism , Brain/pathology , Cells, Cultured , Cellular Senescence/drug effects , Diabetes Mellitus/metabolism , Endothelin-1/metabolism , Endothelin-1/pharmacology , Pericytes/metabolism , Pericytes/drug effects , Pericytes/pathology , Phenotype , Receptor, Endothelin A/metabolism , Receptor, Endothelin A/genetics
2.
Clin Sci (Lond) ; 138(17): 1071-1087, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39136472

ABSTRACT

Perivascular adipose tissue (PVAT) negatively regulates vascular muscle contraction. However, in the context of obesity, the PVAT releases vasoconstrictor substances that detrimentally affect vascular function. A pivotal player in this scenario is the peptide endothelin-1 (ET-1), which induces oxidative stress and disrupts vascular function. The present study postulates that obesity augments ET-1 production in the PVAT, decreases the function of the nuclear factor erythroid 2-related factor-2 (Nrf2) transcription factor, further increasing reactive oxygen species (ROS) generation, culminating in PVAT dysfunction. Male C57BL/6 mice were fed either a standard or a high-fat diet for 16 weeks. Mice were also treated with saline or a daily dose of 100 mg·kg-1 of the ETA and ETB receptor antagonist Bosentan, for 7 days. Vascular function was evaluated in thoracic aortic rings, with and without PVAT. Mechanistic studies utilized PVAT from all groups and cultured WT-1 mouse brown adipocytes. PVAT from obese mice exhibited increased ET-1 production, increased ECE1 and ETA gene expression, loss of the anticontractile effect, as well as increased ROS production, decreased Nrf2 activity, and downregulated expression of Nrf2-targeted antioxidant genes. PVAT of obese mice also exhibited increased expression of Tyr216-phosphorylated-GSK3ß and KEAP1, but not BACH1 - negative Nrf2 regulators. Bosentan treatment reversed all these effects. Similarly, ET-1 increased ROS generation and decreased Nrf2 activity in brown adipocytes, events mitigated by BQ123 (ETA receptor antagonist). These findings place ET-1 as a major contributor to PVAT dysfunction in obesity and highlight that pharmacological control of ET-1 effects restores PVAT's cardiovascular protective role.


Subject(s)
Adipose Tissue , Down-Regulation , Endothelin-1 , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Obesity , Reactive Oxygen Species , Animals , Endothelin-1/metabolism , Obesity/metabolism , Obesity/physiopathology , Male , Adipose Tissue/metabolism , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Bosentan/pharmacology , Diet, High-Fat , Mice , Oxidative Stress , Receptor, Endothelin A/metabolism , Receptor, Endothelin A/genetics , Endothelin-Converting Enzymes/metabolism , Aorta, Thoracic/metabolism , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiopathology
3.
Physiol Rep ; 12(14): e16149, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39016164

ABSTRACT

The purpose of this study was to investigate whether endothelin-A receptor (ETAR) inhibition in non-Hispanic Black (NHB) and White (NHW) young adults depends on biological sex. We recruited females during low hormone (n = 22) and high hormone (n = 22) phases, and males (n = 22). Participants self-identified as NHB (n = 33) or NHW (n = 33). Participants were instrumented with two microdialysis fibers: (1) lactated Ringer's (control) and (2) 500 nM BQ-123 (ETAR antagonist). Local heating was used to elicit cutaneous vasodilation, and an infusion of 20 mM L-NAME to quantify NO-dependent vasodilation. At control sites, NO-dependent vasodilation was lowest in NHB males (46 ± 13 %NO) and NHB females during low hormone phases (47 ± 12 %NO) compared to all NHW groups. Inhibition of ETAR increased NO-dependent vasodilation in NHB males (66 ± 13 %NO), in both groups of females during low hormone phases (NHW, control: 64 ± 12 %NO, BQ-123: 85 ± 11 %NO; NHB, BQ-123: 68 ± 13 %NO), and in NHB females during high hormone phases (control: 61 ± 11 %NO, BQ-123: 83 ± 9 %NO). There was no effect for ETAR inhibition in NHW males or females during high hormone phases. These data suggest the effect of ETAR inhibition on NO-dependent vasodilation is influenced by biological sex and racial identity.


Subject(s)
Endothelin A Receptor Antagonists , Peptides, Cyclic , Receptor, Endothelin A , Skin , Vasodilation , Adult , Female , Humans , Male , Young Adult , Endothelin A Receptor Antagonists/pharmacology , Microvessels/physiology , Microvessels/drug effects , Microvessels/metabolism , Nitric Oxide/metabolism , Peptides, Cyclic/pharmacology , Receptor, Endothelin A/metabolism , Sex Characteristics , Skin/blood supply , Skin/metabolism , Vasodilation/drug effects , Black or African American , White
4.
Biosci Rep ; 44(7)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38904098

ABSTRACT

The intrarenal endothelin (ET) system is an established moderator of kidney physiology and mechanistic contributor to the pathophysiology and progression of chronic kidney disease in humans and rodents. The aim of the present study was to characterize ET system by combining single cell RNA sequencing (scRNA-seq) data with immunolocalization in human and rodent kidneys of both sexes. Using publicly available scRNA-seq data, we assessed sex and kidney disease status (human), age and sex (rats), and diurnal expression (mice) on the kidney ET system expression. In normal human biopsies of both sexes and in rodent kidney samples, the endothelin-converting enzyme-1 (ECE1) and ET-1 were prominent in the glomeruli and endothelium. These data agreed with the scRNA-seq data from these three species, with ECE1/Ece1 mRNA enriched in the endothelium. However, the EDN1/Edn1 gene (encodes ET-1) was rarely detected, even though it was immunolocalized within the kidneys, and plasma and urinary ET-1 excretion are easily measured. Within each species, there were some sex-specific differences. For example, in kidney biopsies from living donors, men had a greater glomerular endothelial cell endothelin receptor B (Ednrb) compared with women. In mice, females had greater kidney endothelial cell Ednrb than male mice. As commercially available antibodies did not work in all species, and RNA expression did not always correlate with protein levels, multiple approaches should be considered to maintain required rigor and reproducibility of the pre- and clinical studies evaluating the intrarenal ET system.


Subject(s)
Endothelin-1 , Endothelin-Converting Enzymes , Receptor, Endothelin B , Animals , Humans , Male , Endothelin-Converting Enzymes/metabolism , Endothelin-Converting Enzymes/genetics , Female , Endothelin-1/metabolism , Endothelin-1/genetics , Mice , Receptor, Endothelin B/metabolism , Receptor, Endothelin B/genetics , Rats , Kidney/metabolism , Endothelins/metabolism , Endothelins/genetics , Sex Factors , Receptor, Endothelin A/metabolism , Receptor, Endothelin A/genetics , Single-Cell Analysis , RNA-Seq , Kidney Glomerulus/metabolism
5.
Biosci Rep ; 44(7)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38860875

ABSTRACT

High blood pressure in the portal vein, portal hypertension (PH), is the final common pathway in liver cirrhosis regardless of aetiology. Complications from PH are the major cause of morbidity and mortality in these patients. Current drug therapy to reduce portal pressure is mainly limited to ß-adrenergic receptor blockade but approximately 40% of patients do not respond. Our aim was to use microarray to measure the expression of ∼20,800 genes in portal vein from patients with PH undergoing transplantation for liver cirrhosis (PH, n=12) versus healthy vessels (control, n=9) to identify potential drug targets to improve therapy. Expression of 9,964 genes above background was detected in portal vein samples. Comparing PH veins versus control (adjusted P-value < 0.05, fold change > 1.5) identified 548 up-regulated genes and 1,996 down-regulated genes. The 2,544 differentially expressed genes were subjected to pathway analysis. We identified 49 significantly enriched pathways. The endothelin pathway was ranked the tenth most significant, the only vasoconstrictive pathway to be identified. ET-1 gene (EDN1) was significantly up-regulated, consistent with elevated levels of ET-1 peptide previously measured in PH and cirrhosis. ETA receptor gene (EDNRA) was significantly down-regulated, consistent with an adaptive response to increased peptide levels in the portal vein but there was no change in the ETB gene (EDNRB). The results provide further support for evaluating the efficacy of ETA receptor antagonists as a potential therapy in addition to ß-blockers in patients with PH and cirrhosis.


Subject(s)
Endothelin-1 , Hypertension, Portal , Liver Cirrhosis , Portal Vein , Receptor, Endothelin A , Adult , Female , Humans , Male , Middle Aged , Down-Regulation , Endothelin-1/genetics , Endothelin-1/metabolism , Hypertension, Portal/genetics , Hypertension, Portal/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Transplantation , Portal Vein/metabolism , Portal Vein/pathology , Receptor, Endothelin A/genetics , Receptor, Endothelin A/metabolism , Up-Regulation
6.
Clin Sci (Lond) ; 138(14): 851-862, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38884602

ABSTRACT

The high-grade serous ovarian cancer (HG-SOC) tumor microenvironment (TME) is constellated by cellular elements and a network of soluble constituents that contribute to tumor progression. In the multitude of the secreted molecules, the endothelin-1 (ET-1) has emerged to be implicated in the tumor/TME interplay; however, the molecular mechanisms induced by the ET-1-driven feed-forward loops (FFL) and associated with the HG-SOC metastatic potential need to be further investigated. The tracking of the patient-derived (PD) HG-SOC cell transcriptome by RNA-seq identified the vascular endothelial growth factor (VEGF) gene and its associated signature among those mostly up-regulated by ET-1 and down-modulated by the dual ET-1R antagonist macitentan. Within the ligand-receptor pairs concurrently expressed in PD-HG-SOC cells, endothelial cells and activated fibroblasts, we discovered two intertwined FFL, the ET-1/ET-1R and VEGF/VEGF receptors, concurrently activated by ET-1 and shutting-down by macitentan, or by the anti-VEGF antibody bevacizumab. In parallel, we observed that ET-1 fine-tuned the tumoral and stromal secretome toward a pro-invasive pattern. Into the fray of the HG-SOC/TME double and triple co-cultures, the secretion of ET-1 and VEGF, that share a common co-regulation, was inhibited upon the administration of macitentan. Functionally, macitentan, mimicking the effect of bevacizumab, interfered with the HG-SOC/TME FFL-driven communication that fuels the HG-SOC invasive behavior. The identification of ET-1 and VEGF FFL as tumor and TME actionable vulnerabilities, reveals how ET-1R blockade, targeting the HG-SOC cells and the TME simultaneously, may represent an effective therapeutic option for HG-SOC patients.


Subject(s)
Endothelin-1 , Ovarian Neoplasms , Tumor Microenvironment , Vascular Endothelial Growth Factor A , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Endothelin-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Sulfonamides/pharmacology , Pyrimidines/pharmacology , Cystadenocarcinoma, Serous/metabolism , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/drug therapy , Gene Expression Regulation, Neoplastic , Stromal Cells/metabolism , Stromal Cells/pathology , Cell Line, Tumor , Receptors, Vascular Endothelial Growth Factor/metabolism , Neoplasm Grading , Receptor, Endothelin A/metabolism , Receptor, Endothelin A/genetics
7.
Cell Death Dis ; 15(5): 358, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777849

ABSTRACT

Recruitment of fibroblasts to tumors and their activation into cancer-associated fibroblasts (CAFs) is a strategy used by tumor cells to direct extracellular matrix (ECM) remodeling, invasion, and metastasis, highlighting the need to investigate the molecular mechanisms driving CAF function. Endothelin-1 (ET-1) regulates the communication between cancer and stroma and facilitates the progression of serous ovarian cancer (SOC). By binding to Endothelin A (ETA) and B (ETB) receptors, ET-1 enables the recruitment of ß-arrestin1 (ß-arr1) and the formation of signaling complexes that coordinate tumor progression. However, how ET-1 receptors might "educate" human ovarian fibroblasts (HOFs) to produce altered ECM and promote metastasis remains to be elucidated. This study identifies ET-1 as a pivotal factor in the activation of CAFs capable of proteolytic ECM remodeling and the generation of heterotypic spheroids containing cancer cells with a propensity to metastasize. An autocrine/paracrine ET-1/ETA/BR/ß-arr1 loop enhances HOF proliferation, upregulates CAF marker expression, secretes pro-inflammatory cytokines, and increases collagen contractility, and cell motility. Furthermore, ET-1 facilitates ECM remodeling by promoting the lytic activity of invadosome and activation of integrin ß1. In addition, ET-1 signaling supports the formation of heterotypic HOF/SOC spheroids with enhanced ability to migrate through the mesothelial monolayer, and invade, representing metastatic units. The blockade of ETA/BR or ß-arr1 silencing prevents CAF activation, invadosome function, mesothelial clearance, and the invasive ability of heterotypic spheroids. In vivo, therapeutic inhibition of ETA/BR using bosentan (BOS) significantly reduces the metastatic potential of combined HOFs/SOC cells, associated with enhanced apoptotic effects on tumor cells and stromal components. These findings support a model in which ET-1/ß-arr1 reinforces tumor/stroma interaction through CAF activation and fosters the survival and metastatic properties of SOC cells, which could be counteracted by ETA/BR antagonists.


Subject(s)
Cancer-Associated Fibroblasts , Ovarian Neoplasms , Podosomes , beta-Arrestin 1 , Humans , Female , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , beta-Arrestin 1/metabolism , beta-Arrestin 1/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Podosomes/metabolism , Endothelin-1/metabolism , Neoplasm Metastasis , Receptor, Endothelin A/metabolism , Signal Transduction , Extracellular Matrix/metabolism , Cell Movement , Cell Proliferation , Animals , Fibroblasts/metabolism , Neoplasm Invasiveness
8.
Biosci Rep ; 44(6)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38747277

ABSTRACT

Endothelin (ET) receptor antagonists are being investigated in combination with sodium-glucose co-transporter-2 inhibitors (SGLT-2i). These drugs primarily inhibit the SGLT-2 transporter that, in humans, is thought to be mainly restricted to the renal proximal convoluted tubule, resulting in increased glucose excretion favouring improved glycaemic control and diuresis. This action reduces fluid retention with ET receptor antagonists. Studies have suggested SGLT-2 may also be expressed in cardiomyocytes of human heart. To understand the potential of combining the two classes of drugs, our aim was to compare the distribution of ET receptor sub-types in human kidney, with SGLT-2. Secondly, using the same experimental conditions, we determined if SGLT-2 expression could be detected in human heart and whether the transporter co-localised with ET receptors. METHODS: Immunocytochemistry localised SGLT-2, ETA and ETB receptors in sections of histologically normal kidney, left ventricle from patients undergoing heart transplantation or controls. Primary antisera were visualised using fluorescent microscopy. Image analysis was used to measure intensity compared with background in adjacent control sections. RESULTS: As expected, SGLT-2 localised to epithelial cells of the proximal convoluted tubules, and co-localised with both ET receptor sub-types. Similarly, ETA receptors predominated in cardiomyocytes; low (compared with kidney but above background) positive staining was also detected for SGLT-2. DISCUSSION: Whether low levels of SGLT-2 have a (patho)physiological role in cardiomyocytes is not known but results suggest the effect of direct blockade of sodium (and glucose) influx via SGLT-2 inhibition in cardiomyocytes should be explored, with potential for additive effects with ETA antagonists.


Subject(s)
Receptor, Endothelin A , Receptor, Endothelin B , Sodium-Glucose Transporter 2 , Humans , Kidney/metabolism , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/drug effects , Myocardium/metabolism , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/metabolism , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
9.
Naunyn Schmiedebergs Arch Pharmacol ; 397(8): 5831-5845, 2024 08.
Article in English | MEDLINE | ID: mdl-38326659

ABSTRACT

Doxorubicin (Doxo)-associated cardio-and vasotoxicity has been recognised as a serious complication of cancer chemotherapy. The purpose of this novel paper was to determine the effect of Doxo on G-protein coupled receptor (GPCR)-mediated vasocontraction located on vascular smooth muscle cells. Rat left anterior descending artery segments were incubated for 24 h with 0.5 µM Doxo. The vasocontractile responses by activation of endothelin receptor type A (ETA) and type B (ETB), serotonin receptor 1B (5-HT1B) and thromboxane A2 prostanoid receptor (TP) were investigated by a sensitive myography using specific agonists, while the specificity of the GPCR agonists was verified by applying selective antagonists (i.e. ETA and ETB agonist = 10- 14-10- 7.5 M endothelin-1 (ET-1); ETA antagonist = 10 µM BQ123; ETB agonists = 10- 14-10- 7.5 M sarafotoxin 6c (S6c) and ET-1; ETB antagonist = 0.1 µM BQ788; 5-HT1B agonist = 10- 12-10- 5.5 M 5-carboxamidotryptamine (5-CT); 5-HT1B antagonist = 1 µM GR55562; TP agonist = 10- 12-10- 6.5 M U46619; TP antagonist = 1 µM Seratrodast). Our results show that 0.5 µM Doxo incubation of LAD segments leads to an increased VSMC vasocontraction through the ETB, 5-HT1B and TP GPCRs, with a 2.2-fold increase in ETB-mediated vasocontraction at 10- 10.5 M S6c, a 2.0-fold increase in 5-HT1B-mediated vasocontraction at 10- 5.5 M 5-CT, and a 1.3-fold increase in TP-mediated vasocontraction at 10- 6.5 M U46619. Further studies unravelling the involvement of intracellular GPCR signalling pathways will broaden our understanding of the Doxo-induced vasotoxicity, and thus pave the way to mitigate the adverse effects by potential implementation of adjunct therapy options.


Subject(s)
Coronary Vessels , Doxorubicin , Vasoconstriction , Animals , Male , Doxorubicin/pharmacology , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Vasoconstriction/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/toxicity , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Rats, Wistar , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Receptors, Thromboxane A2, Prostaglandin H2/antagonists & inhibitors , Receptors, Thromboxane A2, Prostaglandin H2/metabolism , Receptors, Thromboxane A2, Prostaglandin H2/agonists , Receptor, Serotonin, 5-HT1B/metabolism , Rats , Receptor, Endothelin B/metabolism , Receptor, Endothelin B/agonists , Receptor, Endothelin B/drug effects , In Vitro Techniques , Receptor, Endothelin A/metabolism
10.
J Am Heart Assoc ; 13(4): e032672, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38348777

ABSTRACT

BACKGROUND: The left ventricular remodeling (LVR) process has limited the effectiveness of therapies after myocardial infarction. The relationship between autoantibodies activating AT1R-AAs (angiotensin II receptor type 1-AAs) and ETAR-AAs (autoantibodies activating endothelin-1 receptor type A) with myocardial infarction has been described. Among patients with ST-segment-elevation myocardial infarction, we investigated the relationship between these autoantibodies with LVR and subsequent major adverse cardiac events. METHODS AND RESULTS: In this prospective observational study, we included 131 patients with ST-segment-elevation myocardial infarction (61±11 years of age, 112 men) treated with primary percutaneous coronary intervention. Within 48 hours of admission, 2-dimensional transthoracic echocardiography was performed, and blood samples were obtained. The seropositive threshold for AT1R-AAs and ETAR-AAs was >10 U/mL. Patients were followed up at 6 months, when repeat transthoracic echocardiography was performed. The primary end points were LVR, defined as a 20% increase in left ventricular end-diastolic volume index, and major adverse cardiac event occurrence at follow-up, defined as cardiac death, nonfatal re-myocardial infarction, and hospitalization for heart failure. Forty-one (31%) patients experienced LVR. The prevalence of AT1R-AAs and ETAR-AAs seropositivity was higher in patients with versus without LVR (39% versus 11%, P<0.001 and 37% versus 12%, P=0.001, respectively). In multivariable analysis, AT1R-AAs seropositivity was significantly associated with LVR (odds ratio [OR], 4.66; P=0.002) and represented a risk factor for subsequent major adverse cardiac events (OR, 19.6; P=0.002). CONCLUSIONS: AT1R-AAs and ETAR-AAs are associated with LVR in patients with ST-segment-elevation myocardial infarction. AT1R-AAs are also significantly associated with recurrent major adverse cardiac events. These initial observations may set the stage for a better pathophysiological understanding of the mechanisms contributing to LVR and ST-segment-elevation myocardial infarction prognosis.


Subject(s)
Myocardial Infarction , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Male , Humans , Aged, 80 and over , Receptor, Endothelin A , Myocardial Infarction/therapy , Prognosis , Echocardiography , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/therapy , ST Elevation Myocardial Infarction/complications , Receptors, Angiotensin , Ventricular Remodeling/physiology , Ventricular Function, Left/physiology
11.
Int J Mol Sci ; 25(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38396976

ABSTRACT

Systemic sclerosis (SSc) is a multifaceted connective tissue disease whose aetiology remains largely unknown. Autoimmunity is thought to play a pivotal role in the development of the disease, but the direct pathogenic role of SSc-specific autoantibodies remains to be established. The recent discovery of functional antibodies targeting G-protein-coupled receptors (GPCRs), whose presence has been demonstrated in different autoimmune conditions, has shed some light on SSc pathogenesis. These antibodies bind to GPCRs expressed on immune and non-immune cells as their endogenous ligands, exerting either a stimulatory or inhibitory effect on corresponding intracellular pathways. Growing evidence suggests that, in SSc, the presence of anti-GPCRs antibodies correlates with specific clinical manifestations. Autoantibodies targeting endothelin receptor type A (ETAR) and angiotensin type 1 receptor (AT1R) are associated with severe vasculopathic SSc-related manifestations, while anti-C-X-C motif chemokine receptors (CXCR) antibodies seem to be predictive of interstitial lung involvement; anti-muscarinic-3 acetylcholine receptor (M3R) antibodies have been found in patients with severe gastrointestinal involvement and anti-protease-activated receptor 1 (PAR1) antibodies have been detected in patients experiencing scleroderma renal crisis. This review aims to clarify the potential pathogenetic significance of GPCR-targeting autoantibodies in SSc, focusing on their associations with the different clinical manifestations of scleroderma. An extensive examination of functional autoimmunity targeting GPCRs might provide valuable insights into the underlying pathogenetic mechanisms of SSc, thus enabling the development of novel therapeutic strategies tailored to target GPCR-mediated pathways.


Subject(s)
Autoantibodies , Scleroderma, Systemic , Humans , Autoimmunity , Receptor, Endothelin A , Receptor, Angiotensin, Type 1
12.
BMC Cardiovasc Disord ; 24(1): 11, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38166688

ABSTRACT

BACKGROUND: Endothelial dysfunction is characterized by an imbalance between endothelium-derived vasodilatory and vasoconstrictive effects and may play an important role in the development of heart failure. An increasing number of studies have shown that endothelial-derived NO-mediated vasodilation is attenuated in heart failure patients. However, the role of endothelin-1 (ET-1) in heart failure remains controversial due to its different receptors including ET-1 receptor type A (ETAR) and ET-1 receptor type B (ETBR). The aim of this study was to determine whether ET-1 and its receptors are activated and to explore the role of ETAR and ETBR in heart failure induced by myocarditis. METHODS: We constructed an animal model of experimental autoimmune myocarditis (EAM) with porcine cardiac myosin. Twenty rats were randomized to the control group (3 weeks, n = 5), the extended control group (8 weeks, n = 5), the EAM group (3 weeks, n = 5), the extended EAM group (8 weeks, n = 5). HE staining was used to detect myocardial inflammatory infiltration and the myocarditis score, Masson's trichrome staining was used to assess myocardial fibrosis, echocardiography was used to evaluate cardiac function, ELISA was used to detect serum NT-proBNP and ET-1 concentrations, and immunohistochemistry and western blotting were used to detect ETAR and ETBR expression in myocardial tissue of EAM-induced heart failure. Subsequently, a model of myocardial inflammatory injury in vitro was constructed to explore the role of ETAR and ETBR in EAM-induced heart failure. RESULTS: EAM rats tended to reach peak inflammation after 3 weeks of immunization and developed stable chronic heart failure at 8 weeks after immunization. LVEDd and LVEDs were significantly increased in the EAM group compared to the control group at 3 weeks and 8 weeks after immunization while EF and FS were significantly reduced. Serum NT-proBNP concentrations in EAM (both 3 weeks and 8 weeks) were elevated. Therefore, EAM can induce acute and chronic heart failure due to myocardial inflammatory injury. Serum ET-1 concentration and myocardial ETAR and ETBR protein were significantly increased in EAM-induced heart failure in vivo. Consistent with the results of the experiments in vivo, ETAR and ETBR protein expression levels were significantly increased in the myocardial inflammatory injury model in vitro. Moreover, ETAR gene silencing inhibited inflammatory cytokine TNF-α and IL-1ß levels, while ETBR gene silencing improved TNF-α and IL-1ß levels. CONCLUSIONS: ET-1, ETAR, and ETBR were activated in both EAM-induced acute heart failure and chronic heart failure. ETAR may positively regulate EAM-induced heart failure by promoting myocardial inflammatory injury, whereas ETBR negatively regulates EAM-induced heart failure by alleviating myocardial inflammatory injury.


Subject(s)
Autoimmune Diseases , Heart Failure , Heart Injuries , Myocarditis , Receptor, Endothelin A , Receptor, Endothelin B , Animals , Rats , Heart Failure/etiology , Heart Failure/metabolism , Myocarditis/chemically induced , Myocardium/metabolism , Swine , Tumor Necrosis Factor-alpha/metabolism , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/metabolism
13.
Curr Radiopharm ; 17(2): 209-217, 2024.
Article in English | MEDLINE | ID: mdl-38213167

ABSTRACT

INTRODUCTION: The aim of this work was to prepare a selective nuclear medicine imaging probe for the Endothelin 1 receptor A in the brain. MATERIAL AND METHODS: Ferulic acid (an ETRA antagonist) was radiolabeled using 131I by direct electrophilic substitution method. The radiolabeled ferulic acid was formulated as polymeric micelles to allow intranasal brain delivery. Biodistribution was studied in Swiss albino mice by comparing brain uptake of 131I-ferulic acid after IN administration of 131I-ferulic acid polymeric micelles, IN administration of 131I-ferulic acid solution and IV administration of 131I-ferulic acid solution. RESULTS: Successful radiolabeling was achieved with an RCY of 98 % using 200 µg of ferulic acid and 60 µg of CAT as oxidizing agents at pH 6, room temperature and 30 min reaction time. 131I-ferulic acid polymeric micelles were successfully formulated with the particle size of 21.63 nm and polydispersity index of 0.168. Radioactivity uptake in the brain and brain/blood uptake ratio for I.N 131I-ferulic acid polymeric micelles were greater than the two other routes at all periods. CONCLUSION: Our results provide 131I-ferulic acid polymeric micelles as a hopeful nuclear medicine tracer for ETRA brain receptor.


Subject(s)
Administration, Intranasal , Brain , Coumaric Acids , Iodine Radioisotopes , Micelles , Radiopharmaceuticals , Animals , Coumaric Acids/pharmacokinetics , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Mice , Brain/diagnostic imaging , Brain/metabolism , Tissue Distribution , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Receptor, Endothelin A/metabolism , Polymers/chemistry
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166958, 2024 02.
Article in English | MEDLINE | ID: mdl-37963542

ABSTRACT

Advanced aging evokes unfavorable changes in the heart including cardiac remodeling and contractile dysfunction although the underlying mechanism remains elusive. This study was conducted to evaluate the role of endothelin-1 (ET-1) in the pathogenesis of cardiac aging and mechanism involved. Echocardiographic and cardiomyocyte mechanical properties were determined in young (5-6 mo) and aged (26-28 mo) wild-type (WT) and cardiomyocyte-specific ETA receptor knockout (ETAKO) mice. GSEA enrichment identified differentially expressed genes associated with mitochondrial respiration, mitochondrial protein processing and mitochondrial depolarization in cardiac aging. Aging elevated plasma levels of ET-1, Ang II and suppressed serum Fe2+, evoked cardiac remodeling (hypertrophy and interstitial fibrosis), contractile defects (fractional shortening, ejection fraction, cardiomyocyte peak shortening, maximal velocity of shortening/relengthening and prolonged relengthening) and intracellular Ca2+ mishandling (dampened intracellular Ca2+ release and prolonged decay), the effects with the exception of plasma AngII, ET-1 and Fe2+ were mitigated by ETAKO. Advanced age facilitated O2- production, carbonyl protein damage, cardiac hypertrophy (GATA4, ANP, NFATc3), ER stress, ferroptosis, compromised autophagy (LC3B, Beclin-1, Atg7, Atg5 and p62) and mitophagy (parkin and FUNDC1), and deranged intracellular Ca2+ proteins (SERCA2a and phospholamban), the effects of which were reversed by ETA ablation. ET-1 provoked ferroptosis in vitro, the response was nullified by the ETA receptor antagonist BQ123 and mitophagy inducer CsA. ETA but not ETB receptor antagonism reconciled cardiac aging, which was abrogated by inhibition of mitophagy and ferroptosis. These findings collectively denote promises of targeting ETA, mitophagy and ferroptosis in the management of aging-associated cardiac remodeling and contractile defect.


Subject(s)
Ferroptosis , Myocytes, Cardiac , Mice , Animals , Myocytes, Cardiac/metabolism , Mitophagy , Ferroptosis/genetics , Ventricular Remodeling/physiology , Mice, Knockout , Aging/genetics , Receptor, Endothelin A/genetics , Receptor, Endothelin A/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism
15.
Biol Reprod ; 110(1): 185-197, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37823770

ABSTRACT

Obstructive sleep apnea is a recognized risk factor for gestational hypertension, yet the exact mechanism behind this association remains unclear. Here, we tested the hypothesis that intermittent hypoxia, a hallmark of obstructive sleep apnea, induces gestational hypertension through perturbed endothelin-1 signaling. Pregnant Sprague-Dawley rats were subjected to normoxia (control), mild intermittent hypoxia (10.5% O2), or severe intermittent hypoxia (6.5% O2) from gestational days 10-21. Blood pressure was monitored. Plasma was collected and mesenteric arteries were isolated for myograph and protein analyses. The mild and severe intermittent hypoxia groups demonstrated elevated blood pressure, reduced plasma nitrate/nitrite, and unchanged endothelin-1 levels compared to the control group. Western blot analysis revealed decreased expression of endothelin type B receptor and phosphorylated endothelial nitric oxide synthase, while the levels of endothelin type A receptor and total endothelial nitric oxide synthase remained unchanged following intermittent hypoxia exposure. The contractile responses to potassium chloride, phenylephrine, and endothelin-1 were unaffected in endothelium-denuded arteries from mild and severe intermittent hypoxia rats. However, mild and severe intermittent hypoxia rats exhibited impaired endothelium-dependent vasorelaxation responses to endothelin type B receptor agonist IRL-1620 and acetylcholine compared to controls. Endothelium denudation abolished IRL-1620-induced vasorelaxation, supporting the involvement of endothelium in endothelin type B receptor-mediated relaxation. Treatment with IRL-1620 during intermittent hypoxia exposure significantly attenuated intermittent hypoxia-induced hypertension in pregnant rats. This was associated with elevated circulating nitrate/nitrite levels, enhanced endothelin type B receptor expression, increased endothelial nitric oxide synthase activation, and improved vasodilation responses. Our data suggested that intermittent hypoxia exposure during gestation increases blood pressure in pregnant rats by suppressing endothelin type B receptor-mediated signaling, providing a molecular mechanism linking intermittent hypoxia and gestational hypertension.


Subject(s)
Hypertension, Pregnancy-Induced , Sleep Apnea, Obstructive , Humans , Pregnancy , Female , Rats , Animals , Nitric Oxide Synthase Type III/metabolism , Rats, Sprague-Dawley , Endothelin-1/metabolism , Endothelin-1/pharmacology , Hypertension, Pregnancy-Induced/etiology , Hypertension, Pregnancy-Induced/metabolism , Nitrates/metabolism , Nitrates/pharmacology , Nitrites/metabolism , Nitrites/pharmacology , Vasodilation , Endothelins/metabolism , Endothelins/pharmacology , Hypoxia/metabolism , Receptor, Endothelin A/metabolism , Mesenteric Arteries , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Nitric Oxide/metabolism , Nitric Oxide/pharmacology , Endothelium, Vascular
16.
Hypertension ; 81(4): 691-701, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38059359

ABSTRACT

ET (endothelin) is a powerful vasoconstrictor 21-amino acid peptide present in many tissues, which exerts many physiological functions across the body and participates as a mediator in many pathological conditions. ETs exert their effects through ETA and ETB receptors, which can be blocked by selective receptor antagonists. ETs were shown to play important roles among others, in systemic hypertension, particularly when resistant or difficult to control, and in pulmonary hypertension, atherosclerosis, cardiac hypertrophy, subarachnoid hemorrhage, chronic kidney disease, diabetic cardiovascular disease, scleroderma, some cancers, etc. To date, ET antagonists are only approved for the treatment of primary pulmonary hypertension and recently for IgA nephropathy and used in the treatment of digital ulcers in scleroderma. However, they may soon be approved for the treatment of patients with resistant hypertension and different types of nephropathy. Here, the role of ETs is reviewed with a special emphasis on participation in and treatment of hypertension and chronic kidney disease.


Subject(s)
Hypertension, Pulmonary , Hypertension , Renal Insufficiency, Chronic , Humans , Endothelin Receptor Antagonists/therapeutic use , Endothelins , Hypertension/drug therapy , Renal Insufficiency, Chronic/complications , Endothelin-1/physiology , Receptors, Endothelin , Receptor, Endothelin A
17.
Biochem Pharmacol ; 228: 116007, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38145828

ABSTRACT

Receptor tyrosine kinase inhibitors (RTKIs) suppress tumour growth by targeting vascular endothelial growth factor receptor 2 (VEGFR-2) which is an important mediator of angiogenesis. Here, we demonstrate that two potent RTKIs, axitinib and lenvatinib, are associated with hypertensive side effects. Doppler flowmetry was used to evaluate regional haemodynamic profiles of axitinib and lenvatinib. Male Sprague Dawley rats (350-500 g) were instrumented with Doppler flow probes (renal and mesenteric arteries and descending abdominal aorta) and catheters (jugular vein and distal abdominal aorta, via the caudal artery). Rats were dosed daily with axitinib (3 or 6 mg.kg-1) or lenvatinib (1 or 3 mg.kg-1) and regional haemodynamics were recorded over a maximum of 4 days. Both RTKIs caused significant (p < 0.05) increases in mean arterial pressure (MAP), which was accompanied by significant (p < 0.05) vasoconstriction in both the mesenteric and hindquarters vascular beds. To gain insight into the involvement of endothelin-1 (ET-1) in RTKI-mediated hypertension, we also monitored heart rate (HR) and MAP in response to axitinib or lenvatinib in animals treated with the ETA receptor selective antagonist sitaxentan (5 mg.kg-1) or the mixed ETA/ETB receptor antagonist bosentan (15 mg.kg-1) over two days. Co-treatment with bosentan or sitaxentan markedly reduced the MAP effects mediated by both RTKIs (p < 0.05). Bosentan, but not sitaxentan, also attenuated ET-1 mediated increases in HR. These data suggest that selective antagonists of ETA receptors may be appropriate to alleviate the hypertensive effects of axitinib and lenvatinib.


Subject(s)
Axitinib , Hypertension , Phenylurea Compounds , Protein Kinase Inhibitors , Quinolines , Rats, Sprague-Dawley , Receptor, Endothelin A , Animals , Male , Axitinib/pharmacology , Quinolines/pharmacology , Quinolines/administration & dosage , Phenylurea Compounds/pharmacology , Phenylurea Compounds/administration & dosage , Rats , Hypertension/drug therapy , Hypertension/metabolism , Protein Kinase Inhibitors/pharmacology , Receptor, Endothelin A/metabolism , Imidazoles/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Indazoles/pharmacology , Indazoles/administration & dosage
18.
J Eur Acad Dermatol Venereol ; 38 Suppl 2: 3-10, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38116639

ABSTRACT

BACKGROUND: Hyperpigmented spots are common issues in all ethnicities with a hallmark characteristic of increased melanocyte dendricity. OBJECTIVES: To determine (1) potential receptors and/or cytokines that are involved in increased melanocyte dendricity in multiple facial spot types; (2) treatment effects of skin-lightening compounds on identified cytokine release from keratinocytes and on dendricity in melanocytes. METHODS: Facial spots (melasma, solar lentigo, acne-induced post-inflammatory hyperpigmentation) and adjacent non-spot skin biopsies were collected from Chinese women (age 20-70). The epidermal supra and basal layers were laser dissected to enrich keratinocyte or melanocyte biology respectively for transcriptome analysis. Melanocyte dendricity was assessed histologically by immunofluorescent staining. Effect of interleukin-6 (IL-6) and endothelin-1 (ET-1) on melanocyte dendricity and melanosome transfer were assessed in human melanocytes or melanocyte-keratinocyte co-culture models. Treatment effects of skin-lightening compounds (niacinamide, tranexamic acid [TxA], sucrose laurate/dilaurate mixture [SDL]) were assessed on IL-6 or ET-1 release from keratinocytes and on dendricity in melanocytes. RESULTS: Transcriptome analysis revealed IL-6 receptor and ET-1 receptor were significantly upregulated compared to the adjacent normal skin, visually confirmed at the protein level through immunostaining. Melanocytes in spot areas are more dendritic than melanocytes in adjacent non-spot skin. The addition of IL-6 and ET-1 to cell culture models increased melanocyte dendricity and melanosome transfer. IL-6 release was significantly suppressed by niacinamide and its combination, while ET-1 release was significantly reduced by both niacinamide and TxA. In contrast, SDL acted directly upon melanocytes to reduce dendricity. CONCLUSION: Interleukin-6 and ET-1 receptors are significantly upregulated in multiple facial spot types. The in vitro testing demonstrated their respective ligands increased melanocyte dendricity. Tested skin-lightening compounds showed reduction in release of IL-6/ET-1 from epidermal keratinocytes and/or inhibition of melanocyte dendricity. This work sheds light on pathophysiological mechanism of facial spots and potential new mechanisms of these skin-lightening compounds which warrant further human clinical validation.


Subject(s)
Hyperpigmentation , Niacinamide , Receptor, Endothelin A , Receptors, Interleukin-6 , Tranexamic Acid , Adult , Aged , Female , Humans , Middle Aged , Young Adult , Endothelin-1/metabolism , Hyperpigmentation/metabolism , Interleukin-6/metabolism , Keratinocytes/metabolism , Melanocytes , Niacinamide/pharmacology , Receptor, Endothelin A/metabolism , Tranexamic Acid/pharmacology , Receptors, Interleukin-6/metabolism
19.
Zhonghua Fu Chan Ke Za Zhi ; 58(12): 930-938, 2023 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-38123199

ABSTRACT

Objective: To investigate the clinical significance of endothelin A receptor (ETAR) expression in high-grade serous ovarian carcinoma (HGSOC). To design ETAR carboxyl terminal (ETAR-C) amino acids derived polypeptide and to study the inhibitory effect on ovarian epithelial carcinoma cells in vitro. Methods: (1) A total of 126 patients who received surgical treatment and were diagnosed with HGSOC by postoperative pathological examination in Central Hospital of Xuzhou from January 1, 2007 to December 31, 2017 were selected. All patients had completed clinicopathological data and follow-up data. Cancer tissue samples were collected and ETAR mRNA expression in HGSOC tissues was detected by reverse transcript-PCR. The clinical significance was analyzed. (2) ETAR-C fusion polypeptide was designed based on the sequence of carboxyl terminal amino acids of ETAR, expressed and purified in vitro. The effects of ETAR-C fusion polypeptide on migration and invasion ability of ovarian cancer SKOV3 and CAOV3 cells were detected by scratch test and invasion test, respectively. The effect of ETAR-C fusion polypeptide on chemosensitivity of cisplatin-resistant ovarian cancer SKOV3/cDDP and CAOV3/cDDP cells was determined by methyl thiazolyl tetrazolium (MTT) colorimetric assay. The effect of ETAR-C fusion polypeptide on ß-arrestin-1 expression in ovarian cancer SKOV3 and CAOV3 cells was detected by western blot. Results: (1) The relative expression level of ETAR mRNA in HGSOC tissues was 18.6±5.1. Patients with HGSOC were divided into high ETAR mRNA expression (n=76) and low ETAR mRNA expression (n=50) with 61.7% as cut-off value analyzed by X-Tile software. High expression of ETAR mRNA was significantly correlated with abdominal water volume, platinum drug resistance, and cancer antigen 125 (CA125) value in HGSOC patients (all P<0.05), but was not related to the age of patients with HGSOC and the size of postoperative residual lesions (all P>0.05). The 5-year progression free survival rates were 18.4% and 28.0%, and the 5-year overall survival rates were 38.2% and 52.0% in HGSOC patients with high and low ETAR mRNA expression respectively, there were statistically significant differences (P=0.046, P=0.034). (2) The results of scratch test and invasion test showed that the scratch healing rate and cell invasion rate of SKOV3 or CAOV3 cells treated with endothelin-1 (ET-1) and ET-1+ETAR-C were respectively compared, and the differences were statistically significant (all P<0.05). MTT assay showed that the inhibition rates of ETAR-C fusion polypeptide treated in SKOV3/cDDP and CAOV3/cDDP cells were significantly higher than those of control cells after the addition of 4, 6, 8, 10, 12, and 24 µg/ml cisplatin (all P<0.05). Western blot analysis showed that the relative expression levels of ß-arrestin-1 in SKOV3 or CAOV3 cells treated with ET-1 and ET-1+ETAR-C were 1.85±0.09 and 1.13±0.09 (SKOV3 cells), 2.14±0.15 and 1.66±0.12 (CAOV3 cells), respectively. The differences were statistically significant (all P<0.05). Conclusions: The prognosis of HGSOC patients with high expression of ETAR mRNA is significantly worse than those with low expression of ETAR mRNA. ETAR might be a new target for HGSOC treatment. The ETAR-C fusion polypeptide that interferes with the interaction of ETAR and ß-arrestin-1 has good inhibitory effect on ovarian cancer cells in vitro, and might have clinical application potential.


Subject(s)
Cisplatin , Ovarian Neoplasms , Female , Humans , Amino Acids/therapeutic use , beta-Arrestins/metabolism , beta-Arrestins/therapeutic use , Cell Line, Tumor , Cisplatin/pharmacology , Clinical Relevance , Ovarian Neoplasms/pathology , Receptor, Endothelin A/metabolism , Receptor, Endothelin A/therapeutic use , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
Int J Mol Sci ; 24(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37762309

ABSTRACT

The renin-angiotensin-aldosterone system (RAAS) plays a crucial role in maintaining various physiological processes in the body, including blood pressure regulation, electrolyte balance, and overall cardiovascular health. However, any compounds or drugs known to perturb the RAAS might have an additional impact on transmembrane ionic currents. In this retrospective review article, we aimed to present a selection of chemical compounds or medications that have long been recognized as interfering with the RAAS. It is noteworthy that these substances may also exhibit regulatory effects in different types of ionic currents. Apocynin, known to attenuate the angiotensin II-induced activation of epithelial Na+ channels, was shown to stimulate peak and late components of voltage-gated Na+ current (INa). Esaxerenone, an antagonist of the mineralocorticoid receptor, can exert an inhibitory effect on peak and late INa directly. Dexamethasone, a synthetic glucocorticoid, can directly enhance the open probability of large-conductance Ca2+-activated K+ channels. Sparsentan, a dual-acting antagonist of the angiotensin II receptor and endothelin type A receptors, was found to suppress the amplitude of peak and late INa effectively. However, telmisartan, a blocker of the angiotensin II receptor, was effective in stimulating the peak and late INa along with a slowing of the inactivation time course of the current. However, telmisartan's presence can also suppress the erg-mediated K+ current. Moreover, tolvaptan, recognized as an aquaretic agent that can block the vasopressin receptor, was noted to suppress the amplitude of the delayed-rectifier K+ current and the M-type K+ current directly. The above results indicate that these substances not only have an interference effect on the RAAS but also exert regulatory effects on different types of ionic currents. Therefore, to determine their mechanisms of action, it is necessary to gain a deeper understanding.


Subject(s)
Angiotensin II , Renin-Angiotensin System , Angiotensin II/pharmacology , Blood Pressure , Glucocorticoids , Receptor, Endothelin A , Telmisartan , Humans
SELECTION OF CITATIONS
SEARCH DETAIL