Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Curr Vasc Pharmacol ; 21(4): 246-256, 2023.
Article in English | MEDLINE | ID: mdl-37349999

ABSTRACT

BACKGROUND: We previously reported that endothelins (ETs) regulate tyrosine hydroxylase (TH) activity and expression in the olfactory bulb (OB) of normotensive and hypertensive animals. Applying an ET receptor type A (ETA) antagonist to the brain suggested that endogenous ETs bind to ET receptor type B (ETB) to elicit effects. OBJECTIVE: The aim of the present work was to evaluate the role of central ETB stimulation on the regulation of blood pressure (BP) and the catecholaminergic system in the OB of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. METHODS: DOCA-salt hypertensive rats were infused for 7 days with cerebrospinal fluid or IRL-1620 (ETB receptor agonist) through a cannula placed in the lateral brain ventricle. Systolic BP (SBP) and heart rate were recorded by plethysmography. The expression of TH and its phosphorylated forms in the OB were determined by immunoblotting, TH activity by a radioenzymatic assay, and TH mRNA by quantitative real-time polymerase chain reaction. RESULTS: Chronic administration of IRL-1620 decreased SBP in hypertensive rats but not in normotensive animals. Furthermore, the blockade of ETB receptors also decreased TH-mRNA in DOCA-salt rats, but it did not modify TH activity or protein expression. CONCLUSION: These findings suggest that brain ETs through the activation of ETB receptors contribute to SBP regulation in DOCA-salt hypertension. However, the catecholaminergic system in the OB does not appear to be conclusively involved although mRNA TH was reduced. Present and previous findings suggest that in this salt-sensitive animal model of hypertension, the OB contributes to chronic BP elevation.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Rats , Animals , Desoxycorticosterone Acetate/pharmacology , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/pharmacology , Olfactory Bulb/metabolism , Hypertension/chemically induced , Hypertension/metabolism , Blood Pressure , Endothelins/metabolism , Endothelins/pharmacology , Receptor, Endothelin B/genetics , Receptor, Endothelin B/metabolism , RNA, Messenger/metabolism , Endothelin-1/genetics , Endothelin-1/metabolism , Endothelin-1/pharmacology , Receptor, Endothelin A/genetics , Receptor, Endothelin A/metabolism
2.
Oncol Rep ; 46(2)2021 Aug.
Article in English | MEDLINE | ID: mdl-34165174

ABSTRACT

Endothelin­1 (ET­1) is involved in the regulation of steroidogenesis. Additionally, patients with castration­resistant prostate cancer (PCa) have a higher ET­1 plasma concentration than those with localized PCa and healthy individuals. The aim of the present study was to evaluate the effect of ET­1 on steroidogenesis enzymes, androgen receptor (AR) and testosterone (T) production in PCa cells. The expression levels of endothelin receptors in prostate tissue from patients with localized PCa by immunohistochemistry, and those in LNCaP and PC3 cells were determined reverse transcription­quantitative PCR (RT­qPCR) and western blotting. Furthermore, the expression levels of ET­1 were determined in LNCaP and PC3 cells by RT­qPCR and western blotting. The ET­1 receptor activation was evaluated by intracellular calcium measurement, the expression levels of AR and enzymes participating in steroidogenesis [cytochrome P450 family 11 subfamily A member 1 (CyP11A1), cytochrome P450 family 17 subfamily A member 1, aldo­keto reductase family member C2 and 3ß­hydroxysteroid dehydrogenase/isomerase 2 (3ß HSD2)] were determined by western blotting and T concentration was determined by ELISA using PC3 cells. The present results revealed higher expression levels of endothelin A receptor (ETAR) in tissues obtained from samples of patients with PCa with a low Gleason Score. No changes were identified for endothelin B receptor (ETBR). PC3 cells expressed higher levels of ET­1 and ETAR, while LNCaP cells exhibited higher expression levels of ETBR. Blocking of ETAR and endothelin B receptor decreased the expression levels of CyP11A1 and 3ß HSD2 enzymes and AR in PC3 cells, as well as T secretion. These findings suggested that ET­1 has a potential role in modulating the intratumoral steroidogenesis pathway and might have relevance as a possible therapeutic target.


Subject(s)
Endothelin-1/metabolism , Prostatic Neoplasms/metabolism , Receptor, Endothelin A/metabolism , Receptors, Androgen/genetics , Testosterone/metabolism , 3-Hydroxysteroid Dehydrogenases/metabolism , Aged , Aged, 80 and over , Cell Line, Tumor , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Humans , Male , Middle Aged , Neoplasm Grading , PC-3 Cells , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Receptor, Endothelin B/metabolism , Tissue Array Analysis , Up-Regulation
3.
Exp Brain Res ; 239(1): 267-277, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33145614

ABSTRACT

Sickness syndrome is an adaptive response that can be distinguished by specific signs and symptoms, such as fever and generalized hyperalgesia. Endothelin-1 (ET-1) is produced by inflammatory stimuli, including lipopolysaccharide, and involved in the pathogenesis of inflammation and pain by acting through ETA and ETB receptors. ET-1 also induces fever by acting on the central nervous system. The present study investigated the role of ET-1 in sickness syndrome responses, including hyperalgesia, anhedonia, and hypolocomotion. Intracerebroventricular ET-1 administration induced mechanical and thermal hyperalgesia in rats, which was ameliorated by the ETA receptor antagonist BQ123 and exacerbated by the ETB receptor antagonist BQ788. A cyclooxygenase blocker did not alter hyperalgesia that was induced by ET-1. Lipopolysaccharide administration induced hyperalgesia, and both BQ123 and BQ788 abolished this mechanical hyperalgesia, but the thermal response was only partially blocked. The blockade of ETA receptors in the hypothalamus also abolished lipopolysaccharide-induced mechanical hyperalgesia, and the ETB receptor antagonist did not influence this response. Lipopolysaccharide also induced anhedonia, reflected by lower sucrose preference, and reduced locomotor activity. Both antagonists restored locomotor activity, but only BQ788 reversed the reduction of sucrose preference. These results indicate that ET-1 and both ETA and ETB receptors are involved in various responses that are related to sickness syndrome, including hyperalgesia, anhedonia, and hypolocomotion, that is induced by LPS. Hypothalamic ETA but not ETB receptors are involved in mechanical hyperalgesia that is observed during lipopolysaccharide-induced sickness syndrome.


Subject(s)
Endothelin-1 , Hyperalgesia , Anhedonia , Animals , Endothelin-1/toxicity , Endotoxins , Hyperalgesia/chemically induced , Male , Rats , Receptor, Endothelin B
4.
J Photochem Photobiol B ; 214: 112104, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33360199

ABSTRACT

Currently, photobiomodulation therapy (PBMT) is gaining space in the scientific and clinical environment. To help elucidate the importance of irradiance, this study evaluated the effect of two different PBMT irradiances (3.5 and 90 mW/cm2), given a fixed wavelength of 630 nm and a dose of 2 J/cm2, on mechanical hyperalgesia following Complete Freund's Adjuvant (CFA) intraplantar (i.pl.) injection in mice. Additionally, we investigated the role of peripheral opioid and endothelin-B receptors (ETB-R), as well as sex differences in treatment outcome. Different groups of male or female mice were evaluated 6 and 96 h after CFA. Mechanical hyperalgesia was evaluated 30 min after treatments. Naloxone or Bq-788 administration, fifteen minutes before PBMT or Sarafotoxin S6c, helped determine the involvement of peripheral opioid and ETB-Rs on PBMT. Lastly, ETB-Rs skin immunocontent in both sexes was quantified after PBMT consecutive daily treatments. PBMT at an irradiance of 90 mW/cm2, was more effective than 3.5 mW/cm2. Bq-788 and naloxone administration prevented the effects of PBMT and SRTX S6c; however, PBMT did not influence peripheral ETB-Rs immunocontent. The results suggest that irradiance influences PMBT effect; and that activation of ETB-R play a role in peripheral PBMT opioid induced analgesia. Lastly, PMBT effects do not appear to be sex-dependent.


Subject(s)
Analgesics, Opioid/radiation effects , Hyperalgesia/radiotherapy , Low-Level Light Therapy/methods , Receptor, Endothelin B/radiation effects , Animals , Dose-Response Relationship, Radiation , Female , Male , Mice , Naloxone/pharmacology , Oligopeptides/pharmacology , Piperidines/pharmacology , Radiation Exposure , Sex Factors , Time Factors , Viper Venoms/metabolism
5.
Eur J Pharmacol ; 885: 173543, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32896551

ABSTRACT

Endothelins regulate catecholaminergic activity in the olfactory bulb (OB) in normotensive and hypertensive animals. Administration of an endothelin ETA receptor antagonist decreases blood pressure in deoxycorticosterone acetate-salt (DOCA-salt) rats along with a reduction in tyrosine hydroxylase (TH) activity and expression. In the present work, we sought to establish the role of brain endothelin ETB receptor on blood pressure regulation and its relationship with the catecholaminergic system within the OB of DOCA-Salt rats. Sprague-Dawley male rats were divided into control and DOCA-Salt groups. Blood pressure, heart rate and TH activity as well as neuronal nitric oxide synthase (nNOS) expression were assessed following IRL-1620 (selective endothelin ETB receptor agonist) applied to be brain. IRL-1620 significantly reduced systolic, diastolic, and mean arterial pressure in DOCA-Salt hypertensive rats. It also decreased TH activity, TH total and phosphorylated forms expression as well as its mRNA in the OB of hypertensive animals. The expression of phospho-Ser1417-nNOS, which reflects nNOS activation, was significantly decreased in the of OB of DOCA-salt rats, but it was enhanced by IRL-1620. These findings suggest that DOCA-Salt hypertension depends on endogenous central endothelin ETA receptor activity, rather than on ETB, and that low endothelin ETB stimulation is essential for blood pressure elevation in this animal model. The effect of endothelin ETA receptor antagonism may also result from endothelin ETB receptor overstimulation. The present study shows that endothelin receptors are involved in the regulation of TH in the OB and that such changes are likely implicated in the hemodynamic control and sympathetic outflow.


Subject(s)
Blood Pressure/drug effects , Hypertension/drug therapy , Hypertension/physiopathology , Olfactory Bulb/drug effects , Receptor, Endothelin B/agonists , Sympathetic Nervous System/drug effects , Animals , Desoxycorticosterone , Endothelins/pharmacology , Heart Rate/drug effects , Hypertension/chemically induced , Male , Nitric Oxide Synthase Type I/biosynthesis , Nitric Oxide Synthase Type I/genetics , Peptide Fragments/pharmacology , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley
6.
Neurotox Res ; 36(4): 688-699, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31228092

ABSTRACT

The aim of this study was to evaluate the participation of the endothelin ETA and ETB receptors and the effects of bosentan in oxaliplatin-induced peripheral sensory neuropathy (OIN) in mice. Adult male Swiss mice received 1 mg/kg of oxaliplatin intravenously, twice a week for 5 weeks. Dorsal root ganglia (DRG) and spinal cords were removed for evaluation of the endothelin ETA and ETB receptor expression. Afterwards, selective (BQ-123 and BQ-788; 10 nmol in 30 µL, intraplantarly) and non-selective (bosentan, 100 mg/kg, orally) antagonists were administered in order to evaluate the involvement of the endothelin receptors in OIN. Mechanical and thermal nociception tests were performed once a week for 56 days. Oxaliplatin induced mechanical and thermal hypersensitivity and increased the endothelin ETA receptor expression in both the DRG and spinal cord (P < 0.05). Endothelin ETB receptor expression was increased in the DRG (P < 0.05) but not in the spinal cord. Both endothelin ETA and ETB receptor selective antagonists partially prevented mechanical hyperalgesia in mice with OIN (P < 0.05). Moreover, bosentan prevented mechanical and thermal hypersensitivity in oxaliplatin-treated mice (P < 0.05). In conclusion, both endothelin ETA and ETB receptors seem to be involved in the OIN in mice and they should be considered possible targets for the management of this clinical feature.


Subject(s)
Oxaliplatin/toxicity , Peripheral Nervous System Diseases/chemically induced , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/metabolism , Animals , Bosentan/administration & dosage , Endothelin Receptor Antagonists , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Male , Mice , Peripheral Nervous System Diseases/metabolism , Spinal Cord Dorsal Horn/drug effects , Spinal Cord Dorsal Horn/metabolism
7.
Mol Cell Endocrinol ; 493: 110455, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31145933

ABSTRACT

Although studies have provided significant evidence about the role of RAS in mediating cancer risk in type 2 diabetes mellitus (DM), conclusions about the central molecular mechanisms underlying this disease remain to be reached, because this type of information requires an integrative multi-omics approach. In the current study, meta-analysis was performed on type 2 diabetes and breast, bladder, liver, pancreas, colon and rectum cancer-associated transcriptome data, and reporter biomolecules were identified at RNA, protein, and metabolite levels using the integration of gene expression profiles with genome-scale biomolecular networks in diabetes samples. This approach revealed that RAS biomarkers could be associated with cancer initiation and progression, which include metabolites (particularly, aminoacyl-tRNA biosynthesis and ABC transporters) as novel biomarker candidates and potential therapeutic targets. We detected downregulation and upregulation of differentially expressed genes (DEGs) in blood, pancreatic islets, liver and skeletal muscle from normal and diabetic patients. DEGs were combined with 211 renin-angiotensin-system related genes. Upregulated genes were enriched using Pathway analysis of cancer in pancreatic islets, blood and skeletal muscle samples. It seems that the changes in mRNA are contributing to the phenotypic changes in carcinogenesis, or that they are as a result of the phenotypic changes associated with the malignant transformation. Our analyses showed that Ctsg and Ednrb are downregulated in cancer samples. However, by immunohistochemistry experiments we observed that EDNRB protein showed increased expression in tumor samples. It is true that alterations in mRNA expression do not always reflect alterations in protein expression, since post-translational changes can occur in proteins. In this study, we report valuable data for further experimental and clinical analysis, because the proposed biomolecules have significant potential as systems biomarkers for screening or for therapeutic purposes in type 2 diabetes and cancer-associated pathways.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Gene Expression Profiling/methods , Neoplasms/genetics , Renin-Angiotensin System , Cathepsin G/genetics , Cathepsin G/metabolism , Diabetes Mellitus, Type 2/metabolism , Female , Gene Expression Regulation , Gene Regulatory Networks , Humans , Meta-Analysis as Topic , Metabolomics , Neoplasms/metabolism , Organ Specificity , Protein Interaction Maps , Proteomics , Receptor, Endothelin B/genetics , Receptor, Endothelin B/metabolism
8.
Nephrol Dial Transplant ; 34(5): 794-801, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30107561

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is not as harmless as previously thought since it may lead to chronic kidney disease (CKD). Because most of the time ischemic AKI occurs unexpectedly, it is difficult to prevent its occurrence and there are no specific therapeutic approaches to prevent the AKI to CKD transition. We aimed to determine whether mineralocorticoid receptor blockade (MRB) in the first days after ischemia/reperfusion (IR) can prevent progression to CKD. METHODS: Four groups of male Wistar rats were included: sham and three groups of bilateral renal ischemia for 45 min, one without treatment and the other two receiving spironolactone for 5 or 10 days, starting 24 h after IR. The rats were studied at 10 days or 5 months after ischemia induction. RESULTS: After 5 months of follow-up, the untreated group exhibited clear evidence of AKI to CKD progression, such as proteinuria, reduced renal blood flow, tubulointerstitial fibrosis, glomerulosclerosis and glomerular hypertrophy. All these alterations were prevented by both spironolactone treatments initiated 24 h after IR, the 10-day treatment being more effective. Within the early mechanisms of the MRB protective effect are the reduction of inflammation and increased endothelin-B-receptor expression and endothelial nitric oxide synthase activation in the first 10 days after IR. CONCLUSIONS: We propose that MRB, administered 24 h after the ischemic injury that leads to AKI, reduces inflammation and promotes efficient tissue repair that avoids the AKI to CKD transition. These data highlight a therapeutic window to preclude CKD development after AKI.


Subject(s)
Acute Kidney Injury/drug therapy , Inflammation/metabolism , Kidney/pathology , Receptor, Endothelin B/metabolism , Renal Insufficiency, Chronic/prevention & control , Spironolactone/administration & dosage , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Delayed-Action Preparations , Disease Models, Animal , Disease Progression , Inflammation/pathology , Kidney/metabolism , Male , Mineralocorticoid Receptor Antagonists/administration & dosage , Rats , Rats, Wistar , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology
9.
Pflugers Arch ; 470(12): 1815-1827, 2018 12.
Article in English | MEDLINE | ID: mdl-30094478

ABSTRACT

Complex regional pain syndrome (CRPS) is a disorder that involves abnormal inflammation and nerve dysfunction frequently resistant to a broad range of treatments. Peripheral nerve stimulation with electroacupuncture (EA) has been widely used in different clinical conditions to control pain and inflammation; however, the use of EA in the treatment of CRPS is under investigation. In this study, we explore the effects of EA on hyperalgesia and edema induced in an animal model of chronic post-ischemia pain (CPIP model) and the possible involvement of endothelin receptor type B (ETB) in this effect. Female Swiss mice were subjected to 3 h hind paw ischemia/reperfusion CPIP model. EA treatment produced time-dependent inhibition of mechanical and cold hyperalgesia, as well as edema in CPIP mice. Peripheral administration (i.pl.) of BQ-788 (10 nmol), an ETB antagonist, prevented EA-induced antihyperalgesia while intrathecal administration prolonged EA's effect. Additionally, peripheral pre-treatment with sarafotoxin (SRTX S6c, 30 pmol, ETB agonist) increased EA anti-hyperalgesic effect. Furthermore, the expression of peripheral ETB receptors was increased after EA treatments, as measured by western blot. These results may suggest that EA's analgesic effect is synergic with ETB receptor activation in the periphery, as well as central (spinal cord) ETB receptor blockade. These data support the use of EA as a nonpharmacological approach for the management of CRPS-I, in an adjuvant manner to ETB receptor targeting drugs.


Subject(s)
Complex Regional Pain Syndromes/therapy , Electroacupuncture/methods , Hyperalgesia/therapy , Receptor, Endothelin B/metabolism , Animals , Complex Regional Pain Syndromes/metabolism , Endothelin B Receptor Antagonists/administration & dosage , Endothelin B Receptor Antagonists/pharmacology , Female , Hyperalgesia/metabolism , Mice , Oligopeptides/administration & dosage , Oligopeptides/pharmacology , Peripheral Nerves/drug effects , Piperidines/administration & dosage , Piperidines/pharmacology , Receptor, Endothelin B/agonists , Spinal Cord/drug effects , Viper Venoms/administration & dosage , Viper Venoms/pharmacology
10.
Curr Opin Hematol ; 25(5): 347-357, 2018 09.
Article in English | MEDLINE | ID: mdl-30028741

ABSTRACT

PURPOSE OF REVIEW: During Chagas disease, Trypanosoma cruzi alternates between intracellular and extracellular developmental forms. After presenting an overview about the roles of the contact system in immunity, I will review experimental studies showing that activation of the kallikrein-kinin system (KKS) translates into mutual benefits to the host/parasite relationship. RECENT FINDINGS: T. cruzi trypomastigotes initiate inflammation by activating tissue-resident innate sentinel cells via the TLR2/CXCR2 pathway. Following neutrophil-evoked microvascular leakage, the parasite's major cysteine protease (cruzipain) cleaves plasma-borne kininogens and complement C5. Tightly regulated by angiotensin-converting enzyme (ACE), kinins and C5a in turn further propagate inflammation via iterative cycles of mast cell degranulation, contact system activation, bradykinin release and activation of endothelial bradykinin B2 receptors (B2R). Recently, studies in the intracardiac model of infection revealed a dichotomic role for bradykinin and endothelin-1: generated upon contact activation (mast cell/KKS pathway), these pro-oedematogenic peptides reciprocally stimulate trypomastigote invasion of heart cells that naturally overexpress B2R and endothelin receptors (ETaR/ETbR). SUMMARY: Studies focusing on the immunopathogenesis of Chagas disease revealed that the contact system plays a dual role in host/parasite balance: T. cruzi co-opts bradykinin-induced plasma leakage as a strategy to increment heart parasitism and increase immune resistance by upregulating type-1 effector T-cell production in secondary lymphoid tissues.


Subject(s)
Chagas Disease/immunology , Host-Parasite Interactions/immunology , Trypanosoma cruzi/physiology , Chagas Disease/parasitology , Chagas Disease/pathology , Complement C5a/immunology , Endothelin-1/immunology , Humans , Immunity, Innate , Kallikreins/immunology , Kinins/immunology , Peptidyl-Dipeptidase A/immunology , Receptor, Bradykinin B2/immunology , Receptor, Endothelin A/immunology , Receptor, Endothelin B/immunology , Receptors, Interleukin-8B/immunology , Toll-Like Receptor 2/immunology
11.
Braz J Med Biol Res ; 51(3): e6329, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29513879

ABSTRACT

Recent evidence shows that chronic ethanol consumption increases endothelin (ET)-1 induced sustained contraction of trabecular smooth muscle cells of the corpora cavernosa in corpus cavernosum of rats by a mechanism that involves increased expression of ETA and ETB receptors. Our goal was to evaluate the effects of alcohol and diabetes and their relationship to miRNA-155, miRNA-199 and endothelin receptors in the corpus cavernosum and blood of rats submitted to the experimental model of diabetes mellitus and chronic alcoholism. Forty-eight male Wistar rats were divided into four groups: control (C), alcoholic (A), diabetic (D), and alcoholic-diabetic (AD). Samples of the corpus cavernosum were prepared to study the protein expression of endothelin receptors by immunohistochemistry and expression of miRNAs-155 and -199 in serum and the cavernous tissue. Immunostaining for endothelin receptors was markedly higher in the A, D, and AD groups than in the C group. Moreover, a significant hypoexpression of the miRNA-199 in the corpus cavernosum tissue from the AD group was observed, compared to the C group. When analyzing the microRNA profile in blood, a significant hypoexpression of miRNA-155 in the AD group was observed compared to the C group. The miRNA-199 analysis demonstrated significant hypoexpression in D and AD groups compared to the C group. Our findings in corpus cavernosum showed downregulated miRNA-155 and miRNA-199 levels associated with upregulated protein expression and unaltered mRNA expression of ET receptors suggesting decreased ET receptor turnover, which can contribute to erectile dysfunction in diabetic rats exposed to high alcohol levels.


Subject(s)
Alcoholism/metabolism , Diabetes Mellitus, Experimental/metabolism , Endothelin-1/analysis , MicroRNAs/analysis , Penis/metabolism , Receptor, Endothelin A/analysis , Receptor, Endothelin B/analysis , Alcoholism/complications , Alcoholism/physiopathology , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/physiopathology , Immunohistochemistry , Male , Penis/physiopathology , Rats , Rats, Wistar
12.
J Pharm Pharmacol ; 70(7): 893-900, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29570803

ABSTRACT

OBJECTIVE: This study assessed the ability of endothelin-1 (ET-1) to evoke heat hyperalgesia when injected directly into the trigeminal ganglia (TG) of mice and determined the receptors implicated in this effect. The effects of TG ETA and ETB receptor blockade on alleviation of heat hyperalgesia in a model of trigeminal neuropathic pain induced by infraorbital nerve constriction (CION) were also examined. METHODS: Naive mice received an intraganglionar (i.g.) injection of ET-1 (0.3-3 pmol) or the selective ETB R agonist sarafotoxin S6c (3-30 pmol), and response latencies to ipsilateral heat stimulation were assessed before the treatment and at 1-h intervals up to 5 h after the treatment. Heat hyperalgesia induced by i.g. ET-1 or CION was assessed after i.g. injections of ETA R and ETB R antagonists (BQ-123 and BQ-788, respectively, each at 0.5 nmol). KEY FINDINGS: Intraganglionar ET-1 or sarafotoxin S6c injection induced heat hyperalgesia lasting 4 and 2 h, respectively. Heat hyperalgesia induced by ET-1 was attenuated by i.g. BQ-123 or BQ-788. On day 5 after CION, i.g. BQ-788 injection produced a more robust antihyperalgesic effect compared with BQ-123. CONCLUSIONS: ET-1 injection into the TG promotes ETA R/ETB R-mediated facial heat hyperalgesia, and both receptors are clearly implicated in CION-induced hyperalgesia in the murine TG system.


Subject(s)
Endothelin-1/pharmacology , Hyperalgesia/chemically induced , Trigeminal Ganglion/physiology , Animals , Constriction , Dose-Response Relationship, Drug , Endothelin A Receptor Antagonists/pharmacology , Hyperalgesia/physiopathology , Male , Mice , Oligopeptides/pharmacology , Pain Measurement/drug effects , Peptides, Cyclic/pharmacology , Piperidines/pharmacology , Receptor, Endothelin A/physiology , Receptor, Endothelin B/agonists , Receptor, Endothelin B/physiology , Trigeminal Ganglion/drug effects , Viper Venoms/pharmacology
13.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;51(3): e6329, 2018. graf
Article in English | LILACS | ID: biblio-889035

ABSTRACT

Recent evidence shows that chronic ethanol consumption increases endothelin (ET)-1 induced sustained contraction of trabecular smooth muscle cells of the corpora cavernosa in corpus cavernosum of rats by a mechanism that involves increased expression of ETA and ETB receptors. Our goal was to evaluate the effects of alcohol and diabetes and their relationship to miRNA-155, miRNA-199 and endothelin receptors in the corpus cavernosum and blood of rats submitted to the experimental model of diabetes mellitus and chronic alcoholism. Forty-eight male Wistar rats were divided into four groups: control (C), alcoholic (A), diabetic (D), and alcoholic-diabetic (AD). Samples of the corpus cavernosum were prepared to study the protein expression of endothelin receptors by immunohistochemistry and expression of miRNAs-155 and -199 in serum and the cavernous tissue. Immunostaining for endothelin receptors was markedly higher in the A, D, and AD groups than in the C group. Moreover, a significant hypoexpression of the miRNA-199 in the corpus cavernosum tissue from the AD group was observed, compared to the C group. When analyzing the microRNA profile in blood, a significant hypoexpression of miRNA-155 in the AD group was observed compared to the C group. The miRNA-199 analysis demonstrated significant hypoexpression in D and AD groups compared to the C group. Our findings in corpus cavernosum showed downregulated miRNA-155 and miRNA-199 levels associated with upregulated protein expression and unaltered mRNA expression of ET receptors suggesting decreased ET receptor turnover, which can contribute to erectile dysfunction in diabetic rats exposed to high alcohol levels.


Subject(s)
Animals , Male , Rats , Alcoholism/metabolism , Diabetes Mellitus, Experimental/metabolism , Endothelin-1/analysis , MicroRNAs/analysis , Penis/metabolism , Receptor, Endothelin A/analysis , Receptor, Endothelin B/analysis , Alcoholism/complications , Alcoholism/physiopathology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/physiopathology , Immunohistochemistry , Penis/physiopathology , Rats, Wistar
14.
Curr Hypertens Rev ; 13(1): 33-40, 2017.
Article in English | MEDLINE | ID: mdl-28413991

ABSTRACT

Early vascular aging is a process associated with gradual alterations in the vessels, regarding their structure and function, taking a more rapid course than normal biological aging in the arteries. In the presence of cardiovascular disease, these age-associated alterations are accelerated, contributing in the appearance or the progression of cardiovascular disease, such as high blood pressure, dyslipidemia, smoking and diabetes. Endothelin-1 (ET-1) is the most abundant and important endothelin produced by vascular cells. ET-1 exerts its biological actions through the activation of two receptors: ETA and ETB. Many important functions are mediated by the activation of these receptors, such as cardiovascular remodeling, vasoconstriction, cell proliferation and differentiation, production of extracellular matrix, and water and sodium secretion control. ETA receptor seems to participate in the pathogenesis and development of diseases, such as diabetes, atherosclerosis, systemic and pulmonary hypertension, and cardiac remodeling after myocardial ischemia, whereas ETB receptor seems to prevent the overstimulation of ETA receptor, acting as a clearance receptor. Increased ET-1 system activity may contribute to vascular dysfunction in aging via multiple pathways, such as direct hemodynamic effects, vascular oxidative stress, inflammatory activity, mitogenic stimulation of the vascular smooth muscle cells and fibrotic processes. Endothelin receptor antagonists were considered to be used for the treatment of some diseases like hypertension, diabetes and chronic kidney disease. However, besides pulmonary hypertension, this class is not in clinical use because of the side effects and the availability of safer drugs for the treatment of these diseases.


Subject(s)
Aging/physiology , Blood Vessels/physiopathology , Endothelin Receptor Antagonists/therapeutic use , Endothelin-1/physiology , Hypertension/drug therapy , Blood Vessels/pathology , Cardiovascular Diseases/etiology , Disease Progression , Endothelins/physiology , Humans , Hypertension/etiology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/etiology , Muscle, Smooth, Vascular , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/metabolism , Vasoconstriction/physiology
15.
Inflamm Res ; 66(2): 141-155, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27778057

ABSTRACT

OBJECTIVE AND DESIGN: This study attempted to clarify the roles of endothelins and mechanisms associated with ETA/ETB receptors in mouse models of colitis. MATERIALS AND METHODS: Colitis was induced by intracolonic administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS, 1.5 mg/animal) or dextran sulfate sodium (DSS, 3%). After colitis establishment, mice received Atrasentan (ETA receptor antagonist, 10 mg/kg), A-192621 (ETB receptor antagonist, 20 mg/kg) or Dexamethasone (1 mg/kg) and several inflammatory parameters were assessed, as well as mRNA levels for ET-1, ET-2 and ET receptors. RESULTS: Atrasentan treatment ameliorates TNBS- and DSS-induced colitis. In the TNBS model was observed reduction in macroscopic and microscopic score, colon weight, neutrophil influx, IL-1ß, MIP-2 and keratinocyte chemoattractant (KC) levels, inhibition of adhesion molecules expression and restoration of IL-10 levels. However, A192621 treatment did not modify any parameter. ET-1 and ET-2 mRNA was decreased 24 h, but ET-2 mRNA was markedly increased at 48 h after TNBS. ET-2 was able to potentiate LPS-induced KC production in vitro. ETA and ETB receptors mRNA were increased at 24, 48 and 72 h after colitis induction. CONCLUSIONS: Atrasentan treatment was effective in reducing the severity of colitis in DSS- and TNBS-treated mice, suggesting that ETA receptors might be a potential target for inflammatory bowel diseases.


Subject(s)
Colitis/immunology , Endothelin A Receptor Antagonists/pharmacology , Endothelin-2/immunology , Pyrrolidines/pharmacology , Animals , Atrasentan , Cells, Cultured , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Colon/drug effects , Colon/immunology , Colon/pathology , Cytokines/immunology , Dextran Sulfate , E-Selectin/immunology , Endothelin A Receptor Antagonists/therapeutic use , Endothelin B Receptor Antagonists/pharmacology , Endothelin-1/genetics , Endothelin-1/immunology , Endothelin-2/genetics , Leukocytes/drug effects , Leukocytes/immunology , Male , Mice, Inbred BALB C , Neutrophil Infiltration/drug effects , P-Selectin/immunology , Peroxidase/immunology , Pyrrolidines/therapeutic use , RNA, Messenger/metabolism , Receptor, Endothelin A/genetics , Receptor, Endothelin A/immunology , Receptor, Endothelin B/genetics , Receptor, Endothelin B/immunology , Trinitrobenzenesulfonic Acid
16.
J Drug Target ; 25(3): 264-274, 2017 03.
Article in English | MEDLINE | ID: mdl-27701898

ABSTRACT

The present study investigated whether endothelin-1 acts via ETA or ETB receptors to mediate superoxide anion-induced pain and inflammation. Mice were treated with clazosentan (ETA receptor antagonist) or BQ-788 (ETB receptor antagonist) prior to stimulation with the superoxide anion donor, KO2. Intraplantar treatment with 30 nmol of clazosentan or BQ-788 reduced mechanical hyperalgesia (47% and 42%), thermal hyperalgesia (68% and 76%), oedema (50% and 30%); myeloperoxidase activity (64% and 32%), and overt-pain like behaviours, such as paw flinching (42% and 42%) and paw licking (38% and 62%), respectively. Similarly, intraperitoneal treatment with 30 nmol of clazosentan or BQ-788 reduced leukocyte recruitment to the peritoneal cavity (58% and 32%) and abdominal writhing (81% and 77%), respectively. Additionally, intraplantar treatment with clazosentan or BQ-788 decreased spinal (45% and 41%) and peripheral (47% and 47%) superoxide anion production as well as spinal (47% and 47%) and peripheral (33% and 54%) lipid peroxidation, respectively. Intraplantar treatment with clazosentan, but not BQ-788, reduced spinal (71%) and peripheral (51%) interleukin-1 beta as well as spinal (59%) and peripheral (50%) tumor necrosis factor-alpha production. Therefore, the present study unveils the differential mechanisms by which ET-1, acting on ETA or ETB receptors, regulates superoxide anion-induced inflammation and pain.


Subject(s)
Cytokines/biosynthesis , Inflammation/metabolism , Oxidative Stress , Pain/metabolism , Receptor, Endothelin A/physiology , Receptor, Endothelin B/physiology , Superoxides/metabolism , Animals , Endothelin A Receptor Antagonists/pharmacology , Male , Mice
17.
Genet Mol Res ; 14(2): 6549-54, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26125860

ABSTRACT

The Chinese raccoon dog (Nyctereutes procyonoides procyonoides) is one of the most important fur-bearing animal species. The dominant white individual, a coat color variant in farmed Chinese raccoon dog, shows a completely white phenotype over the entire body. The KIT and EDNRB genes have been reported to be associated with the dominant white coat color in some mammalian species. In the present study, the full-length coding sequences of KIT and EDNRB were amplified from a dominant white and a wild-type Chinese raccoon dog. Sequence analysis revealed that the coding region of KIT and EDNRB in Chinese raccoon dog was 2919 and 1332 base pairs in length (accession No. KM083121 and KM083122), respectively, and 2 single-nucleotide polymorphisms (SNPs; c.600C>T and c.967G>A) in KIT and 1 SNP (c.259A>C) in EDNRB was found only in the dominant white individual. An alternative splicing site at the boundary of 4 and 5 of the KIT gene was identified in both individuals. We further investigated the association between the 3 SNPs of KIT and EDNRB and dominant white coat color by genotyping 18 individuals. We found no association between these SNPs and dominant white coat color. Based on these results, we can exclude the coding regions of the KIT and EDNRB genes as determinants of the dominant white coat color in Chinese raccoon dog.


Subject(s)
Pigmentation/genetics , Proto-Oncogene Proteins c-kit/genetics , Raccoon Dogs/genetics , Receptor, Endothelin B/genetics , Animals , Genetic Association Studies , Genotype , Hair , Microsatellite Repeats/genetics , Phenotype , Polymorphism, Single Nucleotide
18.
Rev Bras Cir Cardiovasc ; 30(2): 211-8, 2015.
Article in English | MEDLINE | ID: mdl-26107453

ABSTRACT

INTRODUCTION: Rheumatic Fever represents a serious public health problem in developing countries, with thousands of new cases each year. It is an autoimmune disease, which occurs in response to infection by streptococcus A. OBJECTIVE: The aim of this study was to evaluate the immunolabeling and protein expression for endothelin-1 and 3 (ET-1, ET-3) and its receptors (ETA, ETB) in rheumatic mitral valves. METHODS: Immunohistochemistry was used to identify ET-1/ET-3 and ETA/ETB receptors in rheumatic and control mitral valves. Quantitative analysis of immunostaining for ET-1/ET-3 and ETA/ETB receptors was performed. In addition, western blot analysis was carried out to assess protein levels in tissue samples. RESULTS: ET-1 and ETA receptor immunostaining predominated in stenotic valves, mainly associated with fibrotic regions, inflammatory areas and neovascularization. Quantitative analysis showed that the average area with positive expression of ET-1 was 18.21 ± 14.96%. For ETA and ETB, the mean expressed areas were respectively 15.06 ± 13.13% and 9.20 ± 11.09%. ET-3 did not have a significant expression. The correlation between the expression of both endothelin receptors were strongly positive (R = 0.74, P = 0.02), but the correlation between ET-1 and its receptor were negative for both ETA (R = -0.37, P = 0.25), and ETB (R = -0.14, P = 0.39). This data was supported by western blot analysis. CONCLUSION: The strong correlation between ET-1 and its receptors suggests that both play a role in the pathophysiology of rheumatic mitral valve stenosis and may potentially act as biomarkers of this disease.


Subject(s)
Endothelin-1/analysis , Endothelin-3/analysis , Mitral Valve Stenosis/pathology , Receptor, Endothelin A/analysis , Receptor, Endothelin B/analysis , Rheumatic Fever/pathology , Adult , Biomarkers/analysis , Blotting, Western , Calcium/analysis , Case-Control Studies , Female , Humans , Immunohistochemistry , Male , Mitral Valve Stenosis/physiopathology , Reference Values , Rheumatic Fever/physiopathology , Young Adult
19.
Rev. bras. cir. cardiovasc ; Rev. bras. cir. cardiovasc;30(2): 211-218, Mar-Apr/2015. tab, graf
Article in English | LILACS | ID: lil-748936

ABSTRACT

Abstract Introduction: Rheumatic Fever represents a serious public health problem in developing countries, with thousands of new cases each year. It is an autoimmune disease, which occurs in response to infection by streptococcus A. Objective: The aim of this study was to evaluate the immunolabeling and protein expression for endothelin-1 and 3 (ET-1, ET-3) and its receptors (ETA, ETB) in rheumatic mitral valves. Methods: Immunohistochemistry was used to identify ET-1/ET-3 and ETA/ETB receptors in rheumatic and control mitral valves. Quantitative analysis of immunostaining for ET-1/ET-3 and ETA/ETB receptors was performed. In addition, western blot analysis was carried out to assess protein levels in tissue samples. Results: ET-1 and ETA receptor immunostaining predominated in stenotic valves, mainly associated with fibrotic regions, inflammatory areas and neovascularization. Quantitative analysis showed that the average area with positive expression of ET-1 was 18.21±14.96%. For ETA and ETB, the mean expressed areas were respectively 15.06±13.13% and 9.20±11.09%. ET-3 did not have a significant expression. The correlation between the expression of both endothelin receptors were strongly positive (R=0.74, P=0.02), but the correlation between ET-1 and its receptor were negative for both ETA (R=-0.37, P=0.25), and ETB (R=-0.14, P=0.39). This data was supported by western blot analysis. Conclusion: The strong correlation between ET-1 and its receptors suggests that both play a role in the pathophysiology of rheumatic mitral valve stenosis and may potentially act as biomarkers of this disease. .


Resumo Introdução: A febre reumática representa um sério problema de saúde pública em países em desenvolvimento, com milhares de novos casos a cada ano. Ela é uma doença autoimune que ocorre em resposta à infecção por estreptococos do grupo A. Objetivo: O objetivo deste estudo foi avaliar a expressão proteica e imunohistoquímica para a endotelina-1 e 3 (ET-1 e ET-3) e seus receptores (ETA e ETB) em valvas mitrais reumáticas. Métodos: Imunohistoquímica foi utilizada para identificar receptores de ET1/ET3 e ETA/ETB em valvas mitrais reumáticas e controles. A análise quantitativa da expressão imunohistoquímica para receptores de ET1/ET3 e ETA/ETB foi também efetuada. Adicionalmente, foi feita análise do western blot para mensurar níveis de proteínas em extratos tissulares. Resultados: A expressão imunohistoquímica de ET-1 e de seu receptor predominou em valvas estenóticas, estando associada com regiões fibróticas, áreas inflamatórias e neovascularização. A análise quantitativa mostrou que a área média com expressão positiva para ET-1 foi de 18,21±14,96%. Para o ETA e o ETB, as áreas médias expressas foram, respectivamente, 15,06±13,13% e 9,20±11,09%. ET-3 não teve uma expressão significante. A correlação entre a expressão dos dois receptores de endotelina foi fortemente positiva (R=0,74, P=0,02); mas a correlação entre ET-1 e o seu receptor foi negativa tanto para ETA (R=-0,37, P=0,25) como para ETB (R=-0,14, P=0,39). Estes dados foram confirmados pela análise do western blot. Conclusão: A forte correlação entre ET-1 e seus receptores sugere que ambos têm papel importante na fisiopatologia da estenose mitral reumática, podendo potencialmente atuar como biomarcadores desta doença. .


Subject(s)
Adult , Female , Humans , Male , Young Adult , Endothelin-1/analysis , /analysis , Mitral Valve Stenosis/pathology , Receptor, Endothelin A/analysis , Receptor, Endothelin B/analysis , Rheumatic Fever/pathology , Blotting, Western , Biomarkers/analysis , Case-Control Studies , Calcium/analysis , Immunohistochemistry , Mitral Valve Stenosis/physiopathology , Reference Values , Rheumatic Fever/physiopathology
20.
Exp Physiol ; 100(6): 617-27, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25809871

ABSTRACT

NEW FINDINGS: What is the central question of this study? Does ex vivo administration of endothelin-1 and endothelin-3 regulate noradrenergic transmission in the posterior hypothalamus of deoxycorticosterone acetate-salt hypertensive rats compared with normotensive rats? What is the main finding and its importance? Endothelin-1 and endothelin-3 enhanced diverse mechanisms leading to increased noradrenergic transmission in the posterior hypothalamus of deoxycorticosterone acetate-salt hypertensive rats. Unveiling the role of brain endothelins in hypertension would probably favour the development of new therapeutic targets for the treatment of essential hypertension, which still represents a challenging disease with high mortality. Brain catecholamines participate in diverse biological functions regulated by the hypothalamus. We have previously reported that endothelin-1 and endothelin-3 (ET-1 and ET-3) modulate catecholaminergic activity in the anterior and posterior hypothalamus of normotensive rats. The aim of the present study was to evaluate the interaction between endothelins and noradrenergic transmission in the posterior hypothalamus of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. We assessed the effects of ET-1 and ET-3 on tyrosine hydroxylase activity and expression, neuronal noradrenaline (NA) release, neuronal NA transporter (NAT) activity and expression, monoamine oxidase activity and NA endogenous content and utilization (as a marker of turnover) in the posterior hypothalamus of DOCA-salt hypertensive rats. In addition, levels of ETA and ETB receptors were assayed in normotensive and hypertensive rats. Results showed that tyrosine hydroxylase activity and total and phosphorylated levels, NAT activity and content, NA release, monoamine oxidase activity and NA utilization were increased in DOCA-salt rats. Both ET-1 and ET-3 further enhanced all noradrenergic parameters except for total tyrosine hydroxylase level and NA endogenous content and utilization. The expression of ETA receptors was increased in the posterior hypothalamus of DOCA-salt rats, but ETB receptors showed no changes. These results show that ET-1 and ET-3 upregulate noradrenergic activity in the posterior hypothalamus of DOCA-salt hypertensive rats. Our findings suggest that the interaction between noradrenergic transmission and the endothelinergic system in the posterior hypothalamus may be involved in the development and/or maintenance of hypertension in this animal model.


Subject(s)
Adrenergic Neurons/drug effects , Desoxycorticosterone Acetate , Endothelin-1/administration & dosage , Endothelin-3/administration & dosage , Hypertension/metabolism , Hypothalamus, Posterior/drug effects , Norepinephrine/metabolism , Sodium Chloride, Dietary , Synaptic Transmission/drug effects , Adrenergic Neurons/metabolism , Animals , Blood Pressure/drug effects , Disease Models, Animal , Hypertension/chemically induced , Hypertension/physiopathology , Hypothalamus, Posterior/metabolism , Hypothalamus, Posterior/physiopathology , Male , Monoamine Oxidase/metabolism , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Phosphorylation , Rats, Sprague-Dawley , Receptor, Endothelin A/drug effects , Receptor, Endothelin A/metabolism , Receptor, Endothelin B/drug effects , Receptor, Endothelin B/metabolism , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL