Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 983
Filter
1.
PLoS One ; 19(4): e0301373, 2024.
Article in English | MEDLINE | ID: mdl-38662725

ABSTRACT

Water intake has been suggested to be associated with weight control, but evidence for optimal water intake in terms of amount, timing, and temperature is sparse. Additionally, genetic predisposition to obesity, which affects satiety and energy expenditure, might interact with water intake in regulating individual adiposity risk. We conducted a cross-sectional study recruiting 172 Korean adults. Information on water intake and lifestyle factors was collected through self-reported questionnaires, and height, weight, and waist circumference (WC) were measured by researchers. The oral buccal swab was performed for genotyping of FTO rs9939609, MC4R rs17782313, BDNF rs6265 and genetic risk of obesity was calculated. Linear regression was performed to estimate mean difference in body mass index (BMI) and WC by water intake and its 95% confidence interval (95% CI). As a sensitivity analysis, logistic regression was performed to estimate odds ratio (OR) of obesity/overweight (BMI of ≥23kg/m2; WC of ≥90cm for men and of ≥80cm for women) and its 95% CI. Drinking >1L/day was significantly associated with higher BMI (mean difference: 0.90, 95% CI 0.09, 1.72) and WC (mean difference: 3.01, 95% CI 0.62, 5.41) compared with drinking ≤1L/day. Independent of total water intake, drinking before bedtime was significantly associated with lower BMI (mean difference: -0.98, 95% CI -1.91, -0.05). The results remained consistent when continuous BMI and WC were analyzed as categorical outcomes. By perceived temperature, drinking >1L/day of cold water was associated with higher BMI and WC compared with drinking ≤1L/day of water at room-temperature. By genetic predisposition to obesity, a positive association between water intake and WC was confined to participants with low genetic risk of obesity (P interaction = 0.04). In conclusion, amount, timing, and perceived temperature of water intake may be associated with adiposity risk and the associations might vary according to genetic predisposition to obesity.


Subject(s)
Body Mass Index , Drinking Water , Drinking , Obesity , Temperature , Humans , Male , Female , Obesity/genetics , Obesity/epidemiology , Adult , Middle Aged , Cross-Sectional Studies , Waist Circumference , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Receptor, Melanocortin, Type 4/genetics
2.
Wei Sheng Yan Jiu ; 53(2): 229-236, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38604958

ABSTRACT

OBJECTIVE: To investigate the association of polymorphisms in SEC16B rs633715, DNAJC27 rs713586, FTO rs11642015 and MC4R rs6567160 with overweight and obesity in Han Chinese preschool children. METHODS: A total of 749 Han Chinese preschool children from Henan and Guizhou Province of Long-term Health Effects Assessment Project of Infants and Toddlers Nutritional Pack were selected for the study and divided into an overweight and obese group and a normal control group in 2022. rs633715, rs713586, rs11642015 and rs6567160 were genotyped using Kompetitive allele-specific PCR(KASP) technology. The distribution of genotypic polymorphisms was compared using the χ~2 test. The association between the four loci and overweight and obesity in preschool children was analyzed using a multifactorial logistic regression model. RESULTS: The statistical analysis revealed a significant disparity(P<0.05) in the distribution of genotypic polymorphisms of rs633715 and rs6567160 among preschoolers in Henan and Guizhou Province. CC heterozygous mutant and recessive models at rs633715 locus were associated with susceptibility to overweight and obesity in preschool children [OR and 95% CI 2.915(1.163-7.305), and 2.997(1.226-7.323), respectively, both P<0.05]. TC heterozygous mutant and dominant models at rs713586 locus were also associated susceptibility to overweight and obesity in preschool children(OR and 95% CI were 2.362(1.054-5.289)and 2.362(1.054-5.289), respectively, both P<0.05). rs11642015 and rs6567160 loci were not associated with susceptibility to overweight and obesity in preschool children(P>0.05). The result of the analysis of the cumulative effect of rs633715 and rs713586 showed that the number of genotypes carrying the risk genotype was positively associated with the risk of overweight and obesity in preschool children(P_(trend)<0.01). CONCLUSION: Among Han Chinese preschool children, SEC16B rs633715 and DNAJC27 rs713586 were associated with susceptibility to overweight and obesity in preschool children. Moreover, rs633715 and rs713586 had a cumulative effect on susceptibility to overweight and obesity in preschool children, the number of risk genotypes carried was positively associated with childhood overweight and obesity risk.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Overweight , Pediatric Obesity , Receptor, Melanocortin, Type 4 , Child, Preschool , Humans , Alleles , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Genetic Predisposition to Disease , Genotype , Overweight/genetics , Pediatric Obesity/genetics , Polymorphism, Single Nucleotide , Receptor, Melanocortin, Type 4/genetics
3.
Genes (Basel) ; 15(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38674326

ABSTRACT

Bariatric surgery (BS) is considered the most effective intervention for patients with severe obesity and is used to maintain long-term weight loss and glycemic control. The aim of this study was to analyze the effects of genotypes and haplotypes of the fat mass and obesity-associated (FTO) and melanocortin 4 receptor (MC4R) genes on total body weight loss (TBWL), post-surgery weight, and post-BMI after bariatric surgery. We retrospectively selected 101 patients from Bajio High Specialty Regional Hospital, León Guanajuato, México, who underwent Roux-en-Y gastric bypass (RYGB) to determine their body mass index (BMI), blood pressure, biochemical characteristics, and comorbidities. Post-surgery, patients were referred for registered anthropometry and blood pressure. Glucose, lipid and hepatic profiles, and insulin, leptin, and ghrelin levels were measured, and rs9939609, rs9930506, and rs1421085 FTO and rs17782313 MC4R polymorphisms were genotyped. Six (4-8) years after BS, post-surgery weight was greater in carriers of the rs9939609 and rs1421085 risk genotypes. TBWL was lower for the rs9930506 and rs1421085 risk genotypes. Insulin and HOMA-IR were greater in patients with the three FTO polymorphisms. There were significant interaction effects of the rs9930506 and rs1421085 FTO risk genotypes on weight and BMI in response to BS. No association was found with the MC4R polymorphism. The genotypes and haplotypes of the FTO gene influence post-surgery weight, TBWL, insulin levels, and HOMA-IR.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Bariatric Surgery , Body Mass Index , Polymorphism, Single Nucleotide , Receptor, Melanocortin, Type 4 , Weight Loss , Humans , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Receptor, Melanocortin, Type 4/genetics , Male , Female , Adult , Weight Loss/genetics , Middle Aged , Obesity, Morbid/surgery , Obesity, Morbid/genetics , Retrospective Studies , Haplotypes , Genotype
4.
Clin Obes ; 14(3): e12659, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602039

ABSTRACT

Nearly 90 clinicians and researchers from around the world attended the first IMPROVE 2022 International Meeting on Pathway-Related Obesity. Delegates attended in person or online from across Europe, Argentina and Israel to hear the latest scientific and clinical developments in hyperphagia and severe, early-onset obesity, and set out a vision of excellence for the future for improving the diagnosis, treatment, and care of patients with melanocortin-4 receptor (MC4R) pathway-related obesity. The meeting co-chair Peter Kühnen, Charité Universitätsmedizin Berlin, Germany, indicated that change was needed with the rapidly increasing prevalence of obesity and the associated complications to improve the understanding of the underlying mechanisms and acknowledge that monogenic forms of obesity can play an important role, providing insights that can be applied to a wider group of patients with obesity. World-leading experts presented the latest research and led discussions on the underlying science of obesity, diagnosis (including clinical and genetic approaches such as the role of defective MC4R signalling), and emerging clinical data and research with targeted pharmacological approaches. The aim of the meeting was to agree on the questions that needed to be addressed in future research and to ensure that optimised diagnostic work-up was used with new genetic testing tools becoming available. This should aid the planning of new evidence-based treatment strategies for the future, as explained by co-chair Martin Wabitsch, Ulm University Medical Center, Germany.


Subject(s)
Obesity , Receptor, Melanocortin, Type 4 , Humans , Obesity/therapy , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Hyperphagia , Signal Transduction
5.
Mol Med ; 30(1): 34, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448811

ABSTRACT

BACKGROUND: Imbalance in energy regulation is a major cause of insulin resistance and diabetes. Melanocortin-4 receptor (MC4R) signaling at specific sites in the central nervous system has synergistic but non-overlapping functions. However, the mechanism by which MC4R in the arcuate nucleus (ARC) region regulates energy balance and insulin resistance remains unclear. METHODS: The MC4Rflox/flox mice with proopiomelanocortin (POMC) -Cre mice were crossed to generate the POMC-MC4Rflox/+ mice. Then POMC-MC4Rflox/+ mice were further mated with MC4Rflox/flox mice to generate the POMC-MC4Rflox/flox mice in which MC4R is selectively deleted in POMC neurons. Bilateral injections of 200 nl of AAV-sh-Kir2.1 (AAV-sh-NC was used as control) were made into the ARC of the hypothalamus. Oxygen consumption, carbon dioxide production, respiratory exchange ratio and energy expenditure were measured by using the CLAMS; Total, visceral and subcutaneous fat was analyzed using micro-CT. Co-immunoprecipitation assays (Co-IP) were used to analyze the interaction between MC4R and Kir2.1 in GT1-7 cells. RESULTS: POMC neuron-specific ablation of MC4R in the ARC region promoted food intake, impaired energy expenditure, leading to increased weight gain and impaired systemic glucose homeostasis. Additionally, MC4R ablation reduced the activation of POMC neuron, and is not tissue-specific for peripheral regulation, suggesting the importance of its central regulation. Mechanistically, sequencing analysis and Co-IP assay demonstrated a direct interaction of MC4R with Kir2.1. Knockdown of Kir2.1 in POMC neuron-specific ablation of MC4R restored the effect of MC4R ablation on energy expenditure and systemic glucose homeostasis, indicating by reduced body weight and ameliorated insulin resistance. CONCLUSION: Hypothalamic POMC neuron-specific knockout of MC4R affects energy balance and insulin sensitivity by regulating Kir2.1. Kir2.1 represents a new target and pathway that could be targeted in obesity.


Subject(s)
Insulin Resistance , Animals , Mice , Glucose , Hypothalamus , Insulin Resistance/genetics , Neurons , Pro-Opiomelanocortin/genetics , Receptor, Melanocortin, Type 4/genetics
6.
Diabetes Obes Metab ; 26 Suppl 2: 46-63, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504134

ABSTRACT

Over the past few decades, there has been a global surge in the prevalence of obesity, rendering it a globally recognized epidemic. Contrary to simply being a medical condition, obesity is an intricate disease with a multifactorial aetiology. Understanding the precise cause of obesity remains a challenge; nevertheless, there seems to be a complex interplay among biological, psychosocial and behavioural factors. Studies on the genetic factors of obesity have revealed several pathways in the brain that play a crucial role in food intake regulation. The best characterized pathway, thus far, is the leptin-melanocortin pathway, from which disruptions are responsible for the majority of monogenic obesity disorders. The effectiveness of conservative lifestyle interventions in addressing monogenic obesity has been limited. Therefore, it is crucial to complement the management strategy with pharmacological and surgical options. Emphasis has been placed on developing drugs aimed at replacing the absent signals, with the goal of restoring the pathway. In both monogenic and polygenic forms of obesity, outcomes differ across various interventions, likely due to the multifaceted nature of the disease. This underscores the need to explore alternative therapeutic strategies that can mitigate this heterogeneity. Precision medicine can be regarded as a powerful tool that can address this concern, as it values the understanding of the underlying abnormality triggering the disease and provides a tailored treatment accordingly. This would assist in optimizing outcomes of the current therapeutic approaches and even aid in the development of novel treatments capable of more effectively managing the global obesity epidemic.


Subject(s)
Obesity Management , Humans , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Precision Medicine , Obesity/epidemiology , Obesity/genetics , Obesity/therapy , Leptin/genetics , Leptin/metabolism , Melanocortins/therapeutic use , Melanocortins/genetics
7.
Sci Rep ; 14(1): 7067, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528040

ABSTRACT

Mutations leading to a reduced or loss of function in genes of the leptin-melanocortin system confer a risk for monogenic forms of obesity. Yet, gain of function variants in the melanocortin-4-receptor (MC4R) gene predispose to a lower BMI. In individuals with reduced body weight, we thus expected mutations leading to an enhanced function in the respective genes, like leptin (LEP) and MC4R. Therefore, we have Sanger sequenced the coding regions of LEP and MC4R in 462 female patients with anorexia nervosa (AN), and 445 healthy-lean controls. In total, we have observed four and eight variants in LEP and MC4R, respectively. Previous studies showed different functional in vitro effects for the detected frameshift and non-synonymous variants: (1) LEP: reduced/loss of function (p.Val94Met), (2) MC4R: gain of function (p.Val103Ile, p.Ile251Leu), reduced or loss of function (p.Thr112Met, p.Ser127Leu, p.Leu211fsX) and without functional in vitro data (p.Val50Leut). In LEP, the variant p.Val94Met was detected in one patient with AN. For MC4R variants, one patient with AN carried the frameshift variant p.Leu211fsX. One patient with AN was heterozygous for two variants at the MC4R (p.Val103Ile and p.Ser127Leu). All other functionally relevant variants were detected in similar frequencies in patients with AN and lean individuals.


Subject(s)
Anorexia Nervosa , Leptin , Receptor, Melanocortin, Type 4 , Female , Humans , Anorexia Nervosa/genetics , Leptin/genetics , Melanocortins/genetics , Mutation , Obesity/genetics , Receptor, Melanocortin, Type 4/genetics
8.
Cell Metab ; 36(5): 1044-1058.e10, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38452767

ABSTRACT

Obesity is often associated with aging. However, the mechanism of age-related obesity is unknown. The melanocortin-4 receptor (MC4R) mediates leptin-melanocortin anti-obesity signaling in the hypothalamus. Here, we discovered that MC4R-bearing primary cilia of hypothalamic neurons progressively shorten with age in rats, correlating with age-dependent metabolic decline and increased adiposity. This "age-related ciliopathy" is promoted by overnutrition-induced upregulation of leptin-melanocortin signaling and inhibited or reversed by dietary restriction or the knockdown of ciliogenesis-associated kinase 1 (CILK1). Forced shortening of MC4R-bearing cilia in hypothalamic neurons by genetic approaches impaired neuronal sensitivity to melanocortin and resulted in decreased brown fat thermogenesis and energy expenditure and increased appetite, finally developing obesity and leptin resistance. Therefore, despite its acute anti-obesity effect, chronic leptin-melanocortin signaling increases susceptibility to obesity by promoting the age-related shortening of MC4R-bearing cilia. This study provides a crucial mechanism for age-related obesity, which increases the risk of metabolic syndrome.


Subject(s)
Cilia , Leptin , Neurons , Obesity , Receptor, Melanocortin, Type 4 , Animals , Receptor, Melanocortin, Type 4/metabolism , Receptor, Melanocortin, Type 4/genetics , Cilia/metabolism , Cilia/pathology , Obesity/metabolism , Obesity/pathology , Neurons/metabolism , Neurons/pathology , Leptin/metabolism , Rats , Male , Signal Transduction , Hypothalamus/metabolism , Aging/metabolism , Aging/pathology , Rats, Sprague-Dawley , Mice , Energy Metabolism , Adipose Tissue, Brown/metabolism , Thermogenesis
9.
Nutrients ; 16(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38398881

ABSTRACT

This study aimed to determine the impact of a fiber supplement on body weight and composition in individuals with obesity with specific genetic polymorphisms. It involved 112 adults with obesity, each with at least one minor allele in the FTO, LEP, LEPR, or MC4R polymorphism. Participants were randomized to receive either a fiber supplement (glucomannan, inulin, and psyllium) or a placebo for 180 days. The experimental group showed significant reductions in body weight (treatment difference: -4.9%; 95% CI: -6.9% to -2.9%; p < 0.01) and BMI (treatment difference: -1.4 kg/m2; 95% CI: -1.7 to -1.2; p < 0.01) compared to placebo. Further significant decreases in fat mass (treatment difference: -13.0%; 95% CI: -14.4 to -11.7; p < 0.01) and visceral fat rating (treatment difference: -1.3; 95% CI: -1.6 to -1.0; p < 0.01) were noted. Homozygous minor allele carriers experienced greater decreases in body weight (treatment difference: -3.2%; 95% CI: -4.9% to -1.6%; p < 0.01) and BMI (treatment difference: -1.2 kg/m2; 95% CI: -2.0 to -0.4; p < 0.01) compared to heterozygous allele carriers. These carriers also had a more significant reduction in fat mass (treatment difference: -9.8%; 95% CI: -10.6 to -9.1; p < 0.01) and visceral fat rating (treatment difference: -0.9; 95% CI: -1.3 to -0.5; p < 0.01). A high incidence of gastrointestinal events was reported in the experimental group (74.6%), unlike the placebo group, which reported no side effects. Dietary supplementation with glucomannan, inulin, and psyllium effectively promotes weight loss and improves body composition in individuals with obesity, particularly those with specific genetic polymorphisms.


Subject(s)
Inulin , Mannans , Psyllium , Adult , Humans , Psyllium/therapeutic use , Polymorphism, Single Nucleotide , Obesity/drug therapy , Obesity/genetics , Obesity/epidemiology , Body Weight/genetics , Weight Loss/genetics , Dietary Supplements , Body Mass Index , Receptor, Melanocortin, Type 4/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
10.
Nat Commun ; 15(1): 1192, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331907

ABSTRACT

Overfeeding triggers homeostatic compensatory mechanisms that counteract weight gain. Here, we show that both lean and diet-induced obese (DIO) male mice exhibit a potent and prolonged inhibition of voluntary food intake following overfeeding-induced weight gain. We reveal that FGF21 is dispensable for this defense against weight gain. Targeted proteomics unveiled novel circulating factors linked to overfeeding, including the protease  legumain (LGMN). Administration of recombinant LGMN lowers body weight and food intake in DIO mice. The protection against weight gain is also associated with reduced vascularization in the hypothalamus and sustained reductions in the expression of the orexigenic neuropeptide genes, Npy and Agrp, suggesting a role for hypothalamic signaling in this homeostatic recovery from overfeeding. Overfeeding of melanocortin 4 receptor (MC4R) KO mice shows that these mice can suppress voluntary food intake and counteract the enforced weight gain, although their rate of weight recovery is impaired. Collectively, these findings demonstrate that the defense against overfeeding-induced weight gain remains intact in obesity and involves mechanisms independent of both FGF21 and MC4R.


Subject(s)
Obesity , Receptor, Melanocortin, Type 4 , Male , Mice , Animals , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Obesity/genetics , Obesity/prevention & control , Weight Gain , Fibroblast Growth Factors/genetics , Body Weight/physiology
11.
Neurogastroenterol Motil ; 36(5): e14764, 2024 May.
Article in English | MEDLINE | ID: mdl-38361111

ABSTRACT

BACKGROUND: Accelerated gastric emptying (GE) is a trait seen in obesity. Mutations in the hypothalamic leptin-melanocortin 4 receptor (Leptin-MC4R) pathway have been associated with obesity. We sought to investigate the association of leptin-MC4R pathway variants and GE in patients with obesity. METHODS: This is a cross-sectional study of patients with a history of severe obesity that were genotyped and completed a GE test by scintigraphy. We evaluated the percentage of GE (GE %) at 2 and 4 h between both groups using ANCOVA with weight and sex as covariates. We subdivide patients into carriers based on the location of the identified variants (i.e., upstream or downstream of the Leptin-MC4R pathway) and compared them with noncarriers using ANOVA. Results are presented as mean and standard deviation (± SD). KEY RESULTS: A total of 95 patients; nine carriers (67% females; 39.78 ± 12.33 years; BMI: 49.14 ± 12.96 kg/m2) and 86 noncarriers (87% female; 49.98 ± 13.74 years; BMI: 40.75 ± 6.29 kg/m2) were included. At 2 and 4 h, carriers had a delayed GE when compared noncarriers (p = 0.03 and p = 0.005, respectively). In carriers, when compared upstream carriers vs. downstream carriers vs. noncarriers by location there was a significant difference in GE among groups at 2 h and at 4 h (p = 0.02 and p = 0.01, respectively). CONCLUSIONS & INFERENCES: Carriers of heterozygous variants in the Leptin-MC4R pathway had a delayed GE compared to noncarriers. These findings point the important relationship between the Leptin-MC4R pathway and gastric motility.


Subject(s)
Gastric Emptying , Leptin , Obesity , Receptor, Melanocortin, Type 4 , Humans , Leptin/genetics , Female , Male , Gastric Emptying/physiology , Gastric Emptying/genetics , Adult , Cross-Sectional Studies , Middle Aged , Receptor, Melanocortin, Type 4/genetics , Obesity/genetics , Obesity/physiopathology , Signal Transduction
12.
J Pediatr Endocrinol Metab ; 37(2): 110-122, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38197679

ABSTRACT

OBJECTIVES: This study aims to explore the effects of fat mass obesity-associated (FTO) (rs9939609) and melanocortin 4 receptor (MC4R) (rs17782313) gene polymorphisms in children with type 1 diabetes (T1D) and their relation to obesity. METHODS: Fat mass obesity-associated (FTO) (rs9939609) and melanocortin 4 receptor (MC4R) (rs17782313) gene polymorphisms were evaluated in 164 patients and 100 controls, and genotypes, alleles, and haplotype frequencies were compared between cases and controls. RESULTS: A significant association with T1D development was found with the TC, CC, and TC+CC genotypes and the C allele of MC4R rs17782313. In addition, TA, AA, and TA+AA genotypes and the A allele of FTO rs9939609 may also be risky for T1D development. While the TC and TC+CC genotypes of MC4R rs17782313 may be protective against obesity development, the AA genotype and A allele of FTO rs9939609 may also be protective against obesity development. Regarding obese subjects, comparing diabetics vs. non-diabetic studied subjects, FTO rs9939609, TA, AA, and TA+AA genotypes and the A allele had significantly higher frequencies in T1D with a higher risk of developing T1D. However, conducting multivariable analysis using significant covariates in univariable analysis revealed that only earlier age of T1D onset, lower C-peptide, and the MC4R dominant model were considered independent predictors of obesity within T1D. CONCLUSIONS: The role of both genes' polymorphisms on the pathogenesis and the outcome of T1D and obesity can help in understanding the pathogenesis of both diseases and their associations with each other's and may be used as novel therapeutic targets for both diseases.


Subject(s)
Diabetes Mellitus, Type 1 , Child , Humans , Diabetes Mellitus, Type 1/genetics , Receptor, Melanocortin, Type 4/genetics , Polymorphism, Single Nucleotide , Body Mass Index , Obesity/genetics , Genotype , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Genetic Predisposition to Disease
13.
J Clin Endocrinol Metab ; 109(3): e1249-e1259, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37820740

ABSTRACT

CONTEXT: Genetic variants in melanocortin 3 receptor (MC3R) and melanocortin 4 receptor (MC4R) genes are strongly associated with childhood obesity. OBJECTIVE: This study aims to identify and functionally characterize MC3R and MC4R variants in an Asian cohort of children with severe early-onset obesity. METHODS: Whole-exome sequencing was performed to screen for MC3R and MC4R coding variants in 488 Asian children with severe early-onset obesity (body mass index for age ≥97th percentile). Functionality of the identified variants were determined via measurement of intracellular cyclic adenosine monophosphate (cAMP) concentrations and luciferase activity. RESULTS: Four MC3R and 2 MC4R heterozygous nonsynonymous rare variants were detected. There were 3 novel variants: MC3R c.151G > C (p.Val51Leu), MC4R c.127C > A (p.Gln43Lys), and MC4R c.272T > G (p.Met91Arg), and 3 previously reported variants: MC3R c.127G > A (p.Glu43Lys), MC3R c.97G > A (p.Ala33Thr), and MC3R c.437T > A (p.Ile146Asn). Both MC3R c.127G > A (p.Glu43Lys) and MC4R c.272T > G (p.Met91Arg) variants demonstrated defective downstream cAMP signaling activity. The MC4R c.127C > A (p.Gln43Lys) variant showed reduced cAMP signaling activity at low substrate concentration but the signaling activity was restored at high substrate concentration. The MC3R c.151G > C (p.Val51Leu) variant did not show a significant reduction in cAMP signaling activity compared to wild-type (WT) MC3R. Coexpression studies of the WT and variant MC3R/MC4R showed that the heterozygous variants did not exhibit dominant negative effect. CONCLUSION: Our functional assays demonstrated that MC3R c.127G > A (p.Glu43Lys) and MC4R c.272T > G (p.Met91Arg) variants might predispose individuals to early-onset obesity, and further studies are needed to establish the causative effect of these variants in the pathogenesis of obesity.


Subject(s)
Obesity, Morbid , Pediatric Obesity , Humans , Child , Obesity, Morbid/genetics , Melanocortins , Pediatric Obesity/genetics , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Receptor, Melanocortin, Type 3/genetics , Receptor, Melanocortin, Type 3/metabolism , Carrier Proteins
14.
J Physiol Anthropol ; 42(1): 29, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066615

ABSTRACT

BACKGROUND: Overweight and obesity among children have become significant global health concerns. Previous studies have highlighted the potential role of genetic factors, particularly polymorphisms in the FTO and MC4R genes, as well as environmental factors in the development of childhood obesity. This study aimed to investigate the relationships between genetic, socioeconomic and perinatal factors, adverse childhood events (ACEs), and lifestyle, and their impact on overweight, obesity and body composition parameters in children. Additionally, we explored potential interactions between genetic factors and ACEs. METHODS: Four hundred fifty-six children aged 6-12 years participated in our study. Information on the socioeconomic status, perinatal factors, ACEs and lifestyle of the children was collected with a questionnaire completed by their parents/guardians. We examined the children's body weight and conducted an electrical bioimpedance analysis. Overweight and obesity were diagnosed based on the International Obesity Task Force and McCarthy criteria. We genotyped two selected polymorphisms in the FTO and MC4R genes using the TaqMan SNP allelic discrimination method. RESULTS: Higher BMI (Body Mass Index) z scores were related to higher paternal BMI and lower maternal age at the child's birth. Higher FMI (Fat Mass Index) z scores were associated with higher paternal BMI, increased gestational weight, lower maternal education and the presence of the FTO risk allele. Higher FatM (fat mass in kg) z scores were linked to lower maternal education, lower maternal age at the child's birth, higher maternal body weight gain, paternal BMI and the presence of the FTO risk allele. Moreover, interaction effects were observed on BMI z scores between ACE and FTO AA, and on FMI z scores and FatM z scored between ACE and MC4R CC. CONCLUSIONS: The contribution of environmental factors is more strongly related to changes in body composition than genetic ones. Additionally, the presence of the risk allele combined with unfavourable environmental factors like ACEs leads to visible interaction effects, resulting in increased BMI z scores and FMI z scores in children.


Subject(s)
Adiposity , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Body Mass Index , Overweight , Pediatric Obesity , Child , Female , Humans , Pregnancy , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Genetic Predisposition to Disease , Genotype , Overweight/epidemiology , Overweight/genetics , Pediatric Obesity/epidemiology , Pediatric Obesity/genetics , Polymorphism, Single Nucleotide/genetics , Receptor, Melanocortin, Type 4/genetics , Adiposity/genetics
15.
Front Endocrinol (Lausanne) ; 14: 1267590, 2023.
Article in English | MEDLINE | ID: mdl-38027153

ABSTRACT

Xiphophorus fish exhibit a clear phenotypic polymorphism in puberty onset and reproductive strategies of males. In X. nigrensis and X. multilineatus, puberty onset is genetically determined and linked to a melanocortin 4 receptor (Mc4r) polymorphism of wild-type and mutant alleles on the sex chromosomes. We hypothesized that Mc4r mutant alleles act on wild-type alleles by a dominant negative effect through receptor dimerization, leading to differential intracellular signaling and effector gene activation. Depending on signaling strength, the onset of puberty either occurs early or is delayed. Here, we show by Förster Resonance Energy Transfer (FRET) that wild-type Xiphophorus Mc4r monomers can form homodimers, but also heterodimers with mutant receptors resulting in compromised signaling which explains the reduced Mc4r signaling in large males. Thus, hetero- vs. homo- dimerization seems to be the key molecular mechanism for the polymorphism in puberty onset and body size in male fish.


Subject(s)
Receptor, Melanocortin, Type 4 , Sexual Maturation , Animals , Male , Dimerization , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Polymorphism, Genetic , Body Size
16.
Sci Rep ; 13(1): 19768, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957201

ABSTRACT

Obesity is recognized as an independent risk factor for abdominal aortic aneurysm (AAA). While mutations in the melanocortin-4 receptor (MC4R) gene is the most common cause of obesity caused by mutations in a single gene, the link between MC4R function and vascular disease has still remained unclear. Here, by using melanocortin-4 receptor (MC4R) deficient mice, we confirmed MC4R deficiency promotes AAA and atherosclerosis. We demonstrated the contribution of two novel factors towards vascular vulnerability in this model: leptin signaling in vascular smooth muscle cells (VSMCs) and loss of MC4R signaling in macrophages. Leptin was shown to promote vascular vulnerability via PI3K-dependent upregulation of Spp1 expression in VSMC. Additionally, Ang II-induced AAA incidence was significantly reduced when MC4R gene expression was myeloid cell-specifically rescued in MC4R deficient (MC4RTB/TB) mice. Ex vivo analysis showed a suppression in NF-κB activity in bone marrow-derived macrophages from LysM(+);MC4RTB/TB mice compared to LysM(-);MC4RTB/TB mice, which exaggerates with endogenous MC4R ligand treatment; α-MSH. These results suggest that MC4R signaling in macrophages attenuates AAA by inhibiting NF-κB activity and subsequent vascular inflammation.


Subject(s)
Angiotensin II , Aortic Aneurysm, Abdominal , Receptor, Melanocortin, Type 4 , Animals , Mice , Angiotensin II/metabolism , Aortic Aneurysm, Abdominal/etiology , Disease Models, Animal , Leptin/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Obesity/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism
17.
Genes (Basel) ; 14(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-38002939

ABSTRACT

The global rise in obesity is attributed to genetic predisposition interaction with an obesogenic environment. Melanocortin 4 receptor (MC4R) rs17782313 polymorphism has been linked to common obesity with varying influence across different populations. MC4R is a crucial player in the leptin proopiomelanocortin pathway that regulates weight hemostasis. We aimed to study MC4R rs17782313 and its interaction with eating behaviors on obesity predisposition in the Israeli population. Adults' (n = 5785, >18 y) genotype and anthropometric and demographic data were analyzed using logistic regression models adjusting for age, sex, T1DM, and T2DM. MC4R rs17782313 significantly predisposes to elevated obesity risk under the recessive and additive models (OR = 1.38, 95% CI: 1.1-1.72, p = 0.005 and OR = 1.1, 95% CI: 1.01-1.2, p = 0.03, respectively) adjusted for confounders (age, sex, T1DM, and T2DM). Stratification by sex demonstrated that carrying the common MC4R rs17782313 is significantly associated with an elevated predisposition to obesity under the recessive model among females only (OR = 1.41, 95% CI: 1.09-1.82, p = 0.01), with an average of 0.85 BMI increment compared with wild type and one risk allele carriers. MC4R rs17782313 significantly interacted with several eating behaviors to enhance the risk of obesity. Our findings demonstrate that MC4R rs17782313 homozygous female carriers are significantly predisposed to obesity amplified by eating behaviors.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Adult , Female , Humans , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Polymorphism, Single Nucleotide , Body Mass Index , Obesity/genetics , Genotype , Feeding Behavior , Diabetes Mellitus, Type 2/genetics
18.
Int J Mol Sci ; 24(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003551

ABSTRACT

The leptin-melanocortin pathway is pivotal in appetite and energy homeostasis. Pathogenic variants in genes involved in this pathway lead to severe early-onset monogenic obesity (MO). The MC4R gene plays a central role in leptin-melanocortin signaling, and heterozygous variants in this gene are the most common cause of MO. A targeted gene panel consisting of 52 obesity-related genes was used to screen for variants associated with obesity. Variants were analyzed and filtered to identify potential disease-causing activity and validated using Sanger sequencing. We identified two novel heterozygous variants, c.253A>G p.Ser85Gly and c.802T>C p.Tyr268His, in the MC4R gene in two unrelated patients with morbid obesity and evaluated the functional impact of these variants. The impact of the variants on the MC4R gene was assessed using in silico prediction tools and molecular dynamics simulation. To further study the pathogenicity of the identified variants, GT1-7 cells were transfected with plasmid DNA encoding either wild-type or mutant MC4R variants. The effects of allelic variations in the MC4R gene on cAMP synthesis, MC4R protein level, and activation of PKA, ERB, and CREB signaling pathways in both stimulated and unstimulated ɑ-MSH paradigms were determined for their functional implications. In silico analysis suggested that the variants destabilized the MC4R structure and affected the overall dynamics of the MC4R protein, possibly leading to intracellular receptor retention. In vitro analysis of the functional impact of these variants showed a significant reduction in cell surface receptor expression and impaired extracellular ligand binding activity, leading to reduced cAMP production. Our analysis shows that the variants do not affect total protein expression; however, they are predicted to affect the post-translational localization of the MC4R protein to the cell surface and impair downstream signaling cascades such as PKA, ERK, and CREB signaling pathways. This finding might help our patients to benefit from the novel therapeutic advances for monogenic forms of obesity.


Subject(s)
Leptin , Obesity, Morbid , Humans , Leptin/genetics , Obesity, Morbid/genetics , Qatar , Alleles , alpha-MSH/pharmacology , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Mutation
19.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 30-42, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37953587

ABSTRACT

Industrialized and developing nations face severe public health problems related to childhood obesity. Previous studies revealed that the melanocortin-4 receptor gene (MC4R) is the most prevalent monogenic cause of severe early obesity. Due to its influence on food intake and energy expenditure via neuronal melanocortin-4 receptor pathways, MC4R is recognized as a regulator of energy homeostasis. This study used a variety of computational systems to analyze 273 missense variations of MC4R in silico. Several tools, including PolyPhen, PROVEAN, SIFT, SNAP2, MutPred2, PROVEAN, SNP&GO and Mu-Pro, I-Mutant, PhD-SNP, SAAFEC-SEQ I-Mutant, and ConSurf, were used to make predictions of 13 extremely confident nsSNPs that are harmful and disease-causing (E308k, P299L, D298H, C271F, C271R, P260L, T246N, G243R, C196Y, W174C, Y157S, D126Y, and D90G). The results of our study suggest that these MC4R nsSNPs may disrupt normal protein function, leading to an increased risk of childhood obesity. These results highlight the potential use of these nsSNPs as biomarkers to predict susceptibility to obesity and as targets for personalized interventions.


Subject(s)
Pediatric Obesity , Humans , Child , Pediatric Obesity/genetics , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Mutation, Missense/genetics
20.
J Cell Physiol ; 238(12): 2867-2878, 2023 12.
Article in English | MEDLINE | ID: mdl-37850660

ABSTRACT

The melanocortin 4 receptor (MC4R) is a G protein-coupled transporter that mediates the regulation of thyroid hormones and leptin on energy balance and food intake. However, the mechanisms of transcriptional regulation of Mc4r by thyroid hormone and leptin in fish have been rarely reported. The messenger RNA expression of Mc4r gene was significantly higher in brain than those in other tissues of mandarin fish. We analyzed the structure and function of a 2029 bp sequence of Mc4r promoter. Meanwhile, overexpression of NKX2.1 and incubation with leptin significantly increased Mc4r promoter activity, but triiodothyronine showed the opposite effect. In addition, mutations in the NKX2.1 binding site abolished not only the activation of Mc4r promoter activity by leptin but also the inhibitory effect of thyroid hormones on Mc4r promoter activity. In summary, these results suggested that thyroid hormones and leptin might regulate the transcriptional expression of Mc4r through NKX2.1.


Subject(s)
Fishes , Genes, Homeobox , Leptin , Animals , DNA-Binding Proteins/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Fishes/genetics , Fishes/metabolism , Leptin/genetics , Leptin/pharmacology , Promoter Regions, Genetic/genetics , Receptor, Melanocortin, Type 4/genetics , Receptor, Melanocortin, Type 4/metabolism , Thyroid Hormones , Thyroid Nuclear Factor 1/genetics , Thyroid Nuclear Factor 1/metabolism , Humans , HEK293 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...