Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Nat Commun ; 14(1): 244, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36646691

ABSTRACT

The unique perisynaptic distribution of postsynaptic metabotropic glutamate receptors (mGluRs) at excitatory synapses is predicted to directly shape synaptic function, but mechanistic insight into how this distribution is regulated and impacts synaptic signaling is lacking. We used live-cell and super-resolution imaging approaches, and developed molecular tools to resolve and acutely manipulate the dynamic nanoscale distribution of mGluR5. Here we show that mGluR5 is dynamically organized in perisynaptic nanodomains that localize close to, but not in the synapse. The C-terminal domain of mGluR5 critically controlled perisynaptic confinement and prevented synaptic entry. We developed an inducible interaction system to overcome synaptic exclusion of mGluR5 and investigate the impact on synaptic function. We found that mGluR5 recruitment to the synapse acutely increased synaptic calcium responses. Altogether, we propose that transient confinement of mGluR5 in perisynaptic nanodomains allows flexible modulation of synaptic function.


Subject(s)
Receptor, Metabotropic Glutamate 5 , Synapses , Animals , Receptor, Metabotropic Glutamate 5/physiology
2.
Int J Mol Sci ; 22(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34360592

ABSTRACT

The metabotropic glutamate receptor type 5 (mGluR5) has been proposed to play a crucial role in the selection and regulation of cognitive, affective, and emotional behaviors. However, the mechanisms by which these receptors mediate these effects remain largely unexplored. Here, we studied the role of mGluR5 located in D1 receptor-expressing (D1) neurons in the manifestation of different behavioral expressions. Mice with conditional knockout (cKO) of mGluR5 in D1 neurons (mGluR5D1 cKO) and littermate controls displayed similar phenotypical profiles in relation to memory expression, anxiety, and social behaviors. However, mGluR5D1 cKO mice presented different coping mechanisms in response to acute escapable or inescapable stress. mGluR5D1 cKO mice adopted an enhanced active stress coping strategy upon exposure to escapable stress in the two-way active avoidance (TWA) task and a greater passive strategy upon exposure to inescapable stress in the forced swim test (FST). In summary, this work provides evidence for a functional integration of the dopaminergic and glutamatergic system to mediate control over internal states upon stress exposure and directly implicates D1 neurons and mGluR5 as crucial mediators of behavioral stress responses.


Subject(s)
Adaptation, Psychological , Dopamine/metabolism , Neurons/metabolism , Receptor, Metabotropic Glutamate 5/physiology , Receptors, Dopamine D1/metabolism , Stress, Psychological/prevention & control , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Stress, Psychological/metabolism , Stress, Psychological/pathology
3.
Behav Brain Res ; 411: 113378, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34029630

ABSTRACT

Autism is a neurodevelopmental disorder characterized by impaired social interactions and restricted and repetitive behaviors. Although group 1 metabotropic glutamate receptors (mGluRs), and in particular mGluR5, have been extensively proposed as potential targets for intervention in autism and other neurodevelopmental disorders, there has not been a comprehensive analysis of the effect of mGluR5 loss on behaviors typically assessed in autism mouse models thought to be correlates of behavioral symptoms of human disorders. Here we present a behavioral characterization of mice with complete or partial loss of mGluR5 (homozygous or heterozygous null mutations in Grm5 gene). We tested several autism related behaviors including social interaction, repetitive grooming, digging and locomotor behaviors. We found that digging and marble burying behaviors were almost completely abolished in mGluR5 ko mice, although self-grooming was not altered. Social interaction was impaired in ko but not in heterozygote (het) mice. In tests of locomotor activity and anxiety related behaviors, mGluR5 ko mice exhibited hyperactivity and reduced anxiety in the open field test but unexpectedly, showed hypoactivity in the elevated zero-maze test. There was no impairment in motor learning in the accelerating rotarod in both ko and het mutant. Together these results provide support for the importance of mGluR5 in motor and social behaviors that are specifically affected in autism disorders.


Subject(s)
Autism Spectrum Disorder/genetics , Motor Activity/genetics , Receptor, Metabotropic Glutamate 5/metabolism , Animals , Anxiety/genetics , Anxiety/physiopathology , Autism Spectrum Disorder/metabolism , Autistic Disorder/genetics , Autistic Disorder/metabolism , Behavior, Animal/drug effects , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/physiology , Receptor, Metabotropic Glutamate 5/genetics , Receptor, Metabotropic Glutamate 5/physiology , Receptors, Metabotropic Glutamate/metabolism , Social Behavior , Stereotyped Behavior
4.
Neuropharmacology ; 192: 108608, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33991565

ABSTRACT

An impairment of long-term synaptic plasticity is considered as a peculiar endophenotype of distinct forms of dystonia, a common, disabling movement disorder. Among the few therapeutic options, broad-spectrum antimuscarinic drugs are utilized, aimed at counteracting abnormal striatal acetylcholine-mediated transmission, which plays a crucial role in dystonia pathophysiology. We previously demonstrated a complete loss of long-term synaptic depression (LTD) at corticostriatal synapses in rodent models of two distinct forms of isolated dystonia, resulting from mutations in the TOR1A (DYT1), and GNAL (DYT25) genes. In addition to anticholinergic agents, the aberrant excitability of striatal cholinergic cells can be modulated by group I metabotropic glutamate receptor subtypes (mGlu1 and 5). Here, we tested the efficacy of the negative allosteric modulator (NAM) of metabotropic glutamate 5 (mGlu) receptor, dipraglurant (ADX48621) on striatal LTD. We show that, whereas acute treatment failed to rescue LTD, chronic dipraglurant rescued this form of synaptic plasticity both in DYT1 mice and GNAL rats. Our analysis of the pharmacokinetic profile of dipraglurant revealed a relatively short half-life, which led us to uncover a peculiar time-course of recovery based on the timing from last dipraglurant injection. Indeed, striatal spiny projection neurons (SPNs) recorded within 2 h from last administration showed full expression of synaptic plasticity, whilst the extent of recovery progressively diminished when SPNs were recorded 4-6 h after treatment. Our findings suggest that distinct dystonia genes may share common signaling pathway dysfunction. More importantly, they indicate that dipraglurant might be a potential novel therapeutic agent for this disabling disorder.


Subject(s)
Corpus Striatum/physiology , Dystonia/physiopathology , Excitatory Amino Acid Antagonists/pharmacology , Imidazoles/pharmacology , Long-Term Synaptic Depression/physiology , Pyridines/pharmacology , Receptor, Metabotropic Glutamate 5/physiology , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Corpus Striatum/drug effects , Dystonia/drug therapy , Dystonia/genetics , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Agonists/therapeutic use , Excitatory Amino Acid Antagonists/therapeutic use , Imidazoles/therapeutic use , Long-Term Synaptic Depression/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pyridines/therapeutic use , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5/agonists , Receptor, Metabotropic Glutamate 5/antagonists & inhibitors
5.
J Mol Neurosci ; 71(1): 55-65, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32557241

ABSTRACT

A variety of studies have proposed that transient receptor potential vanilloid 1 (TRPV1) is involved in the progression of multiple diseases, including neuropathic pain. Although increased expression of TRPV1 in chronic constriction injury was described earlier, the underlying regulatory mechanisms of TRPV1 in neuropathic pain remain largely unknown. In our study, we constructed a chronic constriction injury (CCI) rat model to deeply analyze the mechanisms underlying TRPV1. RT-qPCR-indicated TRPV1 mRNA and protein expression were extremely upregulated in CCI rat dorsal spinal cord tissues. Then, TRPV1 was corroborated to interact with N-terminal EF-hand Ca2+-binding protein 2 (NECAB2). The mRNA and protein levels of NECAB2 were increased in CCI tissues. Moreover, TRPV1 and NECAB2 together regulated nociceptive procession-associated protein metabotropic glutamate receptor 5 (mGluR5), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and Ca2+ in isolated microglia of CCI rats. Moreover, TRPV1 upregulation apparently increased mechanical allodynia and thermal hyperalgesia as well as the expression of inflammation-associated genes (COX-2, TNF-α, and IL-6). In addition, downregulation of NECAB2 significantly decreased mechanical allodynia and thermal hyperalgesia as well as the expression of COX-2, TNF-α, and IL-6. Furthermore, TRPV1 was confirmed to be a downstream target of miR-338-3p. TRPV1 overexpression abolished the inhibitory effect by miR-338-3p elevation on neuropathic pain development. In summary, this study proved TRPV1, targeted by miR-338-3p, induced neuropathic pain by interacting with NECAB2, which provides a potential therapeutic target for neuropathic pain treatment.


Subject(s)
Calcium-Binding Proteins/physiology , MicroRNAs/genetics , Nerve Tissue Proteins/physiology , Neuralgia/physiopathology , TRPV Cation Channels/physiology , Animals , Calcium Signaling , Calcium-Binding Proteins/biosynthesis , Calcium-Binding Proteins/genetics , Cell Line, Tumor , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/genetics , Gene Expression Regulation , Humans , Hyperalgesia/physiopathology , Inflammation , Interleukin-6/biosynthesis , Interleukin-6/genetics , MAP Kinase Signaling System , Male , Microglia/metabolism , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Neuralgia/genetics , PC12 Cells , Pain Threshold/physiology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5/physiology , Recombinant Proteins/metabolism , Sciatic Neuropathy/complications , Sciatica/etiology , Sciatica/genetics , Sciatica/physiopathology , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord/physiopathology , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/biosynthesis , TRPV Cation Channels/genetics , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics , Up-Regulation
6.
Neurobiol Aging ; 98: 225-230, 2021 02.
Article in English | MEDLINE | ID: mdl-33341653

ABSTRACT

Impaired mRNA translation (protein synthesis) is linked to Alzheimer's disease (AD) pathophysiology. Recent studies revealed the role of increased phosphorylation of eukaryotic elongation factor 2 (eEF2) in AD-associated cognitive deficits. Phosphorylation of eEF2 (at the Thr56 site) by its only known kinase eEF2K leads to inhibition of general protein synthesis. AD is considered as a disease of "synaptic failure" characterized by impairments of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Deficiency of metabotropic glutamate receptor 5-dependent LTD (mGluR-LTD) is indicated in cognitive syndromes associated with various neurological disorders, including AD, but the molecular signaling mechanisms underlying the mGluR-LTD dysregulation in AD remain unclear. In this brief communication, we report genetic repression of eEF2K in aged APP/PS1 AD model mice prevented AD-associated hippocampal mGluR-LTD deficits. Using a pharmacological approach, we further observed that impairments of mGluR-LTD in APP/PS1 mice were rescued by treating hippocampal slices with a small molecule eEF2K antagonist NH125. Our findings, taken together, suggest a critical role of abnormal protein synthesis dysregulation at the elongation phase in AD-associated mGluR-LTD failure, thus providing insights into a mechanistic understanding of synaptic impairments in AD and other related dementia syndromes.


Subject(s)
Alzheimer Disease/etiology , Long-Term Potentiation/genetics , Long-Term Potentiation/physiology , Peptide Elongation Factor 2/genetics , Peptide Elongation Factor 2/metabolism , Receptor, Metabotropic Glutamate 5/genetics , Receptor, Metabotropic Glutamate 5/physiology , Alzheimer Disease/genetics , Animals , Disease Models, Animal , Hippocampus/metabolism , Imidazoles/pharmacology , Mice, Transgenic , Neuronal Plasticity/genetics , Peptide Elongation Factor 2/antagonists & inhibitors , Phosphorylation , Protein Biosynthesis , Receptor, Metabotropic Glutamate 5/metabolism
7.
Mol Psychiatry ; 25(4): 750-760, 2020 04.
Article in English | MEDLINE | ID: mdl-30214040

ABSTRACT

Multiple lines of evidence point to glutamatergic signaling in the postsynaptic density (PSD) as a pathophysiologic mechanism in schizophrenia. Integral to PSD glutamatergic signaling is reciprocal interplay between GluN and mGluR5 signaling. We examined agonist-induced mGluR5 signaling in the postmortem dorsolateral prefrontal cortex (DLPFC) derived from 17 patients and age-matched and sex-matched controls. The patient group showed a striking reduction in mGluR5 signaling, manifested by decreases in Gq/11 coupling and association with PI3K and Homer compared to controls (p < 0.01 for all). This was accompanied by increases in serine and tyrosine phosphorylation of mGluR5, which can decrease mGluR5 activity via desensitization (p < 0.01). In addition, we find altered protein-protein interaction (PPI) of mGluR5 with RGS4, norbin, Preso 1 and tamalin, which can also attenuate mGluR5 activity. We previously reported molecular underpinnings of GluN hypofunction (decreased GluN2 phosphorylation) and here we show those of reduced mGluR5 signaling in schizophrenia. We find that reduced GluN2 phosphorylation can be precipitated by attenuated mGluR5 activity and that increased mGluR5 phosphorylation can result from decreased GluN function, suggesting a reciprocal interplay between the two pathways in schizophrenia. Interestingly, the patient group showed decreased mGluR5-GluN association (p < 0.01), a mechanistic basis for the reciprocal facilitation. In sum, we present the first direct evidence for mGluR5 hypoactivity, propose a reciprocal interplay between GluN and mGluR5 pathways as integral to glutamatergic dysregulation and suggest protein-protein interactions in mGluR5-GluN complexes as potential targets for intervention in schizophrenia.


Subject(s)
Receptor, Metabotropic Glutamate 5/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/metabolism , Aged , Aged, 80 and over , Antipsychotic Agents/therapeutic use , Brain/metabolism , Excitatory Amino Acid Agents/metabolism , Female , Humans , Male , Membrane Proteins/metabolism , Phosphorylation , Post-Synaptic Density/metabolism , Prefrontal Cortex/metabolism , Receptor, Metabotropic Glutamate 5/physiology , Signal Transduction/drug effects
8.
Neuropharmacology ; 162: 107810, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31600563

ABSTRACT

Previous studies have demonstrated that antagonists of mGluR1, but not mGluR5, are neuroprotective in models of cerebral ischemia. To investigate the individual roles of mGlu1 and mGlu5 receptors in in vitro model of cerebral ischemia we used low doses of the non-selective group I agonist DHPG and mGlu1 and mGlu5 selective positive allosteric modulators (PAMs). In hippocampal slices subjected to 30 min oxygen-glucose deprivation (OGD), DHPG (1 µM) and the mGluR5 PAM (VU0092273) significantly reduced OGD-induced CA1 injury monitored by propidium iodide staining of the slices and quantitative analysis of CA1 neurons. In contrast, the mGluR1 PAM (VU0483605) showed no neuroprotection. These protective effects of DHPG and VU0092273 were prevented by inhibition of PI3K/Akt pathway by LY294002. The mGluR5 PAM (VU0092273) also prevented GluA2 down-regulation triggered by ischemic injury, via PI3K/Akt pathway, revealing a further contribution to its neuroprotective effects by reducing the excitotoxic effects of increased Ca2+ influx through GluA2-lacking AMPA receptors. Furthermore, immunohistochemical assays confirmed the neuroprotective effect of VU0092273 and revealed activation of glia, indicating the involvement reactive astrogliosis in the mechanisms of neuroprotection. Our data suggest that selective activation/potentiation of mGluR5 signalling represents a promising strategy for the development of new interventions to reduce or prevent ischemia-induced neuronal death.


Subject(s)
Brain Ischemia/metabolism , CA1 Region, Hippocampal/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Metabotropic Glutamate 5/physiology , Receptors, AMPA/metabolism , Receptors, Metabotropic Glutamate/physiology , Allosteric Regulation , Animals , Brain Ischemia/pathology , Disease Models, Animal , Down-Regulation , Gliosis/metabolism , Gliosis/pathology , In Vitro Techniques , Methoxyhydroxyphenylglycol/analogs & derivatives , Methoxyhydroxyphenylglycol/pharmacology , Neuroglia , Neuroprotective Agents , Piperidines/pharmacology , Rats , Receptor, Metabotropic Glutamate 5/agonists , Receptors, Metabotropic Glutamate/agonists
9.
Transl Psychiatry ; 9(1): 244, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31582721

ABSTRACT

LRRC7 has been identified as a candidate gene for severe childhood emotional dysregulation. Direct experimental evidence for a role of LRRC7 in the disease is needed, as is a better understanding of its impact on neuronal structure and signaling, and hence potential treatment targets. Here, we generated and analyzed an Lrrc7 mutant mouse line. Consistent with a critical role of LRRC7 in emotional regulation, mutant mice had inappropriate juvenile aggressive behavior and significant anxiety-like behavior and social dysfunction in adulthood. The pivotal role of mGluR5 signaling was demonstrated by rescue of behavioral defects with augmentation of mGluR5 receptor activity by 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB). Intra-peritoneal injection of CDPPB alleviated abnormal juvenile behavior, as well as anxiety-like behavior and hypersociability at adulthood. Furthermore, mutant primary neurons had impaired neurite outgrowth which was rescued by CDPPB treatment. In conclusion, Lrrc7 mutant mice provide a valuable tool to model childhood emotional dysregulation and persistent mental health comorbidities. Moreover, our data highlight an important role of LRRC7 in mGluR5 signaling, which is a potential new treatment target for anxiety and social dysfunction.


Subject(s)
Behavior, Animal/drug effects , Benzamides/pharmacology , Neurons/physiology , Pyrazoles/pharmacology , Receptor, Metabotropic Glutamate 5/physiology , Sialoglycoproteins/genetics , Animals , Disease Models, Animal , Female , Male , Mice , Mutation , Signal Transduction
10.
PLoS Biol ; 17(8): e3000371, 2019 08.
Article in English | MEDLINE | ID: mdl-31433808

ABSTRACT

Inhibitory glycinergic transmission in adult spinal cord is primarily mediated by glycine receptors (GlyRs) containing the α1 subunit. Here, we found that α1ins, a longer α1 variant with 8 amino acids inserted into the intracellular large loop (IL) between transmembrane (TM)3 and TM4 domains, was expressed in the dorsal horn of the spinal cord, distributed at inhibitory synapses, and engaged in negative control over nociceptive signal transduction. Activation of metabotropic glutamate receptor 5 (mGluR5) specifically suppressed α1ins-mediated glycinergic transmission and evoked pain sensitization. Extracellular signal-regulated kinase (ERK) was critical for mGluR5 to inhibit α1ins. By binding to a D-docking site created by the 8-amino-acid insert within the TM3-TM4 loop of α1ins, the active ERK catalyzed α1ins phosphorylation at Ser380, which favored α1ins ubiquitination at Lys379 and led to α1ins endocytosis. Disruption of ERK interaction with α1ins blocked Ser380 phosphorylation, potentiated glycinergic synaptic currents, and alleviated inflammatory and neuropathic pain. These data thus unraveled a novel, to our knowledge, mechanism for the activity-dependent regulation of glycinergic neurotransmission.


Subject(s)
Posterior Horn Cells/metabolism , Receptors, Glycine/metabolism , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Glycine/metabolism , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 7/metabolism , Phosphorylation , Receptor, Metabotropic Glutamate 5/metabolism , Receptor, Metabotropic Glutamate 5/physiology , Receptors, Glycine/physiology , Signal Transduction/physiology , Spinal Cord/metabolism , Spinal Cord Dorsal Horn/metabolism , Spine/metabolism , Synapses/metabolism , Synaptic Transmission/physiology
11.
Proc Natl Acad Sci U S A ; 116(27): 13680-13689, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31196955

ABSTRACT

The physiological activity of proteins is often studied with loss-of-function genetic approaches, but the corresponding phenotypes develop slowly and can be confounding. Photopharmacology allows direct, fast, and reversible control of endogenous protein activity, with spatiotemporal resolution set by the illumination method. Here, we combine a photoswitchable allosteric modulator (alloswitch) and 2-photon excitation using pulsed near-infrared lasers to reversibly silence metabotropic glutamate 5 (mGlu5) receptor activity in intact brain tissue. Endogenous receptors can be photoactivated in neurons and astrocytes with pharmacological selectivity and with an axial resolution between 5 and 10 µm. Thus, 2-photon pharmacology using alloswitch allows investigating mGlu5-dependent processes in wild-type animals, including synaptic formation and plasticity, and signaling pathways from intracellular organelles.


Subject(s)
Brain/physiology , Optogenetics/methods , Photons , Receptors, Cell Surface/metabolism , Animals , Astrocytes/metabolism , Astrocytes/physiology , Brain/metabolism , Calcium/metabolism , Neurons/metabolism , Neurons/physiology , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5/metabolism , Receptor, Metabotropic Glutamate 5/physiology , Receptors, Cell Surface/physiology
12.
Neurotherapeutics ; 16(3): 761-783, 2019 07.
Article in English | MEDLINE | ID: mdl-31073978

ABSTRACT

Targeting mGluR5 has been an attractive strategy to modulate glutamate excitotoxicity for neuroprotection. Although human clinical trials using mGluR5 negative allosteric modulators (NAMs) have included some disappointments, recent investigations have added several more attractive small molecules to this field, providing a promise that the identification of more additional strategies to modulate mGluR5 activity might be potentially beneficial for the advancement of PD treatment. Here, we determined the role of the interacting partner CAL (cystic fibrosis transmembrane conductance regulator-associated ligand) in mGluR5-mediated protection in vitro and in vivo. In astroglial C6 cells, CAL deficiency blocked (S)-3, 5-dihydroxyphenylglycine (DHPG)-elicited p-AKT and p-ERK1/2, subsequently prevented group I mGluRs-mediated anti-apoptotic protection, which was blocked by receptor antagonist 1-aminoindan-1, 5-dicarboxylic acid (AIDA), and PI3K or MEK inhibitor LY294002 or U0126. In rotenone-treated MN9D cells, both CAL and mGluR5 expressions were decreased in a time- and dose-dependent manner, and the correlation between these 2 proteins was confirmed by lentivirus-delivered CAL overexpression and knockdown. Moreover, CAL coupled with mGluR5 upregulated mGluR5 protein expression by inhibition of ubiquitin-proteasome-dependent degradation to suppress mGluR5-mediated p-JNK and to protect against cell apoptosis. Additionally, CAL also inhibited rotenone-induced glutamate release to modulate mGluR5 activity. Furthermore, in the rotenone-induced rat model of PD, AAV-delivered CAL overexpression attenuated behavioral deficits and dopaminergic neuronal death, while CAL deficiency aggravated rotenone toxicity. On the other hand, the protective effect of the mGluR5 antagonist MPEP was weakened by knocking down CAL. In vivo experiments also confirmed that CAL inhibited ubiquitination-proteasome-dependent degradation to modulate mGluR5 expression and JNK phosphorylation. Our findings show that CAL protects against cell apoptosis via modulating mGluR5 activity, and may be a new molecular target for an effective therapeutic strategy for PD.


Subject(s)
Apoptosis , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , PDZ Domains , Parkinson Disease/metabolism , Receptor, Metabotropic Glutamate 5/physiology , Animals , Astrocytes/metabolism , Blotting, Western , Cell Line , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Fluorescent Antibody Technique , Immunoprecipitation , MAP Kinase Signaling System , Male , Mice , PDZ Domains/physiology , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5/metabolism
13.
J Neurosci ; 39(20): 3897-3905, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30867257

ABSTRACT

It is well established across many species that neurons in the primary visual cortex (V1) display preference for visual input from one eye or the other, which is termed ocular dominance (OD). In rodents, V1 neurons exhibit a strong bias toward the contralateral eye. Molecular mechanisms of how OD is established and later maintained by plastic changes are largely unknown. Here we report a novel role of an activity-dependent immediate early gene Homer1a (H1a) in these processes. Using both sexes of H1a knock-out (KO) mice, we found that there is basal reduction in the OD index of V1 neurons measured using intrinsic signal imaging. This was because of a reduction in the strength of inputs from the contralateral eye, which is normally dominant in mice. The abnormal basal OD index was not dependent on visual experience and is driven by postnatal expression of H1a. Despite this, H1a KOs still exhibited normal shifts in OD index following a short-term (2-3 d) monocular deprivation (MD) of the contralateral eye with lid suture. However, unlike wild-type counterparts, H1a KOs continued to shift OD index with a longer duration (5-6 d) of MD. The same phenotype was recapitulated in a mouse model that has reduced Homer1 binding to metabotropic glutamate receptor 5 (mGluR5). Our results suggest a novel role of H1a and its interaction with mGluR5 in strengthening contralateral eye inputs during postnatal development to establish normal contralateral bias in mouse V1 without much impact on OD shift with brief MD.SIGNIFICANCE STATEMENT Visual cortical neurons display varying degree of responsiveness to visual stimuli through each eye, which determines their ocular dominance (OD). Molecular mechanisms responsible for establishing normal OD are largely unknown. Development of OD has been shown to be largely independent of visual experience, but guided by molecular cues and spontaneous activity. We found that activity-dependent immediate early gene H1a is critical for establishing normal OD in V1 of mice, which show contralateral eye dominance. Despite the weaker contralateral bias, H1aKOs undergo largely normal OD plasticity. The basic phenotype of H1aKO was recapitulated by mGluR5 mutation that severely reduces H1a interaction. Our results suggest a novel role of mGluR5-H1a interaction in strengthening contralateral eye inputs to V1 during postnatal development.


Subject(s)
Dominance, Ocular/physiology , Homer Scaffolding Proteins/physiology , Neurons/physiology , Visual Cortex/physiology , Animals , Female , Homer Scaffolding Proteins/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Photic Stimulation , Receptor, Metabotropic Glutamate 5/physiology
14.
Brain Behav Immun ; 79: 114-124, 2019 07.
Article in English | MEDLINE | ID: mdl-30682501

ABSTRACT

Antidepressant-like effects of metabotropic glutamate receptor 5 (mGluR5) have been verified by specific antagonists or whole body knock-out (KO) mice. Previous experiments indicate that blocking mGluR5 exerts antidepressant-like effects through neuronal mechanisms, like modulating NMDA receptor activity or 5-HT system. Here we found that transplanting bone marrow from mGluR5 KO mice to WT mice could also show antidepressant-like effects, which were confirmed by sucrose preference test and tail suspension test. Furthermore, mGluR5 deficiency dramatically inhibits cytokines release from bone marrow cells, such as IL-1ß, TNF-α and IL-6, alleviating proinflammatory responses in LPS-induced depression model. In addition, inhibited cytokines could decrease the activation of brain endothelial cells in ERK-dependent manner. These data provide the evidence that blocking mGluR5 could improve depression through inhibiting peripheral immune responses, confirming the causal relationship between peripheral immune phenotype and brain behavior.


Subject(s)
Antidepressive Agents/metabolism , Depression/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Animals , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Bone Marrow/metabolism , Bone Marrow Transplantation/methods , Brain/metabolism , Cytokines/metabolism , Depression/drug therapy , Depression/etiology , Depressive Disorder/drug therapy , Depressive Disorder/etiology , Depressive Disorder/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Receptor, Metabotropic Glutamate 5/genetics , Receptor, Metabotropic Glutamate 5/physiology , Receptors, N-Methyl-D-Aspartate/metabolism
15.
Int Ophthalmol ; 39(10): 2223-2235, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30607864

ABSTRACT

OBJECTIVE: To understand the involvement of the mGluR5-mediated JNK signaling pathway in rats with diabetic retinopathy (DR). METHODS: This study established rat models of diabetes mellitus (DM), which were divided into Normal, DM, DM + CHPG (mGluR5 agonist CHPG), and DM + MTEP (mGluR5 antagonist MTEP) groups. The blood glucose and weight of rats were recorded. EB staining was used for observation of blood-retinal barrier (BRB) damage. Neural retina function was measured by pattern electroretinogram (ERG). PAS and NG2 immunohistochemistry were conducted to evaluate the retinal vascular morphology. The TUNEL assay and active caspase-3 immunohistochemistry were performed to detect retinal cell apoptosis. Additionally, the expression levels of superoxide dismutase (SOD) and methylenedioxyamphetamine (MDA) were measured. Moreover, expression levels of mGluR5 and JNK pathway-related proteins were detected by western blot. RESULTS: When compared with control rats, rats in the DM group showed decreased amplitude and latency of the peak times in the ERG test; further, DM group rats presented increases in blood glucose, BRB permeability, a retinal capillary area density, retinal cell apoptosis with an increased number of active caspase-3-positive cells, MDA level, mGluR5 levels, and the ratio of p-JNK/JNK, and they showed reductions in body weight and SOD activity, as well as in the number of pericytes and in the pericyte coverage (all P < 0.05). However, rats in DM + CHPG group had stronger negative effects than those in DM group (all P < 0.05). Rats from DM + MTEP group showed an opposite trend compared with the DM rats (all P < 0.05). CONCLUSION: The level of mGluR5 in DR rats was upregulated, whereas inhibition of mGluR5 alleviated retinal pathological damage and decreased cell apoptosis to improve DR via suppression of the JNK signaling pathway, which provided a scientific theoretical basis for the clinical treatment of DR.


Subject(s)
Diabetic Retinopathy/physiopathology , MAP Kinase Signaling System/physiology , Receptor, Metabotropic Glutamate 5/physiology , Animals , Blood Glucose/metabolism , Blood-Retinal Barrier/pathology , Diabetes Mellitus, Experimental , Diabetic Retinopathy/metabolism , Electroretinography , Male , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5/metabolism , Retina/physiopathology , Retinal Vessels/pathology
16.
Neurosci Lett ; 690: 76-82, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30315852

ABSTRACT

Drugs of abuse modify synaptic long-term potentiation and long-term depression (LTD) in the nucleus accumbens, and the impairment of synaptic plasticity in this brain region may be a universal feature of drug addiction. It is unknown whether metabotropic glutamate receptors (mGluRs) play a role in synaptic plasticity induced by drugs such as morphine. The neurochemical, electrophysiological, and Western blotting experiments reported here reveal a novel form of LTD in synapses of the shell region of the nucleus accumbens induced in vivo by low-frequency stimulation of the medial prefrontal cortex. This plasticity required the activation of N-methyl-d-aspartate receptors and mGluR2/3 but not mGluR5. The expression of mGluR2/3 was downregulated during withdrawal from repeated morphine exposure (10 days after the last injection), resulting in impaired low-frequency stimulation-induced LTD. These results indicate that withdrawal-induced mGluR2/3 downregulation alters neural plasticity after morphine exposure, which may be a mechanism contributing to drug addiction.


Subject(s)
Down-Regulation/drug effects , Long-Term Synaptic Depression/drug effects , Morphine/adverse effects , Nucleus Accumbens/drug effects , Receptors, Metabotropic Glutamate/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Substance Withdrawal Syndrome/metabolism , 2-Amino-5-phosphonovalerate/pharmacology , Amino Acids/pharmacology , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Electric Stimulation , Long-Term Synaptic Depression/physiology , Male , Microinjections , Nucleus Accumbens/physiopathology , Prefrontal Cortex/physiology , Rats , Receptor, Metabotropic Glutamate 5/physiology , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/biosynthesis , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Substance Withdrawal Syndrome/physiopathology
17.
Transl Psychiatry ; 8(1): 219, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30315226

ABSTRACT

Cocaine exposure induces plasticity of glutamatergic synapses of medium spiny neurons (MSNs) in the nucleus accumbens (NAc), which has been proposed to contribute to its addictive behavior. The mechanisms underlying cocaine-induced plasticity are not fully understood. The orphan glutamate delta-1 (GluD1) receptor is a member of the ionotropic glutamate receptor family but does not function as a typical ligand-gated ion channel. Instead it serves a synaptogenic function by interacting with presynaptic Neurexin protein. Recent neuroanatomical studies have demonstrated enriched expression of GluD1 in the NAc but its role in reward behavior, MSN function, and drug-induced plasticity remains unknown. Using a combination of constitutive and conditional GluD1 KO models, we evaluated the effect of GluD1 ablation on cocaine-conditioned place preference (CPP) and cocaine-induced structural and functional plasticity. GluD1 KO mice showed higher cocaine CPP. Selective ablation of GluD1 from striatal neurons but not cortico-limbic excitatory neurons reproduced higher CPP. Higher cocaine preference in GluD1 KO correlated with an increase in spine density, greater maturation of dendritic spines, and basally upregulated spine-regulating active cofilin. GluD1 loss did not affect basal excitatory neurotransmission or plasticity but masked the generation of cocaine-induced silent synapses. Finally, loss of GluD1 increased the GluN2B subunit contribution to NMDA receptor currents in MSNs and a partial agonist of GluN2B-containing NMDA receptors normalized the higher active cofilin and cocaine preference in GluD1 KO mice. Together, these findings demonstrate a critical role of GluD1 in controlling susceptibility to cocaine preference and cocaine-induced plasticity by modulating NMDA receptor subunit contribution.


Subject(s)
Cocaine/administration & dosage , Neuronal Plasticity , Neurons/physiology , Nucleus Accumbens/drug effects , Nucleus Accumbens/physiology , Receptors, Glutamate/physiology , Animals , Dendrites/physiology , Drug-Seeking Behavior , Excitatory Postsynaptic Potentials , Male , Mice, Knockout , Receptor, Metabotropic Glutamate 5/physiology , Receptors, Glutamate/genetics , Receptors, Metabotropic Glutamate/physiology , Receptors, N-Methyl-D-Aspartate/physiology
18.
J Neurosci ; 38(40): 8515-8525, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30108130

ABSTRACT

Whether synapses in appetite-regulatory brain regions undergo long-term changes in strength in response to satiety peptides is poorly understood. Here we show that following bursts of afferent activity, the neuromodulator and satiety peptide cholecystokinin (CCK) shifts the plasticity of GABA synapses in the dorsomedial nucleus of the hypothalamus of male Sprague Dawley rats from long-term depression to long-term potentiation (LTP). This LTP requires the activation of both type 2 CCK receptors and group 5 metabotropic glutamate receptors, resulting in a rise in astrocytic intracellular calcium and subsequent ATP release. ATP then acts on presynaptic P2X receptors to trigger a prolonged increase in GABA release. Our observations demonstrate a novel form of CCK-mediated plasticity that requires astrocytic ATP release, and could serve as a mechanism for appetite regulation.SIGNIFICANCE STATEMENT Satiety peptides, like cholecystokinin, play an important role in the central regulation of appetite, but their effect on synaptic plasticity is not well understood. The current data provide novel evidence that cholecystokinin shifts the plasticity from long-term depression to long-term potentiation at GABA synapses in the rat dorsomedial nucleus of the hypothalamus. We also demonstrate that this plasticity requires the concerted action of cholecystokinin and glutamate on astrocytes, triggering the release of the gliotransmitter ATP, which subsequently increases GABA release from neighboring inhibitory terminals. This research reveals a novel neuropeptide-induced switch in the direction of synaptic plasticity that requires astrocytes, and could represent a new mechanism by which cholecystokinin regulates appetite.


Subject(s)
Adenosine Triphosphate/metabolism , Astrocytes/physiology , Cholecystokinin/physiology , Dorsomedial Hypothalamic Nucleus/physiology , Long-Term Potentiation , Long-Term Synaptic Depression , gamma-Aminobutyric Acid/physiology , Animals , Male , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5/physiology , Receptors, Cholecystokinin/physiology , Receptors, Purinergic P2X/physiology , Synaptic Transmission
19.
Hum Mol Genet ; 27(20): 3528-3541, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30010864

ABSTRACT

The hippocampus is a key brain region for memory formation. Metabotropic glutamate type 5 receptors (mGlu5R) are strongly expressed in CA1 pyramidal neurons and fine-tune synaptic plasticity. Accordingly, mGlu5R pharmacological manipulation may represent an attractive therapeutic strategy to manage hippocampal-related neurological disorders. Here, by means of a membrane yeast two-hybrid screening, we identified contactin-associated protein 1 (Caspr1), a type I transmembrane protein member of the neurexin family, as a new mGlu5R partner. We report that mGlu5R and Caspr1 co-distribute and co-assemble both in heterologous expression systems and in rat brain. Furthermore, downregulation of Caspr1 in rat hippocampal primary cultures decreased mGlu5R-mediated signaling. Finally, silencing Caspr1 expression in the hippocampus impaired the impact of mGlu5R on spatial memory. Our results indicate that Caspr1 plays a pivotal role controlling mGlu5R function in hippocampus-dependent memory formation. Hence, this new protein-protein interaction may represent novel target for neurological disorders affecting hippocampal glutamatergic neurotransmission.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Hippocampus/metabolism , Memory , Protein Multimerization , Receptor, Metabotropic Glutamate 5/metabolism , Animals , Cell Adhesion Molecules, Neuronal/physiology , Hippocampus/physiology , Rats , Receptor, Metabotropic Glutamate 5/physiology , Signal Transduction , Synaptic Transmission
20.
Neuropsychopharmacology ; 43(10): 2075-2082, 2018 09.
Article in English | MEDLINE | ID: mdl-29654259

ABSTRACT

Glutamatergic transmission in the nucleus accumbens shell (NAcSh) is a substrate for reward learning and motivation. Metabotropic glutamate (mGlu) receptors regulate NAcSh synaptic strength by inducing long-term depression (LTD). Inputs from prefrontal cortex (PFC) and medio-dorsal thalamus (MDT) drive opposing motivated behaviors yet mGlu receptor regulation of these synapses is unexplored. We examined Group I mGlu receptor regulation of PFC and MDT glutamatergic synapses onto specific populations of NAc medium spiny neurons (MSNs) using D1tdTom BAC transgenic mice and optogenetics. Synaptically evoked long-term depression (LTD) at MDT-NAcSh synapses required mGlu5 but not mGlu1 and was specific for D1(+) MSNs, whereas PFC LTD was expressed at both D1(+) and D1(-) MSNs and required mGlu1 but not mGlu5. Two weeks after five daily non-contingent cocaine exposures (15 mg/kg), LTD was attenuated at MDT-D1(+) synapses but was rescued by the mGlu5-positive allosteric modulator (PAM) VU0409551. These results highlight unique plasticity mechanisms regulating specific NAcSh synapses.


Subject(s)
Nucleus Accumbens/physiology , Receptor, Metabotropic Glutamate 5/physiology , Receptors, Metabotropic Glutamate/physiology , Animals , Cocaine/pharmacology , Female , Mediodorsal Thalamic Nucleus/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/drug effects , Motor Activity/physiology , Neuronal Plasticity/drug effects , Neurons/physiology , Optogenetics , Oxazoles/pharmacology , Prefrontal Cortex/physiology , Pyridines/pharmacology , Synapses/physiology , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...