Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 644
Filter
1.
Neuropharmacology ; 245: 109774, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37923121

ABSTRACT

There are no approved pharmacotherapies for fragile X syndrome (FXS), a rare neurodevelopmental disorder caused by a mutation in the FMR1 promoter region that leads to various symptoms, including intellectual disability and auditory hypersensitivity. The gene that encodes inhibitory serotonin 1A receptors (5-HT1ARs) is differentially expressed in embryonic brain tissue from individuals with FXS, and 5-HT1ARs are highly expressed in neural systems that are disordered in FXS, providing a rationale to focus on 5-HT1ARs as targets to treat symptoms of FXS. We examined agonist-labeled 5-HT1AR densities in male and female Fmr1 knockout mice and found no differences in whole-brain 5-HT1AR expression in adult control compared to Fmr1 knockout mice. However, juvenile Fmr1 knockout mice had lower whole-brain 5-HT1AR expression than age-matched controls. Consistent with these results, juvenile Fmr1 knockout mice showed reduced behavioral responses elicited by the 5-HT1AR agonist (R)-8-OH-DPAT, effects blocked by the selective 5-HT1AR antagonist, WAY-100635. Also, treatment with the selective 5-HT1AR agonist, NLX-112, dose-dependently prevented audiogenic seizures (AGS) in juvenile Fmr1 knockout mice, an effect reversed by WAY-100635. Suggestive of a potential role for 5-HT1ARs in regulating AGS, compared to males, female Fmr1 knockout mice had a lower prevalence of AGS and higher expression of antagonist-labeled 5-HT1ARs in the inferior colliculus and auditory cortex. These results provide preclinical support that 5-HT1AR agonists may be therapeutic for young individuals with FXS hypersensitive to auditory stimuli.


Subject(s)
Epilepsy, Reflex , Fragile X Syndrome , Inferior Colliculi , Animals , Female , Male , Mice , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/drug therapy , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Inferior Colliculi/metabolism , Mice, Knockout , Receptor, Serotonin, 5-HT1A/genetics , Receptor, Serotonin, 5-HT1A/metabolism , Serotonin
2.
Int J Mol Sci ; 24(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37958600

ABSTRACT

Serotonin 1A (5-HT1A) autoreceptors located on serotonin neurons inhibit their activity, and their upregulation has been implicated in depression, suicide and resistance to antidepressant treatment. Conversely, post-synaptic 5-HT1A heteroreceptors are important for antidepressant response. The transcription factor deformed epidermal autoregulatory factor 1 (Deaf1) acts as a presynaptic repressor and postsynaptic enhancer of 5-HT1A transcription, but the mechanism is unclear. Because Deaf1 interacts with and is phosphorylated by glycogen synthase kinase 3ß (GSK3ß)-a constitutively active protein kinase that is inhibited by the mood stabilizer lithium at therapeutic concentrations-we investigated the role of GSK3ß in Deaf1 regulation of human 5-HT1A transcription. In 5-HT1A promoter-reporter assays, human HEK293 kidney and 5-HT1A-expressing SKN-SH neuroblastoma cells, transfection of Deaf1 reduced 5-HT1A promoter activity by ~45%. To identify potential GSK3ß site(s) on Deaf1, point mutations of known and predicted phosphorylation sites on Deaf1 were tested. Deaf1 repressor function was not affected by any of the mutants tested except the Y300F mutant, which augmented Deaf1 repression. Both lithium and the selective GSK3 inhibitors CHIR-99021 and AR-014418 attenuated and reversed Deaf1 repression compared to vector. This inhibition was at concentrations that maximally inhibit GSK3ß activity as detected by the GSK3ß-sensitive TCF/LEF reporter construct. Our results support the hypothesis that GSK3ß regulates the activity of Deaf1 to repress 5-HT1A transcription and provide a potential mechanism for actions of GSK3 inhibitors on behavior.


Subject(s)
Glycogen Synthase Kinase 3 beta , Lithium , Receptor, Serotonin, 5-HT1A , Serotonin , Humans , Antidepressive Agents , Glycogen Synthase Kinase 3 beta/genetics , HEK293 Cells , Lithium/pharmacology , Receptor, Serotonin, 5-HT1A/genetics , Serotonin/pharmacology
3.
Biochemistry (Mosc) ; 88(6): 758-769, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37748872

ABSTRACT

The recombinant B6.CBA-D13Mit76C mouse strain is characterized by an altered sensitivity of 5-HT1A receptors and upregulated 5-HT1A gene transcription. Recently, we found that in B6.CBA-D13Mit76C mice, chronic fluoxetine treatment produced the pro-depressive effect in a forced swim test. Since 5-HT2A receptor blockade may be beneficial in treatment-resistant depression, we investigated the influence of chronic treatment (14 days, intraperitoneally) with selective 5-HT2A antagonist ketanserin (0.5 mg/kg), fluoxetine (20 mg/kg), or fluoxetine + ketanserin on the behavior, functional activity of 5-HT1A and 5-HT2A receptors, serotonin turnover, and transcription of principal genes of the serotonin system in the brain of B6.CBA-D13Mit76C mice. Ketanserin did not reverse the pro-depressive effect of fluoxetine, while fluoxetine, ketanserin, and fluoxetine + ketanserin decreased the functional activity of 5-HT1A receptors and Htr1a gene transcription in the midbrain and hippocampus. All tested drug regimens decreased the mRNA levels of Slc6a4 and Maoa in the midbrain. These changes were not accompanied by a significant shift in the levels of serotonin and its metabolite 5-HIAA. Notably, ketanserin upregulated enzymatic activity of tryptophan hydroxylase 2 (TPH2). Thus, despite some benefits (reduced Htr1a, Slc6a4, and Maoa transcription and increased TPH2 activity), prolonged blockade of 5-HT2A receptors failed to ameliorate the adverse effect of fluoxetine in the case of abnormal functioning of 5-HT1A receptors.


Subject(s)
Fluoxetine , Serotonin , Mice , Animals , Mice, Inbred CBA , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Ketanserin/pharmacology , Receptor, Serotonin, 5-HT1A/genetics
4.
Br J Psychiatry ; 223(3): 415-421, 2023 09.
Article in English | MEDLINE | ID: mdl-37395098

ABSTRACT

BACKGROUND: Childhood and lifetime adversity may reduce brain serotonergic (5-HT) neurotransmission by epigenetic mechanisms. AIMS: We tested the relationships of childhood adversity and recent stress to serotonin 1A (5-HT1A) receptor genotype, DNA methylation of this gene in peripheral blood monocytes and in vivo 5-HT1A receptor binding potential (BPF) determined by positron emission tomography (PET) in 13 a priori brain regions, in participants with major depressive disorder (MDD) and healthy volunteers (controls). METHOD: Medication-free participants with MDD (n = 192: 110 female, 81 male, 1 other) and controls (n = 88: 48 female, 40 male) were interviewed about childhood adversity and recent stressors and genotyped for rs6295. DNA methylation was assayed at three upstream promoter sites (-1019, -1007, -681) of the 5-HT1A receptor gene. A subgroup (n = 119) had regional brain 5-HT1A receptor BPF quantified by PET. Multi-predictor models were used to test associations between diagnosis, recent stress, childhood adversity, genotype, methylation and BPF. RESULTS: Recent stress correlated positively with blood monocyte methylation at the -681 CpG site, adjusted for diagnosis, and had positive and region-specific correlations with 5-HT1A BPF in participants with MDD, but not in controls. In participants with MDD, but not in controls, methylation at the -1007 CpG site had positive and region-specific correlations with binding potential. Childhood adversity was not associated with methylation or BPF in participants with MDD. CONCLUSIONS: These findings support a model in which recent stress increases 5-HT1A receptor binding, via methylation of promoter sites, thus affecting MDD psychopathology.


Subject(s)
Depressive Disorder, Major , Humans , Male , Female , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/genetics , Depressive Disorder, Major/drug therapy , Receptor, Serotonin, 5-HT1A/genetics , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/therapeutic use , DNA Methylation , Serotonin/metabolism , Serotonin/therapeutic use , Depression , Brain/pathology , Positron-Emission Tomography/methods , Stress, Psychological/genetics
5.
Adv Exp Med Biol ; 1423: 79-99, 2023.
Article in English | MEDLINE | ID: mdl-37525034

ABSTRACT

Mental disorders are strongly connected with several psychiatric conditions including depression, bipolar disorder, schizophrenia, eating disorder, and suicides. There are many biological conditions and pathways that define these complicated illnesses. For example, eating disorders are complex mental health conditions that require the intervention of geneticists, psychiatrists, and medical experts in order to alleviate their symptoms. A patient with suicidal ideation should first be identified and consequently monitored by a similar team of specialists. Both genetics and epigenetics can shed light on eating disorders and suicides as they are found in the main core of such investigations. In the present study, an analysis has been performed on two specific members of the GPCR family toward drawing conclusions regarding their functionality and implementation in mental disorders. Specifically, evolutionary and structural studies on the adrenoceptor alpha 2b (ADRA2B) and the 5-hydroxytryptamine receptor 1A (HTR1A) have been carried out. Both receptors are classified in the biogenic amine receptors sub-cluster of the GPCRs and have been connected in many studies with mental diseases and malnutrition conditions. The major goal of this study is the investigation of conserved motifs among biogenic amine receptors that play an important role in this family signaling pathway, through an updated evolutionary analysis and the correlation of this information with the structural features of the HTR1A and ADRA2B. Furthermore, the structural comparison of ADRA2B, HTR1A, and other members of GPCRs related to mental disorders is performed.


Subject(s)
Mental Disorders , Receptor, Serotonin, 5-HT1A , Receptors, Biogenic Amine , Humans , Mental Disorders/genetics , Mental Disorders/metabolism , Receptor, Serotonin, 5-HT1A/genetics , Receptors, Adrenergic, alpha-2 , Receptors, Biogenic Amine/genetics , Receptors, Biogenic Amine/metabolism , Serotonin , Feeding and Eating Disorders/genetics , Suicidal Ideation
6.
BMC Urol ; 23(1): 86, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37161455

ABSTRACT

BACKGROUND: Lifelong premature ejaculation (LPE) is one of the most common ejaculatory dysfunctions in men. The serotonin (5-HT) synthesis rate-limiting enzyme (TPH2) and receptor (HTR1A) in the 5-HT regulatory system may play a key role in the pathogenesis of LPE. However, there are few studies on the effects of TPH2 and HTR1A polymorphisms on LPE risk. We speculated that TPH2 and HTR1A polymorphisms may affect the occurrence and development of LPE in the Chinese Han population. METHODS: In this study, 91 patients with LPE and 362 normal controls aged 18 to 64 years were enrolled in the male urology department of Hainan General Hospital in China from January 2016 to December 2018. The SNPs in HTR1A and TPH2, which are related to 5-HT regulation, were selected as indexes to genotype the collected blood samples of participants. Logistic regression was used to analyze the correlation between SNPs of HTR1A and TPH2 with LPE susceptibility, as well as the relationship with leptin, 5-HT and folic acid levels. RESULTS: The results revealed that HTR1A-rs6295 increased LPE risk in recessive model. Rs11178996 in TPH2 significantly reduced susceptibility to LPE in allelic (odds ratio (OR) = 0.68, 95% confidence interval (95% CI) = 0.49-0.96, p = 0.027), codominant (OR = 0.58, 95% CI = 0.35-0.98, p = 0.040), dominant (OR = 0.58, 95% CI = 0.36-0.92, p = 0.020), and additive (OR = 0.71, 95% CI = 0.52-0.98, p = 0.039) models. Grs11179041Trs10879352 could reduce the risk of LPE (OR = 0.44, 95% CI = 0.22-0.90, p = 0.024) by haplotype analysis. CONCLUSION: HTR1A-rs6295 and TPH2-rs11178996 are associated with LPE risk in the Chinese Han population based on the finding of this study.


Subject(s)
East Asian People , Premature Ejaculation , Adolescent , Adult , Humans , Male , Middle Aged , Young Adult , Asian People/genetics , Polymorphism, Single Nucleotide/genetics , Premature Ejaculation/genetics , Receptor, Serotonin, 5-HT1A/genetics , Serotonin , Tryptophan Hydroxylase/genetics
7.
Cells ; 12(6)2023 03 22.
Article in English | MEDLINE | ID: mdl-36980311

ABSTRACT

BACKGROUND: Seeing that there are no data about associations between serotonin gene polymorphism and tryptophan catabolite concentration during PEG-IFN-α2a treatment, the aim of the current study is to examine (a) the associations between polymorphisms within the HTR1A, TPH2, and 5-HTT genes and the severity of depression symptoms and (b) the relationships among rs6295, rs4570625, and 5-HTTLPR rs25531polymorphisms and indoleamine 2,3-dioxygenase (IDO) activity, as well as kynurenine (KYN), tryptophan (TRP), kynurenic acid (KA), and anthranilic acid (AA) concentrations. MATERIALS AND METHODS: The study followed a prospective, longitudinal, single-center cohort design. The severity of the depressive symptoms of 101 adult patients with chronic HCV infections was measured during PEG-IFN-α2a/RBV treatment. We used the Montgomery-Åsberg Depression Rating Scale (MADRS) to assess the severity of depressive symptoms. The subjects were evaluated six times-at baseline and at weeks 2, 4, 8, 12, and 24. At all the time points, MADRS score, as well as KYN, TRP, KA, and AA concentrations, and IDO activity were measured. At baseline, rs6295, rs4570625, and 5-HTTLPR rs25531polymorphisms were assessed. RESULTS: Subjects with C/C genotypes of 5-HT1A and lower-expressing alleles (S/S, LG/LG, and S/LG) of 5-HTTLPR scored the highest total MADRS scores and recorded the highest increase in MADRS scores during treatment. We found associations between TRP concentrations and the TPH-2 and 5-HTTLPR rs25531 genotypes. CONCLUSIONS: Our findings provide new data that we believe can help better understand infection-induced depression as a distinct type of depression.


Subject(s)
Depression , Hepatitis C, Chronic , Interferon alpha-2 , Tryptophan , Adult , Humans , Antiviral Agents/therapeutic use , Depression/genetics , Depression/metabolism , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/genetics , Interferon alpha-2/adverse effects , Interferon alpha-2/pharmacology , Interferon alpha-2/therapeutic use , Kynurenine , Polyethylene Glycols/pharmacology , Polymorphism, Genetic , Prospective Studies , Receptor, Serotonin, 5-HT1A/genetics , Ribavirin/adverse effects , Ribavirin/pharmacology , Ribavirin/therapeutic use , Tryptophan/drug effects , Tryptophan/metabolism , Tryptophan Hydroxylase/genetics , Tryptophan Oxygenase/genetics
8.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769290

ABSTRACT

We analyzed the expression of the serotonin receptors 5-HT1A, 5-HT2A, and 5-HT3A at four different stages of fetal lung development from 12 to 40 weeks of gestation, divided into four groups: the pseudoglandular stage (12-16th week of development; n = 8), the canalicular stage (16th-26th week of development; n = 7), the saccular stage (26th-36th week of development; n = 5), and the alveolar stage (36th-40th week of development; n = 5). The strongest expression of all three receptor types was found in the epithelium of the proximal airways during the pseudoglandular, canalicular, and saccular stages and in a vascular wall. 5-HT1A was also strongly expressed in the smooth muscle cells of the proximal airway. Vascular smooth muscle cells and endothelium occasionally showed a strong expression of 5-HT1A and 5-HT2A. In the alveolar stage, the expression of 5-HT1A, 5-HT2A, and 5-HT3A was detected in both type I (p1) and type II (p2) pneumocytes, with a stronger expression in p2. A significant decrease in percent the 5-HT2A area and in the integrated density was observed at the alveolar stage. On the other hand, a significant decrease in the percentage area but an increase in the integrated density was observed for 5-HT3A toward the alveolar stage, suggesting that a smaller number of cells expressed 5-HT3A but that they (p1 and p2) significantly increased their 5-HT3A expression at the alveolar stage. The results presented provided us with new data on the development and function of the serotonin system in the human fetal lung and gave us insight into their possible involvement in the pathogenesis of lung pathology, particularly that characteristic of the neonatal period.


Subject(s)
Lung , Receptors, Serotonin , Infant, Newborn , Humans , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism , Lung/metabolism , Fetus/metabolism , Epithelium/metabolism , Serotonin/metabolism , Receptor, Serotonin, 5-HT2A/genetics , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT1A/genetics , Receptor, Serotonin, 5-HT1A/metabolism
9.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768376

ABSTRACT

Cannabidiol (CBD) is a potential antidepressant agent. We examined the association between the antidepressant effects of CBD and alterations in brain microRNAs in the unpredictable chronic mild stress (UCMS) model for depression. UCMS male rats were injected with vehicle or CBD (10 mg/kg) and tested for immobility time in the forced swim test. Alterations in miRNAs (miR16, miR124, miR135a) and genes that encode for the 5HT1a receptor, the serotonergic transporter SERT, ß-catenin, and CB1 were examined. UCMS increased immobility time in a forced swim test (i.e., depressive-like behavior) and altered the expression of miRNAs and mRNA in the ventromedial prefrontal cortex (vmPFC), raphe nucleus, and nucleus accumbens. Importantly, CBD restored UCMS-induced upregulation in miR-16 and miR-135 in the vmPFC as well as the increase in immobility time. CBD also restored the UCMS-induced decrease in htr1a, the gene that encodes for the serotonergic 5HT1a receptor; using a pharmacological approach, we found that the 5HT1a receptor antagonist WAY100135 blocked the antidepressant-like effect of CBD on immobility time. Our findings suggest that the antidepressant effects of CBD in a rat model for depression are associated with alterations in miR-16 and miR-135 in the vmPFC and are mediated by the 5HT1a receptor.


Subject(s)
Cannabidiol , MicroRNAs , Rats , Male , Animals , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Cannabidiol/metabolism , Depression/drug therapy , Depression/genetics , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Brain/metabolism , Prefrontal Cortex/metabolism , MicroRNAs/metabolism , Receptor, Serotonin, 5-HT1A/genetics , Receptor, Serotonin, 5-HT1A/metabolism , Disease Models, Animal
10.
Eur Arch Psychiatry Clin Neurosci ; 273(1): 5-14, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36214900

ABSTRACT

Several association studies have indicated that the HTR1A gene is associated with suicidal behavior (SB). Thus, a systematic assessment of the association of HTR1A was performed based on a literature review and pooled analysis. Four electronic databases were comprehensively searched to find and pinpoint all case-control articles related to this study. When analyzing the genetic association with SB, data were divided into: (A) SB cases vs. healthy controls and (B) SB cases vs. psychiatric controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were assessed as measures of association. Heterogeneity among included studies was analyzed using sensitivity test and Q statistics. Publication bias was also explored by Egger and rank correlation test. Thirteen case-control studies were selected in this meta-analysis, involving 2817 SB patients, 2563 healthy controls and 545 psychiatric controls. In the overall comparison between SB cases and healthy controls, result showed that the rs6295 polymorphisms of HTR1A gene was associated with SB, but only when using the recessive model (OR = 2.21, 95% CI = 1.80-2.71, P < 0.001). In the smaller sample size comparison between SB and psychiatric controls, no significant association was detected with rs6295 in any of the five genetics models tested. The present meta-analysis suggests that rs6295 polymorphism of HTR1A gene could increase the risk for SB. Well-designed studies with more patients will be required to validate these results.


Subject(s)
Polymorphism, Single Nucleotide , Suicidal Ideation , Humans , Case-Control Studies , Odds Ratio , Genetic Predisposition to Disease , Receptor, Serotonin, 5-HT1A/genetics
11.
Mol Psychiatry ; 28(8): 3243-3256, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35854107

ABSTRACT

The serotonin hypothesis of depression is still influential. We aimed to synthesise and evaluate evidence on whether depression is associated with lowered serotonin concentration or activity in a systematic umbrella review of the principal relevant areas of research. PubMed, EMBASE and PsycINFO were searched using terms appropriate to each area of research, from their inception until December 2020. Systematic reviews, meta-analyses and large data-set analyses in the following areas were identified: serotonin and serotonin metabolite, 5-HIAA, concentrations in body fluids; serotonin 5-HT1A receptor binding; serotonin transporter (SERT) levels measured by imaging or at post-mortem; tryptophan depletion studies; SERT gene associations and SERT gene-environment interactions. Studies of depression associated with physical conditions and specific subtypes of depression (e.g. bipolar depression) were excluded. Two independent reviewers extracted the data and assessed the quality of included studies using the AMSTAR-2, an adapted AMSTAR-2, or the STREGA for a large genetic study. The certainty of study results was assessed using a modified version of the GRADE. We did not synthesise results of individual meta-analyses because they included overlapping studies. The review was registered with PROSPERO (CRD42020207203). 17 studies were included: 12 systematic reviews and meta-analyses, 1 collaborative meta-analysis, 1 meta-analysis of large cohort studies, 1 systematic review and narrative synthesis, 1 genetic association study and 1 umbrella review. Quality of reviews was variable with some genetic studies of high quality. Two meta-analyses of overlapping studies examining the serotonin metabolite, 5-HIAA, showed no association with depression (largest n = 1002). One meta-analysis of cohort studies of plasma serotonin showed no relationship with depression, and evidence that lowered serotonin concentration was associated with antidepressant use (n = 1869). Two meta-analyses of overlapping studies examining the 5-HT1A receptor (largest n = 561), and three meta-analyses of overlapping studies examining SERT binding (largest n = 1845) showed weak and inconsistent evidence of reduced binding in some areas, which would be consistent with increased synaptic availability of serotonin in people with depression, if this was the original, causal abnormaly. However, effects of prior antidepressant use were not reliably excluded. One meta-analysis of tryptophan depletion studies found no effect in most healthy volunteers (n = 566), but weak evidence of an effect in those with a family history of depression (n = 75). Another systematic review (n = 342) and a sample of ten subsequent studies (n = 407) found no effect in volunteers. No systematic review of tryptophan depletion studies has been performed since 2007. The two largest and highest quality studies of the SERT gene, one genetic association study (n = 115,257) and one collaborative meta-analysis (n = 43,165), revealed no evidence of an association with depression, or of an interaction between genotype, stress and depression. The main areas of serotonin research provide no consistent evidence of there being an association between serotonin and depression, and no support for the hypothesis that depression is caused by lowered serotonin activity or concentrations. Some evidence was consistent with the possibility that long-term antidepressant use reduces serotonin concentration.


Subject(s)
Depression , Serotonin , Humans , Depression/genetics , Receptor, Serotonin, 5-HT1A/genetics , Tryptophan , Hydroxyindoleacetic Acid , Antidepressive Agents , Serotonin Plasma Membrane Transport Proteins/genetics
12.
Drug Chem Toxicol ; 46(2): 281-296, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35707918

ABSTRACT

It has been recognized that serotonergic blocker showed serious side effects, and that ginsenoside modulated serotonergic system with the safety. However, the effects of ginsenoside on serotonergic impairments remain to be clarified. Thus, we investigated ginsenoside Re (GRe), a major bioactive component in the mountain-cultivated ginseng on (±)-8-hydroxy-dipropylaminotetralin (8-OH-DPAT), a 5-HT1A receptor agonist. In the present study, we observed that the treatment with GRe resulted in significant inhibition of protein kinase C δ (PKCδ) phosphorylation induced by the 5-HT1A receptor agonist (±)-8-hydroxy-dipropylaminotetralin (8-OH-DPAT) in the hypothalamus of the wild-type (WT) mice. The inhibition of GRe was comparable with that of the PKCδ inhibitor rottlerin or the 5-HT1A receptor antagonist WAY100635 (WAY). 8-OH-DPAT-induced significant reduction in nuclear factor erythroid-2-related factor 2 (Nrf2)-related system (i.e., Nrf2 DNA binding activity, γ-glutamylcysteine ligase modifier (GCLm) and γ-glutamylcysteine ligase catalytic (GCLc) mRNA expression, and glutathione (GSH)/oxidized glutathione (GSSG) ratio) was significantly attenuated by GRe, rottlerin, or WAY in WT mice. However, PKCδ gene knockout significantly protected the Nrf2-dependent system from 8-OH-DPAT insult in mice. Increases in 5-hydroxytryptophan (5-HT) turnover rate, overall serotonergic behavioral score, and hypothermia induced by 8-OH-DPAT were significantly attenuated by GRe, rottlerin, or WAY in WT mice. Consistently, PKCδ gene knockout significantly attenuated these parameters in mice. However, GRe or WAY did not provide any additional positive effects on the serotonergic protective potential mediated by PKCδ gene knockout in mice. Therefore, our results suggest that PKCδ is an important mediator for GRe-mediated protective activity against serotonergic impairments/oxidative burden caused by the 5-HT1A receptor.


Subject(s)
Ginsenosides , Mice , Animals , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Ginsenosides/pharmacology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Receptor, Serotonin, 5-HT1A/genetics , Glutathione , Glutathione Disulfide , Serotonin Antagonists , Ligases
13.
Front Immunol ; 13: 1054451, 2022.
Article in English | MEDLINE | ID: mdl-36561742

ABSTRACT

Objectives: HTR2A is previously identified as a susceptibility gene for rheumatoid arthritis (RA). In this study, we performed the association analysis between DNA methylation of HTR2A with RA within peripheral blood samples. Methods: We enrolled peripheral blood samples from 235 patients with RA, 30 osteoarthritis (OA) patients, and 30 healthy controls. The DNA methylation levels of about 218 bp from chr13: 46898190 to chr13: 46897973 (GRCh38/hg38) around HTR2A cg15692052 from patients were analyzed by targeted methylation sequencing. Results: We measured methylation status for 7 CpGs in the promoter region of HTR2A and obseved overall methylation status are signficantly increased in RA compared with normal inviduals (FDR= 9.05 x 10-5). The average cg15692052 methylation levels (methylation score) showed a positive correlation with CRP (r=0.15, P=0.023). Compared with the OA group or HC group, the proportion of haplotypes CCCCCCC (FDR=0.02 and 2.81 x 10-6) is signficantly increased while TTTTTCC (FDR =0.01) and TTTTTTT(FDR =6.92 x 10-3) are significantly decreased in RA. We find methylation haplotypes combining with RF and CCP could signficantly enhance the performance of the diagnosing RA and its comorbidities (hypertension, interstitial lung disease, and osteoporosis), especially in interstitial lung disease. Conclusions: In our study, we found signficant hypermethylation of promoter region of HTR2A which indicates the potential clinical diagnostic role in rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Receptor, Serotonin, 5-HT1A , Humans , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/genetics , DNA Methylation , Lung Diseases, Interstitial/genetics , Osteoarthritis/genetics , Receptor, Serotonin, 5-HT1A/blood , Receptor, Serotonin, 5-HT1A/genetics
14.
Int J Mol Sci ; 23(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36430502

ABSTRACT

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the gene that encodes methyl CpG-binding protein 2 (MECP2) and is characterized by the loss of acquired motor and language skills, stereotypic movements, respiratory abnormalities and autistic features. There has been no effective treatment for this disorder until now. In this study, we used a Mecp2-null (KO) mouse model of RTT to investigate whether repeated intraperitoneal treatment with the 5-HT1A receptor agonist tandospirone could improve the RTT phenotype. The results showed that administration of tandospirone significantly extended the lifespan of Mecp2-KO mice and obviously ameliorated RTT phenotypes, including general condition, hindlimb clasping, gait, tremor and breathing in Mecp2-KO mice. Tandospirone treatment significantly improved the impairment in GABAergic, glutaminergic, dopaminergic and serotoninergic neurotransmission in the brainstem of Mecp2-KO mice. Decreased dopaminergic neurotransmission in the cerebellum of Mecp2-KO mice was also significantly increased by tandospirone treatment. Moreover, RNA-sequencing analysis found that tandospirone modulates the RTT phenotype, partially through the CREB1/BDNF signaling pathway in Mecp2-KO mice. These findings provide a new option for clinical treatment.


Subject(s)
Rett Syndrome , Mice , Animals , Rett Syndrome/drug therapy , Rett Syndrome/genetics , Rett Syndrome/metabolism , Receptor, Serotonin, 5-HT1A/genetics , Brain-Derived Neurotrophic Factor/pharmacology , Mice, Knockout , Synaptic Transmission , Phenotype , Serotonin Receptor Agonists/pharmacology , Neurons/metabolism , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism
15.
PLoS One ; 17(11): e0277427, 2022.
Article in English | MEDLINE | ID: mdl-36342939

ABSTRACT

Fibromyalgia (FM) patients have dysfunctional endogenous pain modulation, where opioid and serotonergic signaling is implicated. The aim of this study was to investigate whether genetic variants in the genes coding for major structures in the opioid and serotonergic systems can affect pain modulation in FM patients and healthy controls (HC). Conditioned pain modulation (CPM), evaluating the effects of ischemic pain on pressure pain sensitivity, was performed in 82 FM patients and 43 HC. All subjects were genotyped for relevant functional polymorphisms in the genes coding for the µ-opioid receptor (OPRM1, rs1799971), the serotonin transporter (5-HTT, 5-HTTLPR/rs25531) and the serotonin 1a receptor (5-HT1a, rs6295). Results showed the OPRM1 G-allele was associated with decreased CPM. A significant gene-to-gene interaction was found between the OPRM1 and the 5-HT1a gene. Reduced CPM scores were seen particularly in individuals with the OPRM1 G*/5-HT1a CC genotype, indicating that the 5-HT1a CC genotype seems to have an inhibiting effect on CPM if an individual has the OPRM1 G-genotype. Thus, regardless of pain phenotype, the OPRM1 G-allele independently as well as with an interaction with the 5-HT1a gene influenced pain modulation. FM patients had lower CPM than HC but no group differences were found regarding the genetic effects on CPM, indicating that the results reflect more general mechanisms influencing pain modulatory processes rather than underlying the dysfunction of CPM in FM. In conclusion, a genetic variant known to alter the expression of, and binding to, the my-opioid receptor reduced a subject's ability to activate descending pain inhibition. Also, the results suggest a genetically inferred gene-to-gene interaction between the main opioid receptor and a serotonergic structure essential for 5-HT transmission to modulate pain inhibition. The results in this study highlight the importance of studying joint synergistic and antagonistic effects of neurotransmittor systems in regard to pain modulation.


Subject(s)
Fibromyalgia , Humans , Fibromyalgia/genetics , Analgesics, Opioid , Receptor, Serotonin, 5-HT1A/genetics , Pain Threshold/physiology , Pain/genetics , Receptors, Opioid, mu/genetics , Genotype , Polymorphism, Single Nucleotide
16.
Rev. int. androl. (Internet) ; 20(4): 217-224, oct.-dic. 2022. tab
Article in English | IBECS | ID: ibc-210760

ABSTRACT

Introduction and objectives: Premature ejaculation (PE) is characterized by shorter intravaginal ejaculation latency time than it is acceptable for the patient or partner. It is thought that lifelong PE is a neurobiological dysfunction associated with genetic predisposition and with central serotonin neurotransmission dysfunction in receptors. To contribute to the understanding the genetic etiology of lifelong PE, it was planned to compare the 5-HT2C receptor gene rs3813929, rs518147, 5-HT1A receptor gene rs6295, 5-HT1B receptor gene rs11568817 of lifelong PE patients to healthy controls. Materials and methods: For this purpose, 100 patients with premature ejaculation and 100 healthy controls were included in the study. Blood samples for DNA extraction were obtained. Appropriate procedures were applied to the probes (rs3813929, rs518147, rs6295, rs11568817) suitable for the DNA studied. Results: A statistically significant relationship was found between the rs11568817 polymorphism (p=0.019) in the 5-HT1B receptor gene and the rs518147 polymorphism (p=0.016) in the 5-HT2C receptor gene. Also, no statistically significant relationship was found between 5-HT1A receptor gene rs6295 polymorphism and 5-HT2C receptor gene rs3813929 polymorphism and lifelong PE. Conclusions: The relationship between rs3813929 and rs11568817 polymorphisms with lifelong PE was confirmed. Repeating the study in larger sample groups could be useful in determining the genetic etiology of PE. (AU)


Introducción y objetivos: La eyaculación precoz (EP) se caracteriza por un tiempo de latencia de eyaculación intravaginal más corto de lo que es aceptable para el paciente o para la pareja. Se cree que la EP de por vida es una disfunción neurobiológica asociada con la predisposición genética y con la disfunción central de la neurotransmisión de serotonina en los receptores. Para contribuir a la comprensión de la etiología genética de la EP de por vida, se planificó comparar el gen del receptor 5-HT2C rs3813929, rs518147, el gen del receptor 5-HT1A rs6295 y el gen del receptor 5-HT1B rs11568817 de pacientes con EP de por vida con controles sanos. Materiales y métodos: Para este propósito, se incluyeron en el estudio 100 pacientes con eyaculación precoz y 100 controles sanos. Se obtuvieron muestras de sangre para extracción de ADN. Se aplicaron procedimientos apropiados a las sondas (rs3813929, rs518147, rs6295, rs11568817) adecuadas para el ADN estudiado. Resultados: Se encontró una relación estadísticamente significativa entre el polimorfismo rs11568817 (p=0,019) en el gen del receptor 5-HT1B y el polimorfismo rs518147 (p=0,016) en el gen del receptor 5-HT2C. Además, no se encontró una relación estadísticamente significativa entre el polimorfismo del gen del receptor 5-HT1A rs6295 y el polimorfismo del gen del receptor 5-HT2C rs3813929 y la EP de por vida. Conclusiones: Se confirmó la relación entre los polimorfismos rs3813929 y rs11568817 con EP de por vida. Repetir el estudio en grupos de muestra más grandes podría ser útil para determinar la etiología genética de la EP. (AU)


Subject(s)
Humans , Male , Young Adult , Adult , Middle Aged , Premature Ejaculation/etiology , Polymorphism, Genetic , Serotonin , Receptor, Serotonin, 5-HT1A/genetics , Receptor, Serotonin, 5-HT1B/genetics , Receptor, Serotonin, 5-HT2C/genetics
17.
Psychiatry Res ; 317: 114842, 2022 11.
Article in English | MEDLINE | ID: mdl-36150307

ABSTRACT

OBJECTIVES: This study aimed to use a machine-learning method to identify HTR1A/1B methylation and resting-state functional connectivity (rsFC) related to the diagnosis of MDD, then try to build classification models for MDD diagnosis based on the identified features. METHODS: Peripheral blood samples were collected from all recruited participants, and part of the participants underwent the resting-state fMRI scan. Features including HTR1A/1B methylation and rsFC were calculated. Then, the initial feature sets of epigenetics and neuroimaging were separately input into an all-relevant feature selection to generate significant discriminative power for MDD diagnosis. Random forest classifiers were constructed and evaluated based on identified features. In addition, the SHapley Additive exPlanations (SHAP) method was adapted to interpret the diagnostic model. RESULTS: A combination of selected HTR1A/1B methylation and rsFC feature sets achieved better performance than using either one alone - a distinction between MDD and healthy control groups was achieved at 81.78% classification accuracy and 0.8948 AUC. CONCLUSION: A high classification accuracy can be achieved by combining multidimensional information from epigenetics and cerebral radiomic features in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD and further exploring the pathogenesis of MDD.


Subject(s)
Connectome , DNA Methylation , Depressive Disorder, Major , Receptor, Serotonin, 5-HT1A , Receptor, Serotonin, 5-HT1B , Humans , Magnetic Resonance Imaging/methods , Receptor, Serotonin, 5-HT1A/genetics , Epigenesis, Genetic , Receptor, Serotonin, 5-HT1B/genetics
18.
J Membr Biol ; 255(6): 739-746, 2022 12.
Article in English | MEDLINE | ID: mdl-35986776

ABSTRACT

G protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins that transduce signals across the plasma membrane and orchestrate a multitude of physiological processes within cells. The serotonin1A receptor is a crucial neurotransmitter receptor in the GPCR family involved in a multitude of neurological, behavioral and cognitive functions. We have previously shown, using a combination of experimental and simulation approaches, that membrane cholesterol acts as a key regulator of organization, dynamics, signaling and endocytosis of the serotonin1A receptor. In addition, we showed that membrane cholesterol stabilizes the serotonin1A receptor against thermal deactivation. In the present work, we explored the molecular basis of cholesterol-induced thermal stability of the serotonin1A receptor. For this, we explored the possible role of the K101 residue in a cholesterol recognition/interaction amino acid consensus (CRAC) motif in transmembrane helix 2 in conferring the thermal stability of the serotonin1A receptor. Our results show that a mutation in the K101 residue leads to loss in thermal stability of the serotonin1A receptor imparted by cholesterol, independent of membrane cholesterol content. We envision that our results could have potential implications in structural biological advancements of GPCRs and design of thermally stabilized receptors for drug development.


Subject(s)
Lysine , Serotonin , Serotonin/analysis , Serotonin/metabolism , Receptor, Serotonin, 5-HT1A/genetics , Receptor, Serotonin, 5-HT1A/metabolism , Cholesterol/chemistry , Cell Membrane/metabolism , Receptors, G-Protein-Coupled/metabolism
19.
Rev Int Androl ; 20(4): 217-224, 2022.
Article in English | MEDLINE | ID: mdl-35906129

ABSTRACT

INTRODUCTION AND OBJECTIVES: Premature ejaculation (PE) is characterized by shorter intravaginal ejaculation latency time than it is acceptable for the patient or partner. It is thought that lifelong PE is a neurobiological dysfunction associated with genetic predisposition and with central serotonin neurotransmission dysfunction in receptors. To contribute to the understanding the genetic etiology of lifelong PE, it was planned to compare the 5-HT2C receptor gene rs3813929, rs518147, 5-HT1A receptor gene rs6295, 5-HT1B receptor gene rs11568817 of lifelong PE patients to healthy controls. MATERIALS AND METHODS: For this purpose, 100 patients with premature ejaculation and 100 healthy controls were included in the study. Blood samples for DNA extraction were obtained. Appropriate procedures were applied to the probes (rs3813929, rs518147, rs6295, rs11568817) suitable for the DNA studied. RESULTS: A statistically significant relationship was found between the rs11568817 polymorphism (p=0.019) in the 5-HT1B receptor gene and the rs518147 polymorphism (p=0.016) in the 5-HT2C receptor gene. Also, no statistically significant relationship was found between 5-HT1A receptor gene rs6295 polymorphism and 5-HT2C receptor gene rs3813929 polymorphism and lifelong PE. CONCLUSIONS: The relationship between rs3813929 and rs11568817 polymorphisms with lifelong PE was confirmed. Repeating the study in larger sample groups could be useful in determining the genetic etiology of PE.


Subject(s)
Premature Ejaculation , Humans , Male , Polymorphism, Single Nucleotide , Premature Ejaculation/etiology , Receptor, Serotonin, 5-HT1A/genetics , Receptor, Serotonin, 5-HT1B/genetics , Receptor, Serotonin, 5-HT2C/genetics , Serotonin
20.
Mol Psychiatry ; 27(10): 4136-4143, 2022 10.
Article in English | MEDLINE | ID: mdl-35760877

ABSTRACT

Mood disorders and suicidal behavior have moderate heritability and are associated with altered corticolimbic serotonin 1A receptor (5-HT1A) brain binding. However, it is unclear whether this reflects genetic effects or epigenetic effects of childhood adversity, compensatory mechanisms, or illness stress-related changes. We sought to separate such effects on 5-HT1A binding by examining high familial risk individuals (HR) who have passed through the age of greatest risk for psychopathology onset with and without developing mood disorder or suicidal behavior. PET imaging quantified 5-HT1A binding potential BPND using [11C]CUMI-101 in healthy volunteers (HV, N = 23) and three groups with one or more relatives manifesting early-onset mood disorder and suicide attempt: 1. unaffected HR (N = 23); 2. HR with lifetime mood disorder and no suicide attempt (HR-MOOD, N = 26); and 3. HR-MOOD with previous suicide attempt (HR-MOOD + SA, N = 20). Findings were tested in an independent cohort not selected for family history (HV, MOOD, and MOOD + SA, total N = 185). We tested for regional BPND differences and whether brain-wide patterns distinguished between groups. Low ventral prefrontal 5-HT1A BPND was associated with lifetime mood disorder diagnosis and suicide attempt, but only in subjects with a family history of mood disorder and suicide attempt. Brain-wide 5-HT1A BPND patterns including low ventral prefrontal and mesiotemporal cortical binding distinguished HR-MOOD + SA from HV. A biological endophenotype associated with resilience was not observed. Low ventral prefrontal 5-HT1A BPND may reflect familial mood disorder and suicide-related pathology. Further studies are needed to determine if higher ventral prefrontal 5-HT1A BPND confers resilience, reducing risk of suicidal behavior in the context of familial risk, and thereby offer a potential prevention target.


Subject(s)
Receptor, Serotonin, 5-HT1A , Suicidal Ideation , Humans , Receptor, Serotonin, 5-HT1A/genetics , Genetic Predisposition to Disease , Serotonin , Mood Disorders/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...