Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Immunol ; 12: 675542, 2021.
Article in English | MEDLINE | ID: mdl-34394075

ABSTRACT

Autoreactive T cells play a crucial role in the pathogenesis of systemic lupus erythematosus (SLE). TGF-ß type I receptor (TGFßRI) is pivotal in determining T cell activation. Here, we showed that TGFßRI expression in naïve CD4+ T cells was decreased in SLE patients, especially in those with high disease activity. Moreover, IL-6 was found to downregulate TGFßRI expression through JAK/STAT3 pathway in SLE patients. In vitro, the JAK inhibitor tofacitinib inhibited SLE T cell activating by upregulating TGFßRI expression in a dose-dependent manner. In MRL/lpr mice, tofacitinib treatment ameliorated the clinical indicators and lupus nephritis, as evidenced by reduced plasma anti-dsDNA antibody levels, decreased proteinuria, and lower renal histopathological score. Consistently, tofacitinib enhanced TGFßRI expression and inhibited T cell activation in vivo. TGFßRI inhibitor SB431542 reversed the effects of tofacitinib on T cell activation. Thus, our results have indicated that tofacitinib can suppress T cell activation by upregulating TGFßRI expression, which provides a possible molecular mechanism underlying clinical efficacy of tofacitinib in treating SLE patients.


Subject(s)
Lupus Erythematosus, Systemic/drug therapy , Lymphocyte Activation/drug effects , Piperidines/pharmacology , Pyrimidines/pharmacology , Receptor, Transforming Growth Factor-beta Type I/physiology , T-Lymphocytes/drug effects , Adult , Animals , Female , Humans , Interleukin-6/physiology , Janus Kinases/physiology , Lupus Erythematosus, Systemic/immunology , Lupus Nephritis/drug therapy , Male , Mice , Mice, Inbred C57BL , Mice, Inbred MRL lpr , Middle Aged , Piperidines/therapeutic use , Pyrimidines/therapeutic use , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Receptor, Transforming Growth Factor-beta Type I/genetics , STAT3 Transcription Factor/physiology , T-Lymphocytes/immunology , Young Adult
2.
FASEB J ; 35(3): e21263, 2021 03.
Article in English | MEDLINE | ID: mdl-33570811

ABSTRACT

Bone is a dynamic tissue that constantly adapts to changing mechanical demands. The transforming growth factor beta (TGFß) signaling pathway plays several important roles in maintaining skeletal homeostasis by both coupling the bone-forming and bone-resorbing activities of osteoblasts and osteoclasts and by playing a causal role in the anabolic response of bone to applied loads. However, the extent to which the TGFß signaling pathway in osteocytes is directly regulated by fluid shear stress (FSS) is unknown, despite work suggesting that fluid flow along canaliculi is a dominant physical cue sensed by osteocytes following bone compression. To investigate the effects of FSS on TGFß signaling in osteocytes, we stimulated osteocytic OCY454 cells cultured within a microfluidic platform with FSS. We find that FSS rapidly upregulates Smad2/3 phosphorylation and TGFß target gene expression, even in the absence of added TGFß. Indeed, relative to treatment with TGFß, FSS induced a larger increase in levels of pSmad2/3 and Serpine1 that persisted even in the presence of a TGFß receptor type I inhibitor. Our results show that FSS stimulation rapidly induces phosphorylation of multiple TGFß family R-Smads by stimulating multimerization and concurrently activating several TGFß and BMP type I receptors, in a manner that requires the activity of the corresponding ligand. While the individual roles of the TGFß and BMP signaling pathways in bone mechanotransduction remain unclear, these results implicate that FSS activates both pathways to generate a downstream response that differs from that achieved by either ligand alone.


Subject(s)
Osteocytes/physiology , Receptor, Transforming Growth Factor-beta Type I/physiology , Activin Receptors, Type II/physiology , Animals , Cells, Cultured , Lab-On-A-Chip Devices , Mice , Protein Multimerization , Receptor, Transforming Growth Factor-beta Type I/chemistry , Sequence Analysis, RNA , Signal Transduction/physiology , Smad2 Protein/physiology , Smad3 Protein/physiology , Stress, Mechanical
3.
Sci Rep ; 10(1): 17300, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33057073

ABSTRACT

Different stimulants might induce different extracellular matrix profiles. It is essential to gain an understanding and quantification of these changes to allow for focused anti-fibrotic drug development. This study investigated the expression of extracellular matrix by dermal fibroblast mimicking fibrotic skin diseases as SSc using clinically validated biomarkers. Primary healthy human dermal fibroblasts were grown in media containing FICOLL. The cells were stimulated with PDGF-AB, TGF-ß1, or IL-6. Anti-fibrotic compounds (iALK-5, Nintedanib) were added together with growth factors. Biomarkers of collagen formation and degradation together with fibronectin were evaluated by ELISAs in the collected supernatant. Immunohistochemical staining was performed to visualize fibroblasts and proteins, while selected gene expression levels were examined through qPCR. TGF-ß and PDGF, and to a lesser extent IL-6, increased the metabolic activity of the fibroblasts. TGF-ß primarily increased type I collagen and fibronectin protein and gene expression together with αSMA. PDGF stimulation resulted in increased type III and VI collagen formation and gene expression. IL-6 decreased fibronectin levels. iALK5 could inhibit TGF-ß induced fibrosis while nintedanib could halt fibrosis induced by TGF-ß or PDGF. Tocilizumab could not inhibit fibrosis induced in this model. The extent and nature of fibrosis are dependent on the stimulant. The model has potential as a pre-clinical model as the fibroblasts fibrotic phenotype could be reversed by an ALK5 inhibitor and Nintedanib.


Subject(s)
Extracellular Matrix/metabolism , Fibroblasts/metabolism , Interleukin-6/pharmacology , Platelet-Derived Growth Factor/pharmacology , Skin/pathology , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta/pharmacology , Actins/metabolism , Calcium Phosphates/metabolism , Collagen/metabolism , Dermis/cytology , Fibroblasts/pathology , Fibronectins/metabolism , Fibrosis , Humans , Indoles/pharmacology , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Receptor, Transforming Growth Factor-beta Type I/physiology
4.
Oncogene ; 39(22): 4436-4449, 2020 05.
Article in English | MEDLINE | ID: mdl-32350443

ABSTRACT

Activator protein (AP)-1 transcription factors are essential elements of the pro-oncogenic functions of transforming growth factor-ß (TGFß)-SMAD signaling. Here we show that in multiple HER2+ and/or EGFR+ breast cancer cell lines these AP-1-dependent tumorigenic properties of TGFß critically rely on epidermal growth factor receptor (EGFR) activation and expression of the ΔN isoform of transcriptional regulator p63. EGFR and ΔNp63 enabled and/or potentiated the activation of a subset of TGFß-inducible invasion/migration-associated genes, e.g., ITGA2, LAMB3, and WNT7A/B, and enhanced the recruitment of SMAD2/3 to these genes. The TGFß- and EGF-induced binding of SMAD2/3 and JUNB to these gene loci was accompanied by p63-SMAD2/3 and p63-JUNB complex formation. p63 and EGFR were also found to strongly potentiate TGFß induction of AP-1 proteins and, in particular, FOS family members. Ectopic overexpression of FOS could counteract the decrease in TGFß-induced gene activation after p63 depletion. p63 is also involved in the transcriptional regulation of heparin binding (HB)-EGF and EGFR genes, thereby establishing a self-amplification loop that facilitates and empowers the pro-invasive functions of TGFß. These cooperative pro-oncogenic functions of EGFR, AP-1, p63, and TGFß were efficiently inhibited by clinically relevant chemical inhibitors. Our findings may, therefore, be of importance for therapy of patients with breast cancers with an activated EGFR-RAS-RAF pathway.


Subject(s)
Breast Neoplasms/pathology , Epidermal Growth Factor/physiology , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness/genetics , Neoplasm Proteins/physiology , Signal Transduction , Transcription Factor AP-1/genetics , Transcription Factors/genetics , Transcription, Genetic , Transforming Growth Factor beta1/physiology , Tumor Suppressor Proteins/genetics , Breast Neoplasms/chemistry , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Movement , ErbB Receptors/physiology , Female , Humans , MAP Kinase Signaling System , Neoplasm Proteins/genetics , Neoplasms, Hormone-Dependent/genetics , Neoplasms, Hormone-Dependent/pathology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational/drug effects , Proto-Oncogene Proteins c-fos/physiology , Proto-Oncogene Proteins c-jun/physiology , Receptor, ErbB-2/physiology , Receptor, Transforming Growth Factor-beta Type I/physiology , Smad Proteins/physiology
5.
FASEB J ; 34(5): 7178-7191, 2020 05.
Article in English | MEDLINE | ID: mdl-32274860

ABSTRACT

Let-7i modulates the physical function and inflammation in endothelial cells (ECs). However, whether the let-7i of ECs involves in brain vasculature and ischemic stroke is unknown. Using inducible Cadherin5-Cre lineage-tracking mice, a loxp-RNA-sponge conditional knockdown of let-7 in ECs- induced increase of transforming growth factor-ß receptor type 1 (TGF-ßR1), endothelial-mesenchymal transition (endMT), vascular fibrosis, and opening of the brain-blood barrier (BBB). By this lineage-tracking mice, we found that ECs underwent endMT after transient middle cerebral artery occlusion (MCAO). Through specifically overexpressed let-7i in ECs, we found that it reduced TGF-ßR1, endMT, and vascular fibrosis. Furthermore, this overexpression reduced the infarct volume and leakage of the BBB, and improved the neurological function. Further, the expression of let-7i decreased after MCAO, but was reversed by antagonist of TGF-ßR1 or inhibition of Mek phosphorylation. And the inhibition of Mek attenuated the vascular fibrosis after MCAO. In summary, we concluded that ischemic stroke activates a let-7i/TGF-ßR1 double-negative feedback loop, thereby inducing endMT and vascular fibrosis. These results suggest that endMT is a potential target for the treatment of cerebral vascular fibrosis.


Subject(s)
Cerebrovascular Trauma/pathology , Cerebrovascular Trauma/physiopathology , MicroRNAs/genetics , MicroRNAs/physiology , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/physiology , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Animals , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Cell Transdifferentiation , Disease Models, Animal , Endothelium/pathology , Endothelium/physiopathology , Feedback, Physiological , Fibrosis , Gene Knockdown Techniques , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Male , Mesoderm/pathology , Mesoderm/physiopathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rats , Rats, Sprague-Dawley , Receptor, Transforming Growth Factor-beta Type I/deficiency
6.
J Orthop Res ; 37(12): 2634-2644, 2019 12.
Article in English | MEDLINE | ID: mdl-31334871

ABSTRACT

Ligamentum flavum hypertrophy (LFH) is the most important component of lumbar spinal canal stenosis. Although the pathophysiology of LFH has been extensively studied, no method has been proposed to prevent or treat it. Since the transforming growth factor-ß (TGF-ß) pathway is known to be critical in LFH pathology, we investigated whether LFH could be prevented by blocking or modulating the TGF-ß mechanism. Human LF cells were used for the experiments. First, we created TGF-ß receptor 1 (TGFBR1) knock out (KO) cells with CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 biotechnology and treated them with TGF-ß1 to determine the effects of blocking the TGF-ß pathway. Subsequently, we studied the effect of CCN5, which has recently been proposed to modulate the TGF-ß pathway. To assess the predisposition toward fibrosis, α-smooth muscle actin (αSMA), fibronectin, collagen-1, collagen-3, and CCN2 were evaluated with quantitative real-time polymerase chain reaction, western blotting, and immunocytochemistry. The TGFBR1 KO LF cells were successfully constructed with high KO efficiency. In wild-type (WT) cells, treatment with TGF-ß1 resulted in the overexpression of the messenger RNA (mRNA) of fibrosis-related factors. However, in KO cells, the responses to TGF-ß1 stimulation were significantly lower. In addition, CCN5 and TGF-ß1 co-treatment caused a notable reduction in mRNA expression levels compared with TGF-ß1 stimulation only. The αSMA protein expression increased with TGF-ß1 but decreased with CCN5 treatment. TGF-ß1 induced LF cell transdifferentiation from fibroblasts to myofibroblasts. However, this cell transition dramatically decreased in the presence of CCN5. In conclusion, CCN5 could prevent LFH by modulating the TGF-ß pathway. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:2634-2644, 2019.


Subject(s)
CCN Intercellular Signaling Proteins/pharmacology , Ligamentum Flavum/pathology , Repressor Proteins/pharmacology , Transforming Growth Factor beta/physiology , Actins/analysis , Cell Transdifferentiation/drug effects , Cells, Cultured , Clustered Regularly Interspaced Short Palindromic Repeats , Fibroblasts/pathology , Fibrosis , Humans , Hypertrophy , Ligamentum Flavum/drug effects , Myofibroblasts/pathology , Receptor, Transforming Growth Factor-beta Type I/physiology , Signal Transduction/physiology
7.
Exp Cell Res ; 383(2): 111503, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31336100

ABSTRACT

Hypoxic blood-brain barrier (BBB) dysfunction is a common feature of CNS diseases however mechanisms underlying barrier disturbance are still largely unknown. This study investigated the role of transforming growth factor ß (TGFß), a cytokine known to induce expression of the proprotein convertase Furin, in hypoxia-mediated barrier compromise. We show that exposure of brain endothelial cells (ECs) to hypoxia (1% O2) rapidly stimulates their migration. Additional exogenous TGFß (0.4 nM) exposure potentiated this effect and increased Furin expression in a TGFß type I receptor activin-like kinase 5 (ALK5) - dependent manner (prevented by 10 µM SB431542). Furin inhibition prevented hypoxia-induced EC migration and blocked TGFß-induced potentiation suggesting existence of a feedback loop. TGFß and Furin were also critical for hypoxia-induced BBB dysfunction. TGFß treatment aggravated hypoxia-induced BBB permeability but ALK5 or Furin blockade reversed injury-induced permeability changes. Thus during insult Furin compromises endothelial integrity by mediating the effects of TGFß. Targeting the Furin or ALK5 pathway may offer novel therapeutic strategies for improving BBB stability and CNS function during disease.


Subject(s)
Blood-Brain Barrier/drug effects , Cell Membrane Permeability/drug effects , Enzyme Inhibitors/pharmacology , Furin/antagonists & inhibitors , Hypoxia/metabolism , Receptor, Transforming Growth Factor-beta Type I/physiology , Transforming Growth Factor beta/pharmacology , Amino Acid Chloromethyl Ketones/pharmacology , Animals , Benzamides/pharmacology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Capillary Permeability/drug effects , Cell Movement/drug effects , Cell Movement/genetics , Cells, Cultured , Dioxoles/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/pathology , Endothelial Cells/physiology , Fluoresceins/pharmacology , Furin/genetics , Furin/metabolism , Hypoxia/complications , Hypoxia/pathology , Male , Rats , Rats, Wistar , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Transforming Growth Factor beta/physiology
8.
Int J Parasitol ; 48(13): 1023-1033, 2018 11.
Article in English | MEDLINE | ID: mdl-30266591

ABSTRACT

Here we investigated the gene of a transforming growth factor (TGF)-ß type I receptor-like molecule in Haemonchus contortus, a highly pathogenic and economically important parasitic nematode of small ruminants. Designated Hc-tgfbr1, this gene is transcribed in all developmental stages of H. contortus, and the encoded protein has glycine-serine rich and kinase domains characteristic of a TGF-ß family type I receptor. Expression of a GFP reporter driven by the putative Hc-tgfbr1 promoter localised to two intestinal rings, the anterior-most intestinal ring (int ring I) and the posterior-most intestinal ring (int ring IX) in Caenorhabditis elegans in vivo. Heterologous genetic complementation using a plasmid construct containing Hc-tgfbr1 genomic DNA failed to rescue the function of Ce-daf-1 (a known TGF-ß type I receptor gene) in a daf-1-deficient mutant strain of C. elegans. In addition, a TGF-ß type I receptor inhibitor, galunisertib, and double-stranded RNA interference (RNAi) were employed to assess the function of Hc-tgfbr1 in the transition from exsheathed L3 (xL3) to the L4 of H. contortus in vitro, revealing that both galunisertib and Hc-tgfbr1-specific double-stranded RNA could retard L4 development. Taken together, these results provide evidence that Hc-tgfbr1 is involved in developmental processes in H. contortus in the transition from the free-living to the parasitic stage.


Subject(s)
Haemonchus/growth & development , Receptor, Transforming Growth Factor-beta Type I/physiology , Amino Acid Sequence , Animals , Base Sequence , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cloning, Molecular , Computational Biology , DNA Primers/chemistry , DNA, Helminth/isolation & purification , Female , Gene Expression Regulation , Genes, Reporter/physiology , Genetic Complementation Test , Goats , Haemonchus/genetics , Haemonchus/physiology , Male , Molecular Conformation , Phylogeny , Pyrazoles/pharmacology , Quinolines/pharmacology , RNA, Helminth/isolation & purification , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Receptor, Transforming Growth Factor-beta Type I/chemistry , Receptor, Transforming Growth Factor-beta Type I/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Signal Transduction , Specific Pathogen-Free Organisms
9.
Int J Cancer ; 143(6): 1494-1504, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29663369

ABSTRACT

The adenosine-induced immunosuppression hampers the immune response toward tumor cells and facilitates the tumor cells to evade immunosurveillance. CD73, an ecto-5-nucleotidase, is the ectoenzyme dephosphorylating extracellular AMP to adenosine. Here, using immunocompetent transgenic head and neck squamous cell carcinoma (HNSCC) mouse model, immune profiling showed high expression of CD73 on CD4+ and CD8+ T cells was associated with an "exhausted" phenotype. Further, treatment with anti-CD73 monoclonal antibody (mAb) significantly blunted the tumor growth in the mouse model, and the blockade of CD73 reversed the "exhausted" phenotype of CD4+ and CD8+ T cells through downregulation of total expression of PD-1 and CTLA-4 on T cells. Whereas the population of CD4+ CD73hi /CD8+ CD73hi T cells expressed higher CTLA-4 and PD-1 as compared to untreated controls. In addition, the human tissue microarrays showed the expression of CD73 is upregulated on tumor infiltrating immune cells in patients with primary HNSCC. Moreover, CD73 expression is an independent prognostic factor for poor outcome in our cohort of HNSCC patients. Altogether, these findings highlight the immunoregulatory role of CD73 in the development of HNSCC and we propose that CD73 may prove to be a promising immunotherapeutic target for the treatment of HNSCC.


Subject(s)
5'-Nucleotidase/metabolism , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Squamous Cell/immunology , Head and Neck Neoplasms/immunology , Immune Tolerance/immunology , Lymphocytes, Tumor-Infiltrating/immunology , 5'-Nucleotidase/antagonists & inhibitors , 5'-Nucleotidase/genetics , Animals , Antibodies, Monoclonal/pharmacology , Apoptosis , Biomarkers, Tumor , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , CTLA-4 Antigen/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Proliferation , Follow-Up Studies , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Mice , Mice, Knockout , Mice, Transgenic , PTEN Phosphohydrolase/physiology , Phenotype , Prognosis , Receptor, Transforming Growth Factor-beta Type I/physiology , Survival Rate , Tumor Cells, Cultured
10.
Nat Commun ; 9(1): 1216, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29572483

ABSTRACT

Transforming growth factor-ß (TGFß) signaling is initiated by the type I, II TGFß receptor (TßRI/TßRII) complex. Here we report the formation of an alternative complex between TßRI and the orphan GPR50, belonging to the G protein-coupled receptor super-family. The interaction of GPR50 with TßRI induces spontaneous TßRI-dependent Smad and non-Smad signaling by stabilizing the active TßRI conformation and competing for the binding of the negative regulator FKBP12 to TßRI. GPR50 overexpression in MDA-MB-231 cells mimics the anti-proliferative effect of TßRI and decreases tumor growth in a xenograft mouse model. Inversely, targeted deletion of GPR50 in the MMTV/Neu spontaneous mammary cancer model shows decreased survival after tumor onset and increased tumor growth. Low GPR50 expression is associated with poor survival prognosis in human breast cancer irrespective of the breast cancer subtype. This describes a previously unappreciated spontaneous TGFß-independent activation mode of TßRI and identifies GPR50 as a TßRI co-receptor with potential impact on cancer development.


Subject(s)
Mammary Neoplasms, Animal/prevention & control , Nerve Tissue Proteins/physiology , Receptor, Transforming Growth Factor-beta Type I/physiology , Receptors, G-Protein-Coupled/physiology , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Endosomes/metabolism , Female , Gene Expression Profiling , HEK293 Cells , HeLa Cells , Humans , Mammary Neoplasms, Animal/metabolism , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Nerve Tissue Proteins/genetics , Oligonucleotide Array Sequence Analysis , Receptors, G-Protein-Coupled/genetics , Signal Transduction , Smad Proteins/metabolism , Tacrolimus Binding Protein 1A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL