Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Parasitol Res ; 117(5): 1647-1655, 2018 May.
Article in English | MEDLINE | ID: mdl-29550999

ABSTRACT

Megaesophagus is one of the major manifestations of the chronic phase of Chagas disease. Its primary symptom is generally dysphagia due to disturbance in the lower esophageal sphincter. Microscopically, the affected organ presents denervation, which has been considered as consequence of an inflammatory process that begins at the acute phase and persists in the chronic phase. Inflammatory infiltrates are composed of lymphocytes, macrophages, natural killer cells, mast cells, and eosinophils. In this study, we evaluated the immunoreactivity of nerve growth factor (NGF), and of its receptor tropomyosin receptor kinase A (TrkA), molecules that are well known for having a relevant role in neuroimmune communication in the gastrointestinal tract. Esophageal samples obtained via autopsy or surgery procedures from six noninfected individuals, six infected individuals without megaesophagus, and six infected individuals with megaesophagus were analyzed. Infected individuals without megaesophagus presented increased numbers of NGF immunoreactive (IR) mast cells and increased areas of TrkA-IR epithelial cells and inner muscle cells. Infected individuals with megaesophagus showed increased numbers of NGF-IR eosinophils and mast cells, TrkA-IR eosinophils and mast cells, increased area of NGF-IR epithelial cells, and increased areas of TrkA-IR epithelials cells and inner muscle cells. The data presented here point to the participation of NGF and its TrkA receptor in the pathology of chagasic megaesophagus.


Subject(s)
Chagas Disease/pathology , Esophageal Achalasia/pathology , Nerve Growth Factor/immunology , Receptor, trkA/immunology , Trypanosoma cruzi/pathogenicity , Cell Count , Chagas Disease/parasitology , Eosinophils/immunology , Esophageal Achalasia/parasitology , Esophagus/parasitology , Esophagus/pathology , Female , Humans , Macrophages/immunology , Male , Mast Cells/immunology , Middle Aged , Muscle Cells/immunology , Neurons/metabolism , Parasite Load , Protein Kinases , Tropomyosin/metabolism , Trypanosoma cruzi/isolation & purification
2.
Scand J Immunol ; 71(3): 220-5, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20415787

ABSTRACT

Neurotrophic receptors TrkA and TrkC double up as receptors that Trypanosoma cruzi uses to invade cells and as autoantigen in T. cruzi-infected individuals (with Chagas' disease). Consequently, autoantibodies against TrkA and TrkC (ATA) potently block T. cruzi invasion in vitro and in ATA-immunized mice. Thus, ATA could keep T. cruzi invasion in check in Chagas' disease. However, ATA has been examined only in patients with chronic Chagas' disease. To determine whether ATA potentially participate in the early stage of infection, we analysed the sera of 15 patients with acute Chagas' disease, 4-66 years of age. We find that all sera contain high antibody titres to TrkA, TrkB and TrkC, but not to other growth factor receptors, indicating that ATA are produced relatively soon after T. cruzi infection by an age-independent process. One individual, who acquired the disease after an accidental laboratory infection, converted to Trk-antibody (Ab)-seronegative when progressing to the chronic phase. ATA from acute patients were of low avidity (K(0) <24.8 x 10(-8) m) and of IgM and IgA isotypes. In contrast, ATA from chronic patients were of high avidity (K(o) = 1.4 to 4.5 x 10(-8) m) and of the IgG2 isotype. Therefore, ATA underwent affinity maturation and class switch when patients progressed from acute to chronic disease. Thus, it may be that Trk autoimmunity, which starts in the acute Chagas' disease, plays a role in attenuating parasitemia and tissue parasitism that characterizes the acute/chronic phase transition of Chagas' disease.


Subject(s)
Antibodies, Protozoan/immunology , Autoantibodies/immunology , Chagas Disease/immunology , Receptor, trkA/immunology , Receptor, trkB/immunology , Receptor, trkC/immunology , Trypanosoma cruzi/immunology , Adolescent , Adult , Aged , Animals , Antibodies, Protozoan/blood , Autoantibodies/blood , Brazil , Chagas Disease/blood , Child , Child, Preschool , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Mice , Middle Aged , Young Adult
3.
AIDS Res Hum Retroviruses ; 22(3): 248-54, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16545011

ABSTRACT

HTLV-1-associated myelopathy/tropical spastic paraparesis (TSP/HAM) is a chronic CNS disease characterized by axomyelinic degeneration of the long axons of corticospinal tracts. Levels of NGF, NT-3, NT-4/5, BDNF, GDNF, CNTF, and FGF-2 were measured in the cerebrospinal fluid (CSF) of 21 TSP/HAM patients and 20 controls. NGF, BDNF, and FGF-2 levels were also determined in 19 patients with HIV motor cognitive motor syndrome, and in 21 subjects diagnosed with Creutzfeldt Jakob disease (CJD). No significant differences were detected in the concentrations of NGF, BDNF, NT-3, NT-4/5, GDNF, and CNTF in the CSF between TSP/HAM patients and controls. FGF-2 was significantly lower in the CSF of the three groups of patients compared with controls; the HIV group exhibited the lowest values. HIV patients differed from TSP/HAM in their significantly higher levels of NGF and lower levels of BDNF and FGF-2, whereas CJD patients differed only in their higher levels of NGF. Immunohistochemical studies were done of trophic factors (NGF and FGF-2) and neurotrophin receptors (trkA and p75) in spinal cord and motor cortical areas from anatomopathological cases of TSP/HAM. Results indicated that NGF is expressed in motoneurons and oligodendrocytes of the posterior column of the spinal cord. FGF-2 was detected in motoneurons and spinal cord vessels. p75 receptor was detected in cortical neurons. The absence of a significant change in the trophic factor levels in TSP/HAM may be attributed to a selective axonal lesion in a slow process.


Subject(s)
Brain-Derived Neurotrophic Factor/cerebrospinal fluid , Creutzfeldt-Jakob Syndrome/cerebrospinal fluid , Fibroblast Growth Factor 2/cerebrospinal fluid , HIV Infections/cerebrospinal fluid , Nerve Growth Factor/cerebrospinal fluid , Paraparesis, Tropical Spastic/cerebrospinal fluid , Spinal Cord/metabolism , Adult , Aged , Blotting, Western , Creutzfeldt-Jakob Syndrome/complications , Creutzfeldt-Jakob Syndrome/virology , HIV Infections/complications , Humans , Immunohistochemistry , Middle Aged , Paraparesis, Tropical Spastic/complications , Paraparesis, Tropical Spastic/virology , Receptor, Nerve Growth Factor/immunology , Receptor, trkA/immunology , Spinal Cord/pathology
SELECTION OF CITATIONS
SEARCH DETAIL