Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 874
Filter
1.
Nat Commun ; 15(1): 3791, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710704

ABSTRACT

Fas-associated protein with death domain (FADD), procaspase-8, and cellular FLICE-inhibitory proteins (cFLIP) assemble through death-effector domains (DEDs), directing death receptor signaling towards cell survival or apoptosis. Understanding their three-dimensional regulatory mechanism has been limited by the absence of atomic coordinates for their ternary DED complex. By employing X-ray crystallography and cryogenic electron microscopy (cryo-EM), we present the atomic coordinates of human FADD-procaspase-8-cFLIP complexes, revealing structural insights into these critical interactions. These structures illustrate how FADD and cFLIP orchestrate the assembly of caspase-8-containing complexes and offer mechanistic explanations for their role in promoting or inhibiting apoptotic and necroptotic signaling. A helical procaspase-8-cFLIP hetero-double layer in the complex appears to promote limited caspase-8 activation for cell survival. Our structure-guided mutagenesis supports the role of the triple-FADD complex in caspase-8 activation and in regulating receptor-interacting protein kinase 1 (RIPK1). These results propose a unified mechanism for DED assembly and procaspase-8 activation in the regulation of apoptotic and necroptotic signaling across various cellular pathways involved in development, innate immunity, and disease.


Subject(s)
Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein , Caspase 8 , Fas-Associated Death Domain Protein , Fas-Associated Death Domain Protein/metabolism , Fas-Associated Death Domain Protein/genetics , Caspase 8/metabolism , Humans , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/chemistry , Crystallography, X-Ray , Signal Transduction , Cryoelectron Microscopy , Models, Molecular , Protein Domains , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Protein Binding , HEK293 Cells
2.
Int Immunopharmacol ; 133: 112060, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38652970

ABSTRACT

Acute respiratory distress syndrome (ARDS) is characterized by lung tissue oedema and inflammatory cell infiltration, with limited therapeutic interventions available. Receptor-interacting protein kinase 1 (RIPK1), a critical regulator of cell death and inflammation implicated in many diseases, is not fully understood in the context of ARDS. In this study, we employed RIP1 kinase-inactivated (Rip1K45A/K45A) mice and two distinct RIPK1 inhibitors to investigate the contributions of RIP1 kinase activity in lipopolysaccharide (LPS)-induced ARDS pathology. Our results indicated that RIPK1 kinase inactivation, achieved through both genetic and chemical approaches, significantly attenuated LPS-induced ARDS pathology, as demonstrated by reduced polymorphonuclear neutrophil percentage (PMN%) in alveolar lavage fluid, expression of inflammatory and fibrosis-related factors in lung tissues, as well as histological examination. Results by tunnel staining and qRT-PCR analysis indicated that RIPK1 kinase activity played a role in regulating cell apoptosis and inflammation induced by LPS administration in lung tissue. In summary, employing both pharmacological and genetic approaches, this study demonstrated that targeted RIPK1 kinase inactivation attenuates the pathological phenotype induced by LPS inhalation in an ARDS mouse model. This study enhances our understanding of the therapeutic potential of RIPK1 kinase modulation in ARDS, providing insights for the pathogenesis of ARDS.


Subject(s)
Lipopolysaccharides , Lung , Receptor-Interacting Protein Serine-Threonine Kinases , Respiratory Distress Syndrome , Animals , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Mice , Lung/pathology , Lung/drug effects , Lung/immunology , Mice, Inbred C57BL , Apoptosis/drug effects , Disease Models, Animal , Male , Neutrophils/immunology , Neutrophils/drug effects , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
3.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674016

ABSTRACT

Organ transplantation is associated with various forms of programmed cell death which can accelerate transplant injury and rejection. Targeting cell death in donor organs may represent a novel strategy for preventing allograft injury. We have previously demonstrated that necroptosis plays a key role in promoting transplant injury. Recently, we have found that mitochondria function is linked to necroptosis. However, it remains unknown how necroptosis signaling pathways regulate mitochondrial function during necroptosis. In this study, we investigated the receptor-interacting protein kinase 3 (RIPK3) mediated mitochondrial dysfunction and necroptosis. We demonstrate that the calmodulin-dependent protein kinase (CaMK) family members CaMK1, 2, and 4 form a complex with RIPK3 in mouse cardiac endothelial cells, to promote trans-phosphorylation during necroptosis. CaMK1 and 4 directly activated the dynamin-related protein-1 (Drp1), while CaMK2 indirectly activated Drp1 via the phosphoglycerate mutase 5 (PGAM5). The inhibition of CaMKs restored mitochondrial function and effectively prevented endothelial cell death. CaMKs inhibition inhibited activation of CaMKs and Drp1, and cell death and heart tissue injury (n = 6/group, p < 0.01) in a murine model of cardiac transplantation. Importantly, the inhibition of CaMKs greatly prolonged heart graft survival (n = 8/group, p < 0.01). In conclusion, CaMK family members orchestrate cell death in two different pathways and may be potential therapeutic targets in preventing cell death and transplant injury.


Subject(s)
Dynamins , Graft Rejection , Heart Transplantation , Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Mice , Graft Rejection/metabolism , Graft Rejection/pathology , Heart Transplantation/adverse effects , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Dynamins/metabolism , Dynamins/genetics , Mitochondria/metabolism , Endothelial Cells/metabolism , Male , Mice, Inbred C57BL , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Phosphorylation , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Signal Transduction
4.
World J Gastroenterol ; 30(15): 2155-2174, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38681991

ABSTRACT

BACKGROUND: Necroptosis has emerged as a novel molecular pathway that can be targeted by chemotherapy agents in the treatment of cancer. OSW-1, which is derived from the bulbs of Ornithogalum saundersiae Baker, exerts a wide range of pharmacological effects. AIM: To explore whether OSW-1 can induce necroptosis in colorectal cancer (CRC) cells, thereby expanding its range of clinical applications. METHODS: We performed a sequence of functional experiments, including Cell Counting Kit-8 assays and flow cytometry analysis, to assess the inhibitory effect of OSW-1 on CRC cells. We utilized quantitative proteomics, employing tandem mass tag labeling combined with liquid chromatography-tandem mass spectrometry, to analyze changes in protein expression. Subsequent bioinformatic analysis was conducted to elucidate the biological processes associated with the identified proteins. Transmission electron microscopy (TEM) and immunofluorescence studies were also performed to examine the effects of OSW-1 on necroptosis. Finally, western blotting, siRNA experiments, and immunoprecipitation were employed to evaluate protein interactions within CRC cells. RESULTS: The results revealed that OSW-1 exerted a strong inhibitory effect on CRC cells, and this effect was accompanied by a necroptosis-like morphology that was observable via TEM. OSW-1 was shown to trigger necroptosis via activation of the RIPK1/RIPK3/MLKL pathway. Furthermore, the accumulation of p62/SQSTM1 was shown to mediate OSW-1-induced necroptosis through its interaction with RIPK1. CONCLUSION: We propose that OSW-1 can induce necroptosis through the RIPK1/RIPK3/MLKL signaling pathway, and that this effect is mediated by the RIPK1-p62/SQSTM1 complex, in CRC cells. These results provide a theoretical foundation for the use of OSW-1 in the clinical treatment of CRC.


Subject(s)
Colorectal Neoplasms , Necroptosis , Protein Kinases , Receptor-Interacting Protein Serine-Threonine Kinases , Sequestosome-1 Protein , Signal Transduction , Humans , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Necroptosis/drug effects , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Protein Kinases/metabolism , Cell Line, Tumor , Proteomics/methods , Plant Extracts/pharmacology , HCT116 Cells
5.
J Clin Immunol ; 44(5): 108, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676845

ABSTRACT

The monogenic causes of very-early-onset inflammatory bowel disease (VEO-IBD) have been defined by genetic studies, which were usually related to primary immunodeficiencies. Receptor-interacting serine/threonine-protein kinase-1 (RIPK1) protein is an important signalling molecule in inflammation and cell death pathways. Its deficiency may lead to various clinical features linked to immunodeficiency and/or inflammation, including IBD. Here, we discuss an infant with malnutrition, VEO-IBD, recurrent infections and polyathritis who has a homozygous partial deletion in RIPK1 gene.


Subject(s)
Inflammatory Bowel Diseases , Receptor-Interacting Protein Serine-Threonine Kinases , Humans , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Infant , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/diagnosis , Male , Gene Deletion , Age of Onset , Sequence Deletion/genetics , Female
6.
Mol Biol Rep ; 51(1): 524, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630344

ABSTRACT

BACKGROUND: Pterygium, characterized by the abnormal proliferation of epithelial cells, matrix remodeling, vascularization, and lesion migration, is a prevalent ocular surface disease involving the growth of fibrovascular tissue on the cornea. Despite the unclear underlying causes of pterygium, numerous investigations have indicated the involvement of cell death pathways in the regulation of cell cycle dynamics. Consequently, the objective of this study was to assess the expression levels of necroptosis markers in individuals diagnosed with pterygium, aiming to shed light on the potential role of necroptosis in the pathogenesis of this condition. METHODS: This study aimed to investigate the expression patterns of receptor-interacting serine/threonine kinase 3 (RIPK3) and receptor-interacting serine/threonine kinase 1 (RIPK1) genes in pterygium tissues. 41 patients undergoing pterygium excision surgery were recruited. Resected pterygium samples and normal conjunctival tissues were collected, and RIPK3 and RIPK1 mRNA levels were measured using quantitative real-time PCR. RESULTS: Our findings reveal that the expression of RIPK3 is significantly increased in samples obtained from individuals with pterygium. However, no significant alterations were observed in the expression of RIPK1 in these samples. Results showed significantly higher RIPK3 expression in pterygium tissues compared to controls. Moreover, increased RIPK3 levels correlated negatively with pterygium recurrence rates. CONCLUSIONS: These findings suggest RIPK3 may play a protective role against pterygium recurrence through necroptosis.


Subject(s)
Pterygium , Humans , Conjunctiva/abnormalities , Gene Expression/genetics , Pterygium/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Serine
7.
Cell Death Differ ; 31(5): 635-650, 2024 May.
Article in English | MEDLINE | ID: mdl-38493248

ABSTRACT

Diquat (DQ) poisoning is a severe medical condition associated with life-threatening implications and multiorgan dysfunction. Despite its clinical significance, the precise underlying mechanism remains inadequately understood. This study elucidates that DQ induces instability in the mitochondrial genome of endothelial cells, resulting in the accumulation of Z-form DNA. This process activates Z-DNA binding protein 1 (ZBP1), which then interacts with receptor-interacting protein kinase 3 (RIPK3), ultimately leading to RIPK3-dependent necroptotic and ferroptotic signaling cascades. Specific deletion of either Zbp1 or Ripk3 in endothelial cells simultaneously inhibits both necroptosis and ferroptosis. This dual inhibition significantly reduces organ damage and lowers mortality rate. Notably, our investigation reveals that RIPK3 has a dual role. It not only phosphorylates MLKL to induce necroptosis but also phosphorylates FSP1 to inhibit its enzymatic activity, promoting ferroptosis. The study further shows that deletion of mixed lineage kinase domain-like (Mlkl) and the augmentation of ferroptosis suppressor protein 1 (FSP1)-dependent non-canonical vitamin K cycling can provide partial protection against DQ-induced organ damage. Combining Mlkl deletion with vitamin K treatment demonstrates a heightened efficacy in ameliorating multiorgan damage and lethality induced by DQ. Taken together, this study identifies ZBP1 as a crucial sensor for DQ-induced mitochondrial Z-form DNA, initiating RIPK3-dependent necroptosis and ferroptosis. These findings suggest that targeting the ZBP1/RIPK3-dependent necroptotic and ferroptotic pathways could be a promising approach for drug interventions aimed at mitigating the adverse consequences of DQ poisoning.


Subject(s)
DNA, Mitochondrial , Ferroptosis , Necroptosis , RNA-Binding Proteins , Receptor-Interacting Protein Serine-Threonine Kinases , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Ferroptosis/drug effects , Animals , Necroptosis/drug effects , Mice , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Humans , Protein Kinases/metabolism , Protein Kinases/genetics , Mice, Inbred C57BL , Male
8.
Cell Death Differ ; 31(5): 672-682, 2024 May.
Article in English | MEDLINE | ID: mdl-38548850

ABSTRACT

Necroptosis is a lytic form of cell death that is mediated by the kinase RIPK3 and the pseudokinase MLKL when caspase-8 is inhibited downstream of death receptors, toll-like receptor 3 (TLR3), TLR4, and the intracellular Z-form nucleic acid sensor ZBP1. Oligomerization and activation of RIPK3 is driven by interactions with the kinase RIPK1, the TLR adaptor TRIF, or ZBP1. In this study, we use immunohistochemistry (IHC) and in situ hybridization (ISH) assays to generate a tissue atlas characterizing RIPK1, RIPK3, Mlkl, and ZBP1 expression in mouse tissues. RIPK1, RIPK3, and Mlkl were co-expressed in most immune cell populations, endothelial cells, and many barrier epithelia. ZBP1 was expressed in many immune populations, but had more variable expression in epithelia compared to RIPK1, RIPK3, and Mlkl. Intriguingly, expression of ZBP1 was elevated in Casp8-/- Tnfr1-/- embryos prior to their succumbing to aberrant necroptosis around embryonic day 15 (E15). ZBP1 contributed to this embryonic lethality because rare Casp8-/- Tnfr1-/- Zbp1-/- mice survived until after birth. Necroptosis mediated by TRIF contributed to the demise of Casp8-/- Tnfr1-/- Zbp1-/- pups in the perinatal period. Of note, Casp8-/- Tnfr1-/- Trif-/- Zbp1-/- mice exhibited autoinflammation and morbidity, typically within 5-7 weeks of being born, which is not seen in Casp8-/- Ripk1-/- Trif-/- Zbp1-/-, Casp8-/- Ripk3-/-, or Casp8-/- Mlkl-/- mice. Therefore, after birth, loss of caspase-8 probably unleashes RIPK1-dependent necroptosis driven by death receptors other than TNFR1.


Subject(s)
Adaptor Proteins, Vesicular Transport , Caspase 8 , Mice, Knockout , Necroptosis , RNA-Binding Proteins , Receptor-Interacting Protein Serine-Threonine Kinases , Receptors, Tumor Necrosis Factor, Type I , Animals , Caspase 8/metabolism , Caspase 8/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Adaptor Proteins, Vesicular Transport/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Mice, Inbred C57BL , Protein Kinases/metabolism , Protein Kinases/genetics
10.
Mol Cancer ; 23(1): 52, 2024 03 09.
Article in English | MEDLINE | ID: mdl-38461272

ABSTRACT

BACKGROUND: Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is one of the causes of tumor immune tolerance and failure of cancer immunotherapy. Here, we found that bladder cancer (BCa)-derived exosomal circRNA_0013936 could enhance the immunosuppressive activity of PMN-MDSCs by regulating the expression of fatty acid transporter protein 2 (FATP2) and receptor-interacting protein kinase 3 (RIPK3). However, the underlying mechanism remains largely unknown. METHODS: BCa-derived exosomes was isolated and used for a series of experiments. RNA sequencing was used to identify the differentially expressed circRNAs. Western blotting, immunohistochemistry, immunofluorescence, qRT-PCR, ELISA and Flow cytometry were performed to reveal the potential mechanism of circRNA_0013936 promoting the immunosuppressive activity of PMN-MDSC. RESULTS: CircRNA_0013936 enriched in BCa-derived exosomes could promote the expression of FATP2 and inhibit the expression of RIPK3 in PMN-MDSCs. Mechanistically, circRNA_0013936 promoted the expression of FATP2 and inhibited the expression of RIPK3 expression via sponging miR-320a and miR-301b, which directly targeted JAK2 and CREB1 respectively. Ultimately, circRNA_0013936 significantly inhibited the functions of CD8+ T cells by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway, and down-regulating RIPK3 through the circRNA_0013936/miR-301b/CREB1 pathway in PMN-MDSCs. CONCLUSIONS: BCa-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway and down-regulating RIPK3 through the circRNA_0013936/miR-301b-3p/CREB1 pathway in PMN-MDSCs. These findings help to find new targets for clinical treatment of human bladder cancer.


Subject(s)
MicroRNAs , Myeloid-Derived Suppressor Cells , RNA, Circular , Urinary Bladder Neoplasms , Humans , CD8-Positive T-Lymphocytes/metabolism , Fatty Acids/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Protein Kinases/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Urinary Bladder/metabolism , Urinary Bladder Neoplasms/pathology , Exosomes/genetics , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
11.
Adv Exp Med Biol ; 1444: 129-143, 2024.
Article in English | MEDLINE | ID: mdl-38467977

ABSTRACT

Necroptosis is a regulated form of cell death involved in the development of various pathological conditions. In contrast to apoptosis, plasma membrane rupture (PMR) occurs in cells in the relatively early stage of necroptosis; therefore, necroptosis induces a strong inflammatory response. Stimuli, including tumor necrosis factor (TNF), interferon (IFN)α/ß, lipopolysaccharide, polyI:C, and viral infection, induce the formation of necrosomes that lead to membrane rupture and the release of intracellular contents, termed danger-associated molecular patterns (DAMPs). DAMPs are the collective term for molecules that normally reside in the cytoplasm or nucleus in living cells without inducing inflammation but induce strong inflammatory responses when released outside cells. Recent studies have provided a better understanding of the mechanisms underlying PMR and the release of DAMPs. Moreover, necroptosis is involved in various pathological conditions, and mutations in necroptosis-related genes can cause hereditary autoinflammatory syndromes. Thus, manipulating necroptosis signaling pathways may be useful for treating diseases involving necroptosis.


Subject(s)
Apoptosis , Necroptosis , Humans , Necrosis/metabolism , Apoptosis/physiology , Cell Death , Tumor Necrosis Factor-alpha/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
12.
J Physiol Biochem ; 80(2): 393-405, 2024 May.
Article in English | MEDLINE | ID: mdl-38427168

ABSTRACT

Corticosterone (CORT) damages hippocampal neurons as well as induces neuroinflammation. The tricarboxylic acid cycle metabolite itaconate has an anti-inflammatory role. Necroptosis is a form of programmed cell death, also known as inflammatory cell death. Menin is a multifunctional scaffold protein, which deficiency aggravates neuroinflammation. In this study, we explored whether itaconate inhibits CORT-induced neuroinflammation as well as necroptosis and further investigated the mediatory role of Menin in this protective effect of itaconate by using an exposure of CORT to HT22 cells (a hippocampal neuronal cell line). The viability of HT22 cells was examined by the cell counting kit 8 (CCK-8). The morphology of HT22 cells was observed by transmission electron microscope (TEM). The expressions of necroptosis-related proteins (p-RIP1/RIP1, p-RIP3/RIP3, and p-MLKL/MLKL) were evaluated by western blotting. The contents of inflammatory factors were detected by an enzyme-linked immunosorbent assay (ELISA) kit. Our results showed that CORT increases the contents of pro-inflammatory factors (IL-1ß, TNF-α) as well as decreases the contents of anti-inflammatory factors (IL-4, IL-10) in HT22 cells. We also found that CORT increases the expressions of necroptosis-related proteins (p-RIP1/RIP1, p-RIP3/RIP3, and p-MLKL/MLKL) and decreases the cell viability in HT22 cells, indicating that CORT induces necroptosis in HT22 cells. Itaconate improves CORT-induced neuroinflammation and necroptosis. Furthermore, itaconate upregulates the expression of Menin in CORT-exposed HT22 cells. Importantly, silencing Menin abolishes the antagonistic effect of itaconate on CORT-induced necroptosis and neuroinflammation. In brief, these results indicated that itaconate protects HT22 cells against CORT-induced neuroinflammation and necroptosis via upregulating Menin.


Subject(s)
Corticosterone , Hippocampus , Necroptosis , Proto-Oncogene Proteins , Succinates , Up-Regulation , Animals , Necroptosis/drug effects , Succinates/pharmacology , Mice , Cell Line , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Up-Regulation/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/pathology , Cell Survival/drug effects , Anti-Inflammatory Agents/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
13.
Free Radic Biol Med ; 217: 29-47, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38522486

ABSTRACT

BACKGROUND & AIMS: Unrestricted endoplasmic reticulum (ER) stress and the continuous activation of ER associated protein degradation (ERAD) pathway might lead to the aggravation of non-alcoholic steatohepatitis (NASH). Derlin-1 has been considered to be an integral part of the ERAD pathway, which is involved in the regulation of the transport and excretion of protein degradation products within ER. However, the regulatory role and mechanism of Derlin-1 in NASH remains unclear. METHODS: The expression of Derlin-1 was firstly detected in the liver of normal and NASH animal model and patient. Then, western diet (WD)-induced NASH mice were administrated with the lentivirus-mediated Derlin-1 knockdown or overexpression. Finally, RIPK3 knockout mice were used to explore the mechanism. The liver injury, hepatic steatosis, inflammation, and fibrosis as well as ER stress signal pathway were evaluated. RESULTS: The levels of Derlin-1 were significantly elevated in the liver of WD-fed mice and NASH patients when compared to the control group. Furthermore, Derlin-1 knockdown attenuated WD-induced liver injury, lipid accumulation, inflammatory response, and fibrosis. Conversely, overexpression of Derlin-1 presented the completely opposite results. Mechanistically, Derlin-1 enhanced ER stress pathways and led to necroptosis, and RIPK3 knockout dramatically reduced Derlin-1 expression and reversed the progression of NASH aggravated by Derlin-1. CONCLUSIONS: Notably, Derlin-1 is a critical modulator in NASH. It may accelerate the progression of NASH by regulating the activation of the ERAD pathway and further aggravating the ER stress, which might be involved in RIPK3-mediated necroptosis. Therefore, targeting Derlin-1 as a novel intervention point holds the potential to delay or even reverse NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Humans , Mice , Diet, Western , Disease Models, Animal , Fibrosis , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , Necroptosis , Non-alcoholic Fatty Liver Disease/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
14.
Genes (Basel) ; 15(2)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38397165

ABSTRACT

For several decades, cancers have demonstrably been one of the most frequent causes of death worldwide. In addition to genetic causes, cancer can also be caused by epigenetic gene modifications. Frequently, tumor suppressor genes are epigenetically inactivated due to hypermethylation of their CpG islands, actively contributing to tumorigenesis. Since CpG islands are usually localized near promoters, hypermethylation of the promoter can have a major impact on gene expression. In this study, the potential tumor suppressor gene Receptor Interacting Serine/Threonine Protein Kinase 3 (RIPK3) was examined for an epigenetic regulation and its gene inactivation in melanomas. A hypermethylation of the RIPK3 CpG island was detected by bisulfite pyrosequencing and was accompanied by a correlated loss of its expression. In addition, an increasing RIPK3 methylation rate was observed with increasing tumor stage of melanomas. For further epigenetic characterization of RIPK3, epigenetic modulation was performed using a modified CRISPR/dCas9 (CRISPRa activation) system targeting its DNA hypermethylation. We observed a reduced fitness of melanoma cells by (re-)expression and demethylation of the RIPK3 gene using the epigenetic editing-based method. The tumor suppressive function of RIPK3 was evident by phenotypic determination using fluorescence microscopy, flow cytometry and wound healing assay. Our data highlight the function of RIPK3 as an epigenetically regulated tumor suppressor in melanoma, allowing it to be classified as a biomarker.


Subject(s)
Biomarkers, Tumor , Melanoma , Receptor-Interacting Protein Serine-Threonine Kinases , Humans , DNA Methylation/genetics , Epigenesis, Genetic , Genes, Tumor Suppressor , Melanoma/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Biomarkers, Tumor/genetics
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167054, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360074

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is a serious threat to human health; thus, early diagnosis and adequate treatment are essential. However, there are still great challenges in identifying the tipping point and detecting early warning signals of early HCC. In this study, we aimed to identify the tipping point (critical state) of and key molecules involved in hepatocarcinogenesis based on time series transcriptome expression data of HCC patients. The phase from veHCC (very early HCC) to eHCC (early HCC) was identified as the critical state in HCC progression, with 143 genes identified as key candidate molecules by combining the DDRTree (dimensionality reduction via graph structure learning) and DNB (dynamic network biomarker) methods. Then, we ranked the candidate genes to verify their mRNA levels using the diethylnitrosamine (DEN)-induced HCC mouse model and identified five early warning signals, namely, CCT3, DSTYK, EIF3E, IARS2 and TXNRD1; these signals can be regarded as the potential early warning signals for the critical state of HCC. We identified CCT3 as an independent prognostic factor for HCC, and functions of CCT3 involving in the "MYCtargets_V1" and "E2F-Targets" are closely related to the progression of HCC. The predictive method combining the DDRTree and DNB methods can not only identify the key critical state before cancer but also determine candidate molecules of critical state, thus providing new insight into the early diagnosis and preemptive treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Carcinogenesis/genetics , Carcinogenesis/pathology , Biomarkers , Transcriptome , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Chaperonin Containing TCP-1/genetics , Chaperonin Containing TCP-1/metabolism
16.
Cancer Lett ; 585: 216693, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38301909

ABSTRACT

Necroptosis is a regulated necrotic cell death mechanism and plays a crucial role in the progression of cancers. However, the potential role and mechanism of necroptosis in colorectal cancer (CRC) has not been fully elucidated. In this study, we found that nuclear receptor subfamily 4 group A member 1 (NR4A1) was highly expressed in CRC cells treated with TNF-α, Smac mimetic, and z-VAD-FMK (TSZ). The depletion of NR4A1 significantly enhanced the sensitivity of CRC cells to TSZ-induced necroptosis, while NR4A1 overexpression suppressed these effects, as evidenced by the LDH assay, flow cytometry analysis of cell death, PI staining, and expression analysis of necrosome complexes (RIPK1, RIPK3, and MLKL). Moreover, NR4A1 deficiency made HT29 xenograft tumors sensitive to necroptotic cell death in vivo. Mechanistically, NR4A1 depletion promoted necroptosis activation in CRC through the RIG-I-like receptor pathway by interacting with DDX3. Importantly, the RIG-I pathway agonist poly(I:C) or inhibitor cFP abolished the effects of NR4A1 overexpression or suppression on necroptosis in CRC cells. Moreover, we observed that NR4A1 was highly expressed in CRC tissues and was associated with a poor prognosis. In conclusion, our results suggest that NR4A1 plays a critical role in modulating necroptosis in CRC cells and provide a new therapeutic target for CRC.


Subject(s)
Colorectal Neoplasms , Protein Kinases , Humans , Protein Kinases/metabolism , Necroptosis/physiology , Cell Death , Necrosis , Colorectal Neoplasms/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Apoptosis , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
17.
Viruses ; 16(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38400065

ABSTRACT

Programmed necrosis is an integral part of intrinsic immunity, serving to combat invading pathogens and restricting viral dissemination. The orchestration of necroptosis relies on a precise interplay within the necrosome complex, which consists of RIPK1, RIPK3 and MLKL. Human cytomegalovirus (HCMV) has been found to counteract the execution of necroptosis during infection. In this study, we identify the immediate-early 1 (IE1) protein as a key antagonist of necroptosis during HCMV infection. Infection data obtained in a necroptosis-sensitive cell culture system revealed a robust regulation of post-translational modifications (PTMs) of the necrosome complex as well as the importance of IE1 expression for an effective counteraction of necroptosis. Interaction analyses unveiled an association of IE1 and RIPK3, which occurs in an RHIM-domain independent manner. We propose that this interaction manipulates the PTMs of RIPK3 by promoting its ubiquitination. Furthermore, IE1 was found to exert an indirect activity by modulating the levels of MLKL via antagonizing its interferon-mediated upregulation. Overall, we claim that IE1 performs a broad modulation of innate immune signaling to impede the execution of necroptotic cell death, thereby generating a favorable environment for efficient viral replication.


Subject(s)
Cytomegalovirus , Immediate-Early Proteins , Humans , Cytomegalovirus/physiology , Cell Death/physiology , Apoptosis/physiology , Necrosis , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
18.
Mol Metab ; 80: 101877, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218538

ABSTRACT

OBJECTIVE: Aggregation of human islet amyloid polypeptide (hIAPP), a ß-cell secretory product, leads to islet amyloid deposition, islet inflammation and ß-cell loss in type 2 diabetes (T2D), but the mechanisms that underlie this process are incompletely understood. Receptor interacting protein kinase 3 (RIPK3) is a pro-death signaling molecule that has recently been implicated in amyloid-associated brain pathology and ß-cell cytotoxicity. Here, we evaluated the role of RIPK3 in amyloid-induced ß-cell loss using a humanized mouse model of T2D that expresses hIAPP and is prone to islet amyloid formation. METHODS: We quantified amyloid deposition, cell death and caspase 3/7 activity in islets isolated from WT, Ripk3-/-, hIAPP and hIAPP; Ripk3-/- mice in real time, and evaluated hIAPP-stimulated inflammation in WT and Ripk3-/- bone marrow derived macrophages (BMDMs) in vitro. We also characterized the role of RIPK3 in glucose stimulated insulin secretion (GSIS) in vitro and in vivo. Finally, we examined the role of RIPK3 in high fat diet (HFD)-induced islet amyloid deposition, ß-cell loss and glucose homeostasis in vivo. RESULTS: We found that amyloid-prone hIAPP mouse islets exhibited increased cell death and caspase 3/7 activity compared to amyloid-free WT islets in vitro, and this was associated with increased RIPK3 expression. hIAPP; Ripk3-/- islets were protected from amyloid-induced cell death compared to hIAPP islets in vitro, although amyloid deposition and caspase 3/7 activity were not different between genotypes. We observed that macrophages are a source of Ripk3 expression in isolated islets, and that Ripk3-/- BMDMs were protected from hIAPP-stimulated inflammatory gene expression (Tnf, Il1b, Nos2). Following 52 weeks of HFD feeding, islet amyloid-prone hIAPP mice exhibited impaired glucose tolerance and decreased ß-cell area compared to WT mice in vivo, whereas hIAPP; Ripk3-/- mice were protected from these impairments. CONCLUSIONS: In conclusion, loss of RIPK3 protects from amyloid-induced inflammation and islet cell death in vitro and amyloid-induced ß-cell loss and glucose intolerance in vivo. We propose that therapies targeting RIPK3 may reduce islet inflammation and ß-cell loss and improve glucose homeostasis in the pathogenesis of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose Intolerance , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Humans , Mice , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Caspase 3/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose , Inflammation , Islet Amyloid Polypeptide/genetics , Islet Amyloid Polypeptide/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
19.
Mol Cell ; 84(5): 938-954.e8, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38272024

ABSTRACT

Phase separation is a vital mechanism that mediates the formation of biomolecular condensates and their functions. Necroptosis is a lytic form of programmed cell death mediated by RIPK1, RIPK3, and MLKL downstream of TNFR1 and has been implicated in mediating many human diseases. However, whether necroptosis is regulated by phase separation is not yet known. Here, we show that upon the induction of necroptosis and recruitment by the adaptor protein TAX1BP1, PARP5A and its binding partner RNF146 form liquid-like condensates by multivalent interactions to perform poly ADP-ribosylation (PARylation) and PARylation-dependent ubiquitination (PARdU) of activated RIPK1 in mouse embryonic fibroblasts. We show that PARdU predominantly occurs on the K376 residue of mouse RIPK1, which promotes proteasomal degradation of kinase-activated RIPK1 to restrain necroptosis. Our data demonstrate that PARdU on K376 of mouse RIPK1 provides an alternative cell death checkpoint mediated by phase separation-dependent control of necroptosis by PARP5A and RNF146.


Subject(s)
Necroptosis , Phase Separation , Animals , Mice , Apoptosis/physiology , Cell Death , Fibroblasts/metabolism , Necroptosis/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
20.
FASEB J ; 38(2): e23446, 2024 02.
Article in English | MEDLINE | ID: mdl-38275125

ABSTRACT

Endothelial dysfunction is common in patients with chronic kidney disease (CKD) and cardiovascular events, but the mechanism is unclear. In our study, we found elevated levels of RIPK1 in patients with CKD and cardiovascular events through bioinformation analysis. Elevated RIPK1 levels were found in serum samples of CKD patients and were associated with vascular endothelial dysfunction and renal function. We constructed the five of six nephrectomy of CKD mice model, finding that RIPK1 expressions were elevated in abdominal aorta endothelial cells. After RIPK1 inhibition and overexpression, it was found that RIPK1 could regulate the expression of endothelial nitric oxide synthase (eNOS) and cell adhesion molecule 1 (ICAM-1), and activation of inflammatory responses and endoplasmic reticulum (ER) stress. In addition, uremic toxin induced abnormal expression of RIPK1 in vitro. We observed RIPK1-mediating endothelial dysfunction and inflammation responses by ER stress pathways through gain and loss of function. In order to explore the specific mechanism, we conducted co-immunoprecipitation and expression regulation of RIPK1 and IKK, finding that RIPK1 formed complex with IKK and regulated IKK expression. In conclusion, we demonstrated that RIPK1 levels were closely associated with vascular endothelial dysfunction in patients with CKD. With uremic toxins, RIPK1 expression was elevated, which led to the activation of inflammation through the ER stress pathway, resulting in vascular endothelial injury. Besides, activation of RIPK1-IKK-NF-κB axis was a key driver of endothelial dysfunction in CKD. Our study provides a new perspective for the study of cardiovascular events in CKD.


Subject(s)
Renal Insufficiency, Chronic , Vascular Diseases , Animals , Humans , Mice , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Inflammation/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Renal Insufficiency, Chronic/metabolism , Vascular Diseases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...