Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 469
Filter
1.
Eur J Pharmacol ; 977: 176692, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38821164

ABSTRACT

Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a transmembrane tyrosine phosphatase (TP) that serves as a receptor for pleiotrophin (PTN) and vascular endothelial growth factor A 165 (VEGFA165) to regulate endothelial cell migration. In the present work, we identify a PTN peptide fragment (PTN97-110) that inhibits the interaction of PTN and VEGFA165 with PTPRZ1 but not VEGF receptor 2. This peptide abolishes the stimulatory effect of PTN and VEGFA165 on endothelial cell migration, tube formation on Matrigel, and Akt activation in vitro. It also partially inhibits VEGFA165-induced VEGF receptor 2 activation but does not affect ERK1/2 activation and cell proliferation. In vivo, PTN97-110 inhibits or dysregulates angiogenesis in the chick embryo chorioallantoic membrane and the zebrafish assays, respectively. In glioblastoma cells in vitro, PTN97-110 abolishes the stimulatory effect of VEGFA165 on cell migration and inhibits their anchorage-independent growth, suggesting that this peptide might also be exploited in glioblastoma therapy. Finally, in silico and experimental evidence indicates that PTN and VEGFA165 bind to the extracellular fibronectin type-III (FNIII) domain to stimulate cell migration. Collectively, our data highlight novel aspects of the interaction of PTN and VEGFA165 with PTPRZ1, strengthen the notion that PTPRZ1 is required for VEGFA165-induced signaling, and identify a peptide that targets this interaction and can be exploited for the design of novel anti-angiogenic and anti-glioblastoma therapeutic approaches.


Subject(s)
Carrier Proteins , Cell Movement , Cytokines , Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Receptor-Like Protein Tyrosine Phosphatases, Class 5 , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Humans , Animals , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Cell Movement/drug effects , Cytokines/metabolism , Carrier Proteins/metabolism , Carrier Proteins/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Neovascularization, Physiologic/drug effects , Chick Embryo , Zebrafish , Protein Binding , Cell Proliferation/drug effects , Cell Line, Tumor , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Neovascularization, Pathologic , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/drug therapy , Angiogenesis
2.
Zhongguo Zhong Yao Za Zhi ; 49(4): 989-999, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621906

ABSTRACT

This study aims to investigate the effect of Naotaifang(NTF) on the proteins associated with microglial polarization and glial scar in the rat model of cerebral ischemia reperfusion injury(CIRI). The CIRI model was established by middle cerebral artery occlusion/reperfusion. The 48 successfully modeled rats were randomized into model 7 d, model 14 d, NTF 7 d, and NTF 14 d groups(n=12). In addition, 12 SD rats were selected as the sham group. The NTF group was administrated with NTF suspension at 27 g·kg~(-1)·d~(-1) by gavage, and the sham, model 7 d, and model 14 d groups were administrated with the same volume of normal saline every day by gavage for 7 and 14 days, respectively. After the intervention, Longa score was evaluated. The infarct volume was measured by 2,3,5-triphenyl-2H-tetrazolium chloride(TTC) staining. Morris water maze and open field tests were carried out to evaluate the spatial learning, memory, cognitive function, and anxiety degree of rats. Hematoxylin-eosin(HE) staining was employed to observe the morphological structure and damage of the brain tissue. The immunofluorescence assay was employed to measure the expression of glial fibrillary acidic protein(GFAP) and glial scar. Western blot was employed to determine the protein levels of GFAP, neurocan, phosphacan, CD206, arginase-1(Arg-1), interleukin(IL)-1ß, IL-6, and IL-4. Compared with the sham, model 7 d and model 14 d groups showed cerebral infarction of different degrees, severe pathological injury of cerebral cortex and hippocampus, neurological impairment, reduced spatial learning and memory, cognitive dysfunction, severe anxiety, astrocyte hyperplasia, thickening penumbra glial scar, and up-regulated protein levels of IL-1ß, IL-6, GFAP, neurocan, phosphacan, CD206, and Arg-1(P<0.01). Compared with the model group, NTF 7 d and NTF 14 d groups improved spatial learning, memory, and cognitive function, reduced anxiety, improved nerve function, reduced cerebral infarction volume, reduced astrocyte hyperplasia, thinned penumbra glial scar, down-regulated the protein levels of GFAP, neurocan, phosphacan, IL-6, and IL-1ß, and up-regulated the protein levels of IL-4, CD206, and Arg-1(P<0.05 or P<0.01). NTF exerts a neuroprotective effect on CIRI by inducing the M2 polarization of microglia, inhibiting inflammatory response, and reducing the formation of glial scar.


Subject(s)
Brain Ischemia , Drugs, Chinese Herbal , Reperfusion Injury , Rats , Animals , Microglia/metabolism , Gliosis/pathology , Rats, Sprague-Dawley , Hyperplasia , Interleukin-4 , Interleukin-6 , Neurocan , Receptor-Like Protein Tyrosine Phosphatases, Class 5 , Infarction, Middle Cerebral Artery , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism
3.
Cell Signal ; 120: 111191, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38685521

ABSTRACT

Recent studies have revealed that PTPRZ1-MET (ZM) fusion plays a pivotal role in the progression of glioma to glioblastoma multiforme (GBM), thus serving as a biomarker to distinguish between primary GBM and secondary GBM (sGBM). However, the mechanisms through which ZM fusion influences this progression remain to be elucidated. GBMs with ZM showed poorer prognoses and greater infiltration of tumor-associated macrophages (TAMs) than those without ZM. Glioma stem-like cells (GSCs) and TAMs play complex roles in glioma recurrence, glioma progression and therapy resistance. In this study, we analyzed RNA-seq data from sGBM patients' glioma tissues with or without ZM fusion, and found that stemness and macrophage markers were more highly expressed in sGBM patients harboring ZM than in those without ZM fusion. ZM enhanced the self-renewal and proliferation of GSCs, thereby accelerating glioma progression. In addition, ZM-positive GSCs facilitated the infiltration of TAMs and drove their polarization toward an immunosuppressive phenotype, which was primarily accomplished through the extracellular secretion of ISG20. Our research identified the MET-STAT3-ISG20 axis within GSCs, thus demonstrating the critical role of ZM in GBM initiation and progression. Our study demonstrated that, in contrast to ZM-positive differentiated glioma cells, ZM-positive GSCs upregulated ISG20 expression through the MET-STAT3-ISG20 axis. The extracellular secretion of ISG20 recruited and induced M2-like polarization in macrophages, thereby promoting tumor progression. Our results reveal a novel mechanism involved in ZM-positive GBM pathogenesis and identify potential therapeutic targets.


Subject(s)
Glioma , Neoplastic Stem Cells , Proto-Oncogene Proteins c-met , Receptor-Like Protein Tyrosine Phosphatases, Class 5 , STAT3 Transcription Factor , Tumor-Associated Macrophages , Humans , STAT3 Transcription Factor/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Tumor-Associated Macrophages/metabolism , Glioma/pathology , Glioma/metabolism , Proto-Oncogene Proteins c-met/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics , Animals , Mice , Cell Line, Tumor , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Signal Transduction , Glioblastoma/pathology , Glioblastoma/metabolism
4.
Sci Rep ; 14(1): 6362, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38493204

ABSTRACT

Despite advancements in cancer immunotherapy, solid tumors remain formidable challenges. In glioma, profound inter- and intra-tumoral heterogeneity of antigen landscape hampers therapeutic development. Therefore, it is critical to consider alternative sources to expand the repertoire of targetable (neo-)antigens and improve therapeutic outcomes. Accumulating evidence suggests that tumor-specific alternative splicing (AS) could be an untapped reservoir of antigens. In this study, we investigated tumor-specific AS events in glioma, focusing on those predicted to generate major histocompatibility complex (MHC)-presentation-independent, cell-surface antigens that could be targeted by antibodies and chimeric antigen receptor-T cells. We systematically analyzed bulk RNA-sequencing datasets comparing 429 tumor samples (from The Cancer Genome Atlas) and 9166 normal tissue samples (from the Genotype-Tissue Expression project), and identified 13 AS events in 7 genes predicted to be expressed in more than 10% of the patients, including PTPRZ1 and BCAN, which were corroborated by an external RNA-sequencing dataset. Subsequently, we validated our predictions and elucidated the complexity of the isoforms using full-length transcript amplicon sequencing on patient-derived glioblastoma cells. However, analyses of the RNA-sequencing datasets of spatially mapped and longitudinally collected clinical tumor samples unveiled remarkable spatiotemporal heterogeneity of the candidate AS events. Furthermore, proteomics analysis did not reveal any peptide spectra matching the putative antigens. Our investigation illustrated the diverse characteristics of the tumor-specific AS events and the challenges of antigen exploration due to their notable spatiotemporal heterogeneity and elusive nature at the protein levels. Redirecting future efforts toward intracellular, MHC-presented antigens could offer a more viable avenue.


Subject(s)
Glioblastoma , Glioma , Humans , Alternative Splicing , Antigens, Surface , Glioma/genetics , Histocompatibility Antigens , RNA , Antigens, Neoplasm/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 5
5.
Pathol Res Pract ; 255: 155167, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38324963

ABSTRACT

OBJECTIVE: Clear cell papillary renal cell tumour (CCPRCT) is a kind of renal epithelial cell tumor, and was renamed by the 5th WHO due to its specific epidemiology and clinicopathological characteristics. However, the biological mechanism and molecular basis of CCPRCT still need to be further clarified. This study aims to comprehensively evaluate clinicopathologic and molecular characteristics of CCPRCC, and particularly compare it with other more prevalent subtypes of renal cell carcinoma. METHODS: 12 cases of CCPRCT were collected for analyzing the clinicopathological characteristics. Then, whole-exome sequencing (WES) was employed to reveal the genetic profiles, followed by comparison with the molecular genetic alterations identified in ccRCC (341) and pRCC (200) datasets obtained from the TCGA database. RESULTS: Of the 12 CCPRCT cases, the male-to-female ratio was 4:1 with a mean age of 49.5 years (48.5 ± 10.5) at diagnosis. All patients were diagnosed accidentally during routine physical examinations. All tumors (12/12, 100%)had a solid-cystic appearance with a well-defined fibrous capsule. The median size of the tumors was 3 cm (2.98 ± 1.2). Histologically, the cystic papillary structures were considered to be prominent, lined with cuboidal tumor cells away from basement membrane. The tumor cells were moderately atypia equivalent to grade 1 or grade 2 according to the ISUP nuclear grading system. Typically, the tumor cell diffusely positive for CK7 and CAIX in a "cup-like" pattern. The results of WES revealed recurrent gene alterations (mainly missense mutation) of TTN and FLT in 4 cases (4/12, 33.3%), respectively, of which, the alteration of FLT was not observed in ccRCC and pRCC of the TCGA database. Other gene alterations including POTEC (1 cases), PRADC1 (1 cases), ZZZ3 (1 case) and PTPRZ1 (1 case), etc. Moreover, all of the CCPRCT cases displayed a lower tumor mutation burden (TMB) compared to ccRCC and pRCC with median TMB of 1.04 (range: 1.94 ± 2.74). None of the patients experienced tumor metastasis, recurrence, or tumor-related deaths. CONCLUSION: CCPRCT is a renal epithelial cell tumor characterized by specific clinical and pathological features. Our study provides additional evidence supporting the favorable prognosis of CCPRCT. Furthermore, the potential molecular alterations were uncovered by this study in CCPRCT such as the FLT family and TTN. However, due to the limited sample size, larger studies are required to validate these findings.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Male , Female , Middle Aged , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Biomarkers, Tumor/genetics , Prognosis , World Health Organization , Receptor-Like Protein Tyrosine Phosphatases, Class 5
6.
Epigenomics ; 16(4): 215-231, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38318853

ABSTRACT

Background: Triple-negative breast cancer (TNBC) is a subtype of BC with high rates of mortality. The mechanism of PTPRG-AS1 in ferroptosis of TNBC was investigated. Methods: Chromatin immunoprecipitation and dual-luciferase reporter assays were used to measure intermolecular relationships. MTT and colony formation assays detected cell viability and proliferation. Kits detected Fe2+ and reactive oxygen species levels. The role of PTPRG-AS1 in tumor growth was analyzed in vivo. Results: PTPRG-AS1 was increased in TNBC tissues and cells. PTPRG-AS1 silencing increased the reduction of glutathione and GPX4, increased Fe2+ and reactive oxygen species in erastin-treated cells and inhibited proliferation. POU2F2 transcriptionally upregulated PTPRG-AS1. PTPRG-AS1 targeted miR-376c-3p to upregulate SLC7A11. PTPRG-AS1 knockdown suppressed tumor growth in vivo. Conclusion: POU2F2 transcriptionally activates PTPRG-AS1 to modulate ferroptosis and proliferation by miR-376c-3p/SLC7A11, promoting TNBC.


Triple-negative breast cancer (TNBC) is a kind of breast cancer with high recurrence and low survival rates. Activation of the ferroptosis pathway can inhibit BC proliferation and distant metastasis. Therefore, identifying effective biomarkers and molecular mechanisms of ferroptosis in TNBC is important for its earlier detection and therapy. PTPRG-AS1 is a new type of lncRNA discovered in recent years that is increased in various diseases and is related to prognosis. In the present study, the authors found that POU2F2 promoted PTPRG-AS1 transcription. PTPRG-AS1 knockdown activated ferroptosis in TNBC and inhibited proliferation. Mechanistically, PTPRG-AS1 targeted miR-376c-3p to upregulate SLC7A11, thereby inhibiting ferroptosis and promoting TNBC development. These results indicate that PTPRG-AS1 is a possible therapeutic target in TNBC.


Subject(s)
Ferroptosis , MicroRNAs , Octamer Transcription Factor-2 , RNA, Long Noncoding , Triple Negative Breast Neoplasms , Humans , Amino Acid Transport System y+/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Ferroptosis/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Octamer Transcription Factor-2/genetics , Reactive Oxygen Species , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics , RNA, Long Noncoding/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Up-Regulation
7.
BMC Neurol ; 24(1): 74, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383423

ABSTRACT

BACKGROUND: Anaplastic ependymoma and H3K27M-mutant diffuse midline glioma are two common subtypes of brain tumors with poor long-term prognosis. The present study analyzed and compared the differences in cell types between two tumors by single-cell RNA sequencing (scRNA-seq) technology. METHODS: ScRNA-seq was performed to profile cells from cancer tissue from anaplastic ependymoma patient and H3K27M-mutant diffuse midline glioma patient. Cell clustering, marker gene identification, cell type annotation, copy number variation analysis and function analysis of differentially expressed genes were then performed. RESULTS: A total of 11,219 cells were obtained from anaplastic ependymoma and H3K27M mutant diffuse midline glioma, and these cells categorized into 12 distinct clusters. Each cell cluster could be characterized with specific cell markers to indicate cellular heterogeneity. Five cell types were annotated in each sample, including astrocyte, oligodendrocytes, microglial cell, neural progenitor cell and immune cell. The cluster types and proportion of cell types were not consistent between the two brain tumors. Functional analyses suggest that these cell clusters are involved in tumor-associated pathways, with slight differences in the cells of origin between the two tumors. In addition, cell communication analysis showed that the NRG3-ERBB4 pair is a key Ligand-receptor pair for anaplastic ependymoma, while in H3K27M-mutant diffuse midline glioma it is the PTN-PTPRZ1 pair that establishes contact with other cells. CONCLUSION: There was intratumor heterogeneity in anaplastic ependymoma and H3K27M mutant diffuse midline glioma, and that the subtype differences may be due to differences in the origin of the cells.


Subject(s)
Brain Neoplasms , Ependymoma , Glioma , Humans , Glioma/genetics , Glioma/pathology , Histones/genetics , DNA Copy Number Variations , Mutation/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Ependymoma/genetics , Sequence Analysis, RNA , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics
8.
Exp Mol Pathol ; 135: 104882, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237798

ABSTRACT

Little is known as to whether there may be any pathogenetic link between pulmonary carcinoids and neuroendocrine carcinomas (NECs). A gene signature we previously found to cluster pulmonary carcinoids, large cell neuroendocrine carcinoma (LCNEC) and small cell lung carcinoma (SCLC), and which encompassed MEN1, MYC, MYCL1, RICTOR, RB1, SDHA, SRC and TP53 mutations or copy number variations (CNVs), was used to reclassify an independent cohort of 54 neuroendocrine neoplasms (NENs) [31 typical carcinoids (TC), 11 atypical carcinoids (AC) and 12 SCLC], by means of transcriptome and mutation data. Unsupervised clustering analysis identified two histology-independent clusters, namely CL1 and CL2, where 17/42 (40.5%) carcinoids and all the SCLC samples fell into the latter. CL2 carcinoids affected survival adversely, were enriched in T to G transversions or T > C/C > T transitions in the context of specific mutational signatures, presented with at least 1.5-fold change (FC) increase of gene mutations including TSC2, SMARCA2, SMARCA4, ERBB4 and PTPRZ1, differed for gene expression and showed epigenetic changes in charge of MYC and MTORC1 pathways, cellular senescence, inflammation, high-plasticity cell state and immune system exhaustion. Similar results were also found in two other independent validation sets comprising 101 lung NENs (24 carcinoids, 21 SCLC and 56 LCNEC) and 30 carcinoids, respectively. We herein confirmed an unexpected sharing of molecular traits along the spectrum of lung NENs, with a subset of genomically distinct aggressive carcinoids sharing molecular features of high-grade neuroendocrine neoplasms.


Subject(s)
Carcinoid Tumor , Carcinoma, Large Cell , Carcinoma, Neuroendocrine , Lung Neoplasms , Neuroendocrine Tumors , Humans , DNA Copy Number Variations/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Carcinoma, Neuroendocrine/genetics , Carcinoid Tumor/genetics , Carcinoid Tumor/pathology , Carcinoma, Large Cell/genetics , Carcinoma, Large Cell/pathology , Lung/pathology , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics
9.
Sci Rep ; 14(1): 27, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167429

ABSTRACT

Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor. Recent findings highlighted the significance of viral microRNAs (miRs) in regulating post-transcriptional mRNA expression in various human conditions. Although HSV1 encodes viral miRs and affects the central nervous system, no study investigated the roles of HSV1-encoding miRs in GBM development. This study applied in silico approaches to investigate whether HSV1-encoding miRs are involved in GBM development and, if so, how they regulate tumor-suppressive/oncogenes expression in GBM. This study leveraged bioinformatics approaches to identify the potential effect of HSV1 miRs in GBM development. The GSE158284, GSE153679, and GSE182109 datasets were analyzed to identify differentially expressed genes in GBM tissues and cell lines using the limma package in the R software. The GSE182109 dataset was analyzed to determine gene expression at the single-cell levels using the Seurat package in the R software. The TCGA-GTEX, GDSC, CTRP, immunogenetic, and enrichment analyses were performed to study the impact of identified viral HSV1 miRs targets in GBM development. hsv1-miR-H6-3p is upregulated in GBM and can be responsible for EPB41L1 and SH3PXD2A downregulation in GBM tissues. Also, hsv1-miR-H1-5p is upregulated in GBM and can decrease the expression of MELK, FZD2, NOVA1, TMEM97, PTPRZ1, and PDGFC in GBM development. The single-cell RNA sequencing analyses have demonstrated that MELK, FZD2, NOVA1, TMEM97, PTPRZ1, and PDGFC are expressed in astrocytes residing in the GBM microenvironment. This study provides novel insights into the potential roles of HSV1 miRs in GBM pathogenesis and offers a reference for further studies on the significance of HSV1 miRs in GBM development.


Subject(s)
Brain Neoplasms , Glioblastoma , Herpesvirus 1, Human , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Glioblastoma/pathology , Brain Neoplasms/pathology , Cell Line , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/metabolism , RNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Cell Proliferation , Tumor Microenvironment , Protein Serine-Threonine Kinases/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism
10.
Neuropharmacology ; 247: 109850, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38295947

ABSTRACT

Adolescence is a critical period for brain maturation in which this organ undergoes critical plasticity mechanisms that increase its vulnerability to the effects of alcohol. Significantly, ethanol-induced disruption of hippocampal neurogenesis has been related to cognitive decline in adulthood. During adolescence, the maturation of perineuronal nets (PNNs), extracellular matrix structures highly affected by ethanol consumption, plays a fundamental role in neurogenesis and plasticity in the hippocampus. Receptor Protein Tyrosine Phosphatase (RPTP) ß/ζ is a critical anchor point for PNNs on the cell surface. Using the adolescent intermittent access to ethanol (IAE) model, we previously showed that MY10, a small-molecule inhibitor of RPTPß/ζ, reduces chronic ethanol consumption in adolescent male mice but not in females and prevents IAE-induced neurogenic loss in the male hippocampus. We have now tested if these effects of MY10 are related to sex-dependent modulatory actions on ethanol-induced effects in PNNs. Our findings suggest a complex interplay between alcohol exposure, neural structures, and sex-related differences in the modulation of PNNs and parvalbumin (PV)-positive cells in the hippocampus. In general, IAE increased the number of PV + cells in the female hippocampus and reduced PNNs intensity in different hippocampal regions, particularly in male mice. Notably, we found that pharmacological inhibition of RPTPß/ζ with MY10 regulates ethanol-induced alterations of PNNs intensity, which correlates with the protection of hippocampal neurogenesis from ethanol neurotoxic effects and may be related to the capacity of MY10 to increase the gene expression of key components of PNNs.


Subject(s)
Ethanol , Receptor-Like Protein Tyrosine Phosphatases, Class 5 , Mice , Male , Animals , Female , Ethanol/pharmacology , Ethanol/metabolism , Extracellular Matrix/metabolism , Hippocampus/metabolism , Alcohol Drinking
11.
Eur J Clin Invest ; 54(4): e14144, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38059696

ABSTRACT

BACKGROUND: Stroke is an important cause of death and disability worldwide, ranking second in the cause of death, and it is thought to be related to genetic factors. The purpose of our study is to investigate the association between CASZ1, WNT2B and PTPRG single nucleotide polymorphisms (SNPs) and stroke risk in the Chinese population. METHODS: We recruited 1418 volunteers, comprised of 710 stroke cases and 708 controls in this study. We used MassARRAY iPLEX GOLD method to genotype the three SNPs on CASZ1, WNT2B and PTPRG. Logistic regression was used to analyse the association between these SNPs and stroke, and odds ratios (ORs) and 95% confidence intervals (CIs) were then calculated. What's more, the interactions among SNPs were predicted by multi-factor dimensionality reduction (MDR) analysis. RESULTS: This research demonstrated that CASZ1 rs880315 and PTPRG rs704341 were associated with reduced stroke susceptibility. More precisely, CASZ1 rs880315 was associated with reduced stroke susceptibility in people aged ≤64 years and women. PTPRG rs704341 was associated with reduced stroke susceptibility in people aged >64 years, women, non-smokers and non-drinkers. Conversely, WNT2B rs12037987 was related to elevated stroke susceptibility in people aged >64 years, women and non-smokers. In addition, CASZ1 rs880315, WNT2B rs12037987 and PTPRG rs704341 had a strong redundancy relationship. CONCLUSION: Our study concludes that CASZ1 rs880315, WNT2B rs12037987 and PTPRG rs704341 are associated with stroke, and the study provides a basis for assessing genetic variants associated with stroke risk in the Han Chinese population.


Subject(s)
Genetic Predisposition to Disease , Stroke , Humans , Female , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide , Stroke/epidemiology , Stroke/genetics , Genotype , China/epidemiology , Case-Control Studies , Glycoproteins , Wnt Proteins/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics , DNA-Binding Proteins/genetics , Transcription Factors/genetics
12.
Differentiation ; 135: 100738, 2024.
Article in English | MEDLINE | ID: mdl-38008592

ABSTRACT

Growing evidence has shown that besides the protein coding genes, the non-coding elements of the genome are indispensable for maintaining the property of self-renewal in human embryonic stem cells and in cell fate determination. However, the regulatory mechanisms and the landscape of interactions between the coding and non-coding elements is poorly understood. In this work, we used weighted gene co-expression network analysis (WGCNA) on transcriptomic data retrieved from RNA-seq and small RNA-seq experiments and reconstructed the core human pluripotency network (called PluriMLMiNet) consisting of 375 mRNA, 57 lncRNA and 207 miRNAs. Furthermore, we derived networks specific to the naïve and primed states of human pluripotency (called NaiveMLMiNet and PrimedMLMiNet respectively) that revealed a set of molecular markers (RPS6KA1, ZYG11A, ZNF695, ZNF273, and NLRP2 for naive state, and RAB34, TMEM178B, PTPRZ1, USP44, KIF1A and LRRN1 for primed state) which can be used to distinguish the pluripotent state from the non-pluripotent state and also to identify the intra-pluripotency states (i.e., naïve and primed state). The lncRNA DANT1 was found to be a crucial as it formed a bridge between the naive and primed state-specific networks. Analysis of the genes neighbouring DANT1 suggested its possible role as a competing endogenous RNA (ceRNA) for the induction and maintenance of human pluripotency. This was computationally validated by predicting the missing DANT1-miRNA interactions to complete the ceRNA circuit. Here we first report that DANT1 might harbour binding sites for miRNAs hsa-miR-30c-2-3p, hsa-miR-210-3p and hsa-let-7b-5p which may influence pluripotency.


Subject(s)
Human Embryonic Stem Cells , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , Human Embryonic Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Profiling , Gene Regulatory Networks/genetics , Cell Cycle Proteins/metabolism , Kinesins/genetics , Kinesins/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
13.
Cancer Epidemiol Biomarkers Prev ; 33(2): 234-243, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38051303

ABSTRACT

BACKGROUND: An increased risk of neurocognitive deficits, anxiety, and depression has been reported in childhood cancer survivors. METHODS: We analyzed associations of neurocognitive deficits, as well as anxiety and depression, with common and rare genetic variants derived from whole-exome sequencing data of acute lymphoblastic leukemia (ALL) survivors from the PETALE cohort. In addition, significant associations were assessed using stratified and multivariable analyses. Next, top-ranking common associations were analyzed in an independent SJLIFE replication cohort of ALL survivors. RESULTS: Significant associations were identified in the entire discovery cohort (N = 229) between the AK8 gene and changes in neurocognitive function, whereas PTPRZ1, MUC16, TNRC6C-AS1 were associated with anxiety. Following stratification according to sex, the ZNF382 gene was linked to a neurocognitive deficit in males, whereas APOL2 and C6orf165 were associated with anxiety and EXO5 with depression. Following stratification according to prognostic risk groups, the modulatory effect of rare variants on depression was additionally found in the CYP2W1 and PCMTD1 genes. In the replication SJLIFE cohort (N = 688), the male-specific association in the ZNF382 gene was not significant; however, a P value<0.05 was observed when the entire SJLIFE cohort was analyzed. ZNF382 was significant in males in the combined cohorts as shown by meta-analyses as well as the depression-associated gene EXO5. CONCLUSIONS: Further research is needed to confirm whether the current findings, along with other known risk factors, may be valuable in identifying patients at increased risk of these long-term complications. IMPACT: Our results suggest that specific genes may be related to increased neuropsychological consequences.


Subject(s)
Depression , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Male , Depression/genetics , Exome , Survivors , Anxiety/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics
14.
Sci Rep ; 13(1): 16419, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37775676

ABSTRACT

Major depressive disorder (MDD) and chronic unpredictable stress (CUS) in animals feature comparable cellular and molecular disturbances that involve neurons and glial cells in gray and white matter (WM) in prefrontal brain areas. These same areas demonstrate disturbed connectivity with other brain regions in MDD and stress-related disorders. Functional connectivity ultimately depends on signal propagation along WM myelinated axons, and thus on the integrity of nodes of Ranvier (NRs) and their environment. Various glia-derived proteoglycans interact with NR axonal proteins to sustain NR function. It is unclear whether NR length and the content of associated proteoglycans is altered in prefrontal cortex (PFC) WM of human subjects with MDD and in experimentally stressed animals. The length of WM NRs in histological sections from the PFC of 10 controls and 10 MDD subjects, and from the PFC of control and CUS rats was measured. In addition, in WM of the same brain region, five proteoglycans, tenascin-R and NR protein neurofascin were immunostained or their levels measured with western blots. Analysis of covariance and t-tests were used for group comparisons. There was dramatic reduction of NR length in PFC WM in both MDD and CUS rats. Proteoglycan BRAL1 immunostaining was reduced at NRs and in overall WM of MDD subjects, as was versican in overall WM. Phosphacan immunostaining and levels were increased in both in MDD and CUS. Neurofascin immunostaining at NRs and in overall WM was significantly increased in MDD. Reduced length of NRs and increased phosphacan and neurocan in MDD and stressed animals suggest that morphological and proteoglycan changes at NRs in depression may be related to stress exposure and contribute to connectivity alterations. However, differences between MDD and CUS for some NR related markers may point to other mechanisms affecting the structure and function of NRs in MDD.


Subject(s)
Depressive Disorder, Major , White Matter , Humans , Rats , Animals , White Matter/pathology , Ranvier's Nodes/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Prefrontal Cortex/metabolism , Versicans/metabolism
15.
J Biol Chem ; 299(9): 105128, 2023 09.
Article in English | MEDLINE | ID: mdl-37543361

ABSTRACT

Gliomas are the most prevalent primary tumor of the central nervous system. Despite advances in imaging technologies, neurosurgical techniques, and radiotherapy, a cure for high-grade glioma remains elusive. Several groups have reported that protein tyrosine phosphatase receptor type Z (PTPRZ) is highly expressed in glioblastoma, and that targeting PTPRZ attenuates tumor growth in mice. PTPRZ is modified with diverse glycan, including the PTPRZ-unique human natural killer-1 capped O-mannosyl core M2 glycans. However, the regulation and function of these unique glycans are unclear. Using CRISPR genome-editing technology, we first demonstrated that disruption of the PTPRZ gene in human glioma LN-229 cells resulted in profoundly reduced tumor growth in xenografted mice, confirming the potential of PTPRZ as a therapeutic target for glioma. Furthermore, multiple glycan analyses revealed that PTPRZ derived from glioma patients and from xenografted glioma expressed abundant levels of human natural killer-1-capped O-Man glycans via extrinsic signals. Finally, since deficiency of O-Man core M2 branching enzyme N-acetylglucosaminyltransferase IX (GnT-IX) was reported to reduce PTPRZ protein levels, we disrupted the GnT-IX gene in LN-229 cells and found a significant reduction of glioma growth both in vitro and in the xenograft model. These results suggest that the PTPR glycosylation enzyme GnT-IX may represent a promising therapeutic target for glioma.


Subject(s)
Glioma , N-Acetylglucosaminyltransferases , Receptor-Like Protein Tyrosine Phosphatases, Class 5 , Animals , Humans , Mice , Brain/enzymology , Brain/physiopathology , Glioma/physiopathology , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Polysaccharides/metabolism , Cell Line, Tumor , Female , Mice, SCID , Receptor-Like Protein Tyrosine Phosphatases, Class 5/deficiency , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Gene Knockdown Techniques
16.
Aging (Albany NY) ; 15(15): 7760-7780, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37556355

ABSTRACT

Glioblastoma (GBM) is the most malignant and prevalent primary brain tumor. In this study, weighted gene coexpression network analysis (WGCNA) was performed to analyze RNA binding protein (RBP) expression data from The Cancer Genome Atlas (TCGA) for the IDH-wild type GBM cohort. The CIBERSORT algorithm quantified the cellular composition of immune cells and was used to identify key modules associated with CD8+ T cell infiltration. Coexpression networks analysis and protein-protein interaction (PPI) network analysis was used to filter out central RBP genes. Eleven RBP genes, including MYEF2, MAPT, NOVA1, MAP2, TUBB2B, CDH10, TTYH1, PTPRZ1, SOX2, NOVA2 and SCG3, were identified as candidate CD8+ T cell infiltration-associated central genes. A Cox proportional hazards regression model and Kaplan-Meier analysis were applied to identify candidate biomarkers. MYEF2 was selected as a prognostic biomarker based on the results of prognostic analysis. Flow Cytometric Analysis indicated that MYEF2 expression was negatively correlated with dysfunctional CD8+ T cell markers. Kaplan-Meier survival analysis (based on IHC staining) revealed that GBM patients with elevated MYEF2 expression have a better prognosis. Knockdown of MYEF2 in GBM cells via in vitro assays was observed to promote cell proliferation and migration. Our study suggests that MYEF2 expression negatively correlates with T cell exhaustion and tumor progression, rendering it a potentially valuable prognostic biomarker for GBM.


Subject(s)
Glioblastoma , Humans , Glioblastoma/genetics , Prognosis , Algorithms , CD3 Complex , CD8-Positive T-Lymphocytes , Immunologic Factors , Gene Expression Regulation, Neoplastic , Neuro-Oncological Ventral Antigen , Receptor-Like Protein Tyrosine Phosphatases, Class 5
17.
Cells ; 12(13)2023 06 27.
Article in English | MEDLINE | ID: mdl-37443767

ABSTRACT

During embryonic and fetal development, the cerebellum undergoes several histological changes that require a specific microenvironment. Pleiotrophin (PTN) has been related to cerebral and cerebellar cortex ontogenesis in different species. PTN signaling includes PTPRZ1, ALK, and NRP-1 receptors, which are implicated in cell differentiation, migration, and proliferation. However, its involvement in human cerebellar development has not been described so far. Therefore, we investigated whether PTN and its receptors were expressed in the human cerebellar cortex during fetal and early neonatal development. The expression profile of PTN and its receptors was analyzed using an immunohistochemical method. PTN, PTPRZ1, and NRP-1 were expressed from week 17 to the postnatal stage, with variable expression among granule cell precursors, glial cells, and Purkinje cells. ALK was only expressed during week 31. These results suggest that, in the fetal and neonatal human cerebellum, PTN is involved in cell communication through granule cell precursors, Bergmann glia, and Purkinje cells via PTPRZ1, NRP-1, and ALK signaling. This communication could be involved in cell proliferation and cellular migration. Overall, the present study represents the first characterization of PTN, PTPRZ1, ALK, and NRP-1 expression in human tissues, suggesting their involvement in cerebellar cortex development.


Subject(s)
Cerebellar Cortex , Cytokines , Infant, Newborn , Humans , Cerebellar Cortex/metabolism , Cytokines/metabolism , Carrier Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism
18.
Int J Cancer ; 153(5): 1051-1066, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37260355

ABSTRACT

Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a transmembrane tyrosine phosphatase (TP) expressed in endothelial cells and required for stimulation of cell migration by vascular endothelial growth factor A165 (VEGFA165 ) and pleiotrophin (PTN). It is also over or under-expressed in various tumor types. In this study, we used genetically engineered Ptprz1-/- and Ptprz1+/+ mice to study mechanistic aspects of PTPRZ1 involvement in angiogenesis and investigate its role in lung adenocarcinoma (LUAD) growth. Ptprz1-/- lung microvascular endothelial cells (LMVEC) have increased angiogenic features compared with Ptprz1+/+ LMVEC, in line with the increased lung angiogenesis and the enhanced chemically induced LUAD growth in Ptprz1-/- compared with Ptprz1+/+ mice. In LUAD cells isolated from the lungs of urethane-treated mice, PTPRZ1 TP inhibition also enhanced proliferation and migration. Expression of beta 3 (ß3 ) integrin is decreased in Ptprz1-/- LMVEC, linked to enhanced VEGF receptor 2 (VEGFR2), c-Met tyrosine kinase (TK) and Akt kinase activities. However, only c-Met and Akt seem responsible for the enhanced endothelial cell activation in vitro and LUAD growth and angiogenesis in vivo in Ptprz1-/- mice. A selective PTPRZ1 TP inhibitor, VEGFA165 and PTN also activate c-Met and Akt in a PTPRZ1-dependent manner in endothelial cells, and their stimulatory effects are abolished by the c-Met TK inhibitor (TKI) crizotinib. Altogether, our data suggest that low PTPRZ1 expression is linked to worse LUAD prognosis and response to c-Met TKIs and uncover for the first time the role of PTPRZ1 in mediating c-Met activation by VEGFA and PTN.


Subject(s)
Adenocarcinoma of Lung , Receptor-Like Protein Tyrosine Phosphatases, Class 5 , Animals , Mice , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Endothelial Cells/metabolism , Protein Tyrosine Phosphatases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tyrosine/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Proto-Oncogene Proteins c-met/metabolism
19.
J Biol Chem ; 299(8): 104952, 2023 08.
Article in English | MEDLINE | ID: mdl-37356715

ABSTRACT

Neural plasticity, the ability to alter the structure and function of neural circuits, varies throughout the age of an individual. The end of the hyperplastic period in the central nervous system coincides with the appearance of honeycomb-like structures called perineuronal nets (PNNs) that surround a subset of neurons. PNNs are a condensed form of neural extracellular matrix that include the glycosaminoglycan hyaluronan and extracellular matrix proteins such as aggrecan and tenascin-R (TNR). PNNs are key regulators of developmental neural plasticity and cognitive functions, yet our current understanding of the molecular interactions that help assemble them remains limited. Disruption of Ptprz1, the gene encoding the receptor protein tyrosine phosphatase RPTPζ, altered the appearance of nets from a reticulated structure to puncta on the surface of cortical neuron bodies in adult mice. The structural alterations mirror those found in Tnr-/- mice, and TNR is absent from the net structures that form in dissociated cultures of Ptprz1-/- cortical neurons. These findings raised the possibility that TNR and RPTPζ cooperate to promote the assembly of PNNs. Here, we show that TNR associates with the RPTPζ ectodomain and provide a structural basis for these interactions. Furthermore, we show that RPTPζ forms an identical complex with tenascin-C, a homolog of TNR that also regulates neural plasticity. Finally, we demonstrate that mutating residues at the RPTPζ-TNR interface impairs the formation of PNNs in dissociated neuronal cultures. Overall, this work sets the stage for analyzing the roles of protein-protein interactions that underpin the formation of nets.


Subject(s)
Receptor-Like Protein Tyrosine Phosphatases, Class 5 , Tenascin , Animals , Mice , Tenascin/genetics , Tenascin/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Extracellular Matrix/metabolism , Aggrecans/metabolism , Neuronal Plasticity
20.
Int J Mol Sci ; 24(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37175798

ABSTRACT

Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a type V transmembrane tyrosine phosphatase that is highly expressed during embryonic development, while its expression during adulthood is limited. PTPRZ1 is highly detected in the central nervous system, affecting oligodendrocytes' survival and maturation. In gliomas, PTPRZ1 expression is significantly upregulated and is being studied as a potential cancer driver and as a target for therapy. PTPRZ1 expression is also increased in other cancer types, but there are no data on the potential functional significance of this finding. On the other hand, low PTPRZ1 expression seems to be related to a worse prognosis in some cancer types, suggesting that in some cases, it may act as a tumor-suppressor gene. These discrepancies may be due to our limited understanding of PTPRZ1 signaling and tumor microenvironments. In this review, we present evidence on the role of PTPRZ1 in angiogenesis and cancer and discuss the phenomenal differences among the different types of cancer, depending on the regulation of its tyrosine phosphatase activity or ligand binding. Clarifying the involved signaling pathways will lead to its efficient exploitation as a novel therapeutic target or as a biomarker, and the development of proper therapeutic approaches.


Subject(s)
Glioma , Tyrosine , Humans , Signal Transduction , Carrier Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Tumor Microenvironment , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...