Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 908
Filter
1.
Commun Biol ; 7(1): 879, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025930

ABSTRACT

In clinical situations, peripheral blood accessible CD3+CD4+CXCR5+ T-follicular helper (TFH) cells may have to serve as a surrogate indicator for dysregulated germinal center responses in tissues. To determine the heterogeneity of TFH cells in peripheral blood versus tonsils, CD3+CD4+CD45RA-CXCR5+ cells of both origins were sorted. Transcriptomes, TCR repertoires and cell-surface protein expression were analysed by single-cell RNA sequencing, flow cytometry and immunohistochemistry. Reassuringly, all blood-circulating CD3+CD4+CXCR5+ T-cell subpopulations also appear in tonsils, there with some supplementary TFH characteristics, while peripheral blood-derived TFH cells display markers of proliferation and migration. Three further subsets of TFH cells, however, with bona fide T-follicular gene expression patterns, are exclusively found in tonsils. One additional, distinct and oligoclonal CD4+CXCR5+ subpopulation presents pronounced cytotoxic properties. Those 'killer TFH (TFK) cells' can be discovered in peripheral blood as well as among tonsillar cells but are located predominantly outside of germinal centers. They appear terminally differentiated and can be distinguished from all other TFH subsets by expression of NKG7 (TIA-1), granzymes, perforin, CCL5, CCR5, EOMES, CRTAM and CX3CR1. All in all, this study provides data for detailed CD4+CXCR5+ T-cell assessment of clinically available blood samples and extrapolation possibilities to their tonsil counterparts.


Subject(s)
Palatine Tonsil , Receptors, CXCR5 , Humans , Palatine Tonsil/immunology , Palatine Tonsil/metabolism , Palatine Tonsil/cytology , Receptors, CXCR5/metabolism , Receptors, CXCR5/genetics , Phenotype , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Male , Female , Adult
2.
Cytokine ; 181: 156684, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38936205

ABSTRACT

As a versatile element for maintaining homeostasis, the chemokine system has been reported to be implicated in the pathogenesis of immune thrombocytopenia (ITP). However, research pertaining to chemokine receptors and related ligands in adult ITP is still limited. The states of several typical chemokine receptors and cognate ligands in the circulation were comparatively assessed through various methodologies. Multiple variable analyses of correlation matrixes were conducted to characterize the correlation signatures of various chemokine receptors or candidate ligands with platelet counts. Our data illustrated a significant decrease in relative CXCR3 expression and elevated plasma levels of CXCL4, 9-11, 13, and CCL3 chemokines in ITP patients with varied platelet counts. Flow cytometry assays revealed eminently diminished CXCR3 levels on T and B lymphocytes and increased CXCR5 on cytotoxic T cell (Tc) subsets in ITP patients with certain platelet counts. Meanwhile, circulating CX3CR1 levels were markedly higher on T cells with a concomitant increase in plasma CX3CL1 level in ITP patients, highlighting the importance of aberrant alterations of the CX3CR1-CX3CL1 axis in ITP pathogenesis. Spearman's correlation analyses revealed a strong positive association of peripheral CXCL4 mRNA level, and negative correlations of plasma CXCL4 concentration and certain chemokine receptors with platelet counts, which might serve as a potential biomarker of platelet destruction in ITP development. Overall, these results indicate that the differential expression patterns and distinct activation states of peripheral chemokine network, and the subsequent expansion of circulating CXCR5+ Tc cells and CX3CR1+ T cells, may be a hallmark during ITP progression, which ultimately contributes to thrombocytopenia in ITP patients.


Subject(s)
CX3C Chemokine Receptor 1 , Purpura, Thrombocytopenic, Idiopathic , Receptors, CXCR3 , Receptors, CXCR5 , Humans , Receptors, CXCR3/metabolism , Purpura, Thrombocytopenic, Idiopathic/blood , Purpura, Thrombocytopenic, Idiopathic/immunology , CX3C Chemokine Receptor 1/metabolism , Male , Receptors, CXCR5/metabolism , Female , Adult , Middle Aged , Platelet Count , Platelet Factor 4/blood , Platelet Factor 4/metabolism , Aged , B-Lymphocytes/immunology , B-Lymphocytes/metabolism
3.
Arthritis Res Ther ; 26(1): 117, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845046

ABSTRACT

BACKGROUND: The objective of this study was to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of PF­06835375, a potent selective afucosyl immunoglobulin G1 antibody targeting C-X-C chemokine receptor type 5 (CXCR5) that potentially depletes B cells, follicular T helper (Tfh) cells, and circulating Tfh-like (cTfh) cells, in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). METHODS: This first-in-human, multicenter, double-blind, sponsor-open, placebo-controlled Phase 1 study recruited patients aged 18-70 years with SLE or RA. In Part A, patients received single doses of intravenous PF-06835375 (dose range: 0.03-6 mg) or placebo in six sequential single ascending dose (SAD) cohorts. In Part B, patients received repeat doses of subcutaneous PF-06835375 (dose range: 0.3-10 mg) or placebo on Days 1 and 29 in five multiple ascending dose (MAD) cohorts. Tetanus/Diphtheria (Td) and Meningococcal B (MenB/Trumenba™) vaccines were administered at Day 4 (Td and MenB) and Week 8 (MenB only) to assess PF-06835375 functional effects. Endpoints included treatment-emergent adverse events (TEAEs), pharmacokinetic parameters, pharmacodynamic effects on B and cTfh cells, and biomarker counts, vaccine response, and exploratory differential gene expression analysis. Safety, pharmacokinetic, and pharmacodynamic endpoints are summarized descriptively. The change from baseline of B and Tfh cell-specific genes over time was calculated using a prespecified mixed-effects model, with a false discovery rate < 0.05 considered statistically significant. RESULTS: In total, 73 patients were treated (SAD cohorts: SLE, n = 17; RA, n = 14; MAD cohorts: SLE, n = 22; RA, n = 20). Mean age was 53.3 years. Sixty-two (84.9%) patients experienced TEAEs (placebo n = 17; PF-06835375 n = 45); most were mild or moderate. Three (9.7%) patients experienced serious adverse events. Mean t1/2 ranged from 3.4-121.4 h (SAD cohorts) and 162.0-234.0 h (MAD cohorts, Day 29). B and cTfh cell counts generally showed dose-dependent reductions across cohorts (range of mean maximum depletion: 67.3-99.3%/62.4-98.7% [SAD] and 91.1-99.6%/89.5-98.1% [MAD], respectively). B cell-related genes and pathways were significantly downregulated in patients treated with PF-06835375. CONCLUSIONS: These data support further development of PF-06835375 to assess the clinical potential for B and Tfh cell depletion as a treatment for autoimmune diseases. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03334851.


Subject(s)
Arthritis, Rheumatoid , Lupus Erythematosus, Systemic , Receptors, CXCR5 , Humans , Middle Aged , Adult , Double-Blind Method , Female , Male , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/immunology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Aged , Young Adult , Dose-Response Relationship, Drug , Adolescent , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antirheumatic Agents/pharmacokinetics , Antirheumatic Agents/administration & dosage , Antirheumatic Agents/therapeutic use , Antirheumatic Agents/adverse effects
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167303, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38878831

ABSTRACT

Emerging evidence underscores the importance of CD8+ T cells in the pathogenesis of multiple sclerosis (MS), but the precise mechanisms remain ambiguous. This study intends to elucidate the involvement of a novel subset of follicular CD8+ T cells (CD8+CXCR5+ T) in MS and an experimental autoimmune encephalomyelitis (EAE) murine model. The expansion of CD8+CXCR5+ T cells was observed in both MS patients and EAE mice during the acute phase. In relapsing MS patients, higher frequencies of circulating CD8+CXCR5+ T cells were positively correlated with new gadolinium-enhancement lesions in the central nervous system (CNS). In EAE mice, frequencies of CD8+CXCR5+ T cells were also positively correlated with clinical scores. These cells were found to infiltrate into ectopic lymphoid-like structures in the spinal cords during the peak of the disease. Furthermore, CD8+CXCR5+ T cells, exhibiting high expression levels of ICOS, CD40L, IL-21, and IL-6, were shown to facilitate B cell activation and differentiation through a synergistic interaction between CD40L and IL-21. Transferring CD8+CXCR5+ T cells into naïve mice confirmed their ability to enhance the production of anti-MOG35-55 antibodies and contribute to the disease progression. Consequently, CD8+CXCR5+ T cells may play a role in CNS demyelination through heightening humoral immune responses.


Subject(s)
CD8-Positive T-Lymphocytes , Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Humans , Female , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Receptors, CXCR5/metabolism , Male , Disease Models, Animal , Mice, Inbred C57BL , Adult , Middle Aged , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Immunoglobulins/metabolism , Immunoglobulins/immunology , Demyelinating Diseases/immunology , Demyelinating Diseases/pathology
5.
Cell Mol Life Sci ; 81(1): 265, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38880863

ABSTRACT

Heterotopic ossification (HO) occurs as a common complication after injury, while its risk factor and mechanism remain unclear, which restricts the development of pharmacological treatment. Clinical research suggests that diabetes mellitus (DM) patients are prone to developing HO in the tendon, but solid evidence and mechanical research are still needed. Here, we combined the clinical samples and the DM mice model to identify that disordered glycolipid metabolism aggravates the senescence of tendon-derived stem cells (TSCs) and promotes osteogenic differentiation. Then, combining the RNA-seq results of the aging tendon, we detected the abnormally activated autocrine CXCL13-CXCR5 axis in TSCs cultured in a high fat, high glucose (HFHG) environment and also in the aged tendon. Genetic inhibition of CXCL13 successfully alleviated HO formation in DM mice, providing a potential therapeutic target for suppressing HO formation in DM patients after trauma or surgery.


Subject(s)
Chemokine CXCL13 , Glycolipids , Ossification, Heterotopic , Osteogenesis , Receptors, CXCR5 , Animals , Ossification, Heterotopic/metabolism , Ossification, Heterotopic/pathology , Ossification, Heterotopic/genetics , Mice , Humans , Chemokine CXCL13/metabolism , Chemokine CXCL13/genetics , Glycolipids/metabolism , Receptors, CXCR5/metabolism , Receptors, CXCR5/genetics , Stem Cells/metabolism , Tendons/metabolism , Tendons/pathology , Male , Mice, Inbred C57BL , Cell Differentiation , Cellular Senescence , Signal Transduction , Cells, Cultured , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology
6.
Cancer Lett ; 593: 216951, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38734159

ABSTRACT

Neoadjuvant immunotherapy represents promising strategy in the treatment of esophageal squamous cell carcinoma (ESCC). However, the mechanisms underlying its impact on treatment sensitivity or resistance remain a subject of controversy. In this study, we conducted single-cell RNA and T/B cell receptor (scTCR/scBCR) sequencing of CD45+ immune cells on samples from 10 patients who received neoadjuvant immunotherapy and chemotherapy. We also validated our findings using multiplexed immunofluorescence and analyzed bulk RNA-seq from other cohorts in public database. By integrating analysis of 87357 CD45+ cells, we found GZMK + effector memory T cells (Tem) were relatively enriched and CXCL13+ exhausted T cells (Tex) and regulator T cells (Treg) decreased among responders, indicating a persistent anti-tumor memory process. Additionally, the enhanced presence of BCR expansion and somatic hypermutation process within TNFRSF13B + memory B cells (Bmem) suggested their roles in antigen presentation. This was further corroborated by the evidence of the T-B co-stimulation pattern and CXCL13-CXCR5 axis. The complexity of myeloid cell heterogeneity was also particularly pronounced. The elevated expression of S100A7 in ESCC, as detected by bulk RNA-seq, was associated with an exhausted and immunosuppressive tumor microenvironment. In summary, this study has unveiled a potential regulatory network among immune cells and the clonal dynamics of their functions, and the mechanisms of exhaustion and memory conversion between GZMK + Tem and TNFRSF13B + Bmem from antigen presentation and co-stimulation perspectives during neoadjuvant PD-1 blockade treatment in ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Immunotherapy , Neoadjuvant Therapy , Single-Cell Analysis , Humans , Neoadjuvant Therapy/methods , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/immunology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/therapy , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Immunotherapy/methods , Single-Cell Analysis/methods , Female , Male , Tumor Microenvironment/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Chemokine CXCL13/genetics , Chemokine CXCL13/metabolism , Middle Aged , Aged , Memory T Cells/immunology , Memory T Cells/metabolism , Leukocyte Common Antigens/metabolism , Leukocyte Common Antigens/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/immunology , Receptors, CXCR5/metabolism , Receptors, CXCR5/genetics
7.
J Immunol ; 212(11): 1829-1842, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38619295

ABSTRACT

In response to acute infection, naive CD4+ T cells primarily differentiate into T helper 1 (Th1) or T follicular helper (Tfh) cells that play critical roles in orchestrating cellular or humoral arms of immunity, respectively. However, despite the well established role of T-bet and BCL-6 in driving Th1 and Tfh cell lineage commitment, respectively, whether additional transcriptional circuits also underlie the fate bifurcation of Th1 and Tfh cell subsets is not fully understood. In this article, we study how the transcriptional regulator Bhlhe40 dictates the Th1/Tfh differentiation axis in mice. CD4+ T cell-specific deletion of Bhlhe40 abrogates Th1 but augments Tfh differentiation. We also assessed an increase in germinal center B cells and Ab production, suggesting that deletion of Bhlhe40 in CD4+ T cells not only alters Tfh differentiation but also their capacity to provide help to B cells. To identify molecular mechanisms by which Bhlhe40 regulates Th1 versus Tfh lineage choice, we first performed epigenetic profiling in the virus specific Th1 and Tfh cells following LCMV infection, which revealed distinct promoter and enhancer activities between the two helper cell lineages. Furthermore, we identified that Bhlhe40 directly binds to cis-regulatory elements of Th1-related genes such as Tbx21 and Cxcr6 to activate their expression while simultaneously binding to regions of Tfh-related genes such as Bcl6 and Cxcr5 to repress their expression. Collectively, our data suggest that Bhlhe40 functions as a transcription activator to promote Th1 cell differentiation and a transcription repressor to suppress Tfh cell differentiation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Cell Differentiation , T Follicular Helper Cells , Th1 Cells , Animals , Mice , Cell Differentiation/immunology , Cell Differentiation/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , T Follicular Helper Cells/immunology , Th1 Cells/immunology , Mice, Knockout , Mice, Inbred C57BL , B-Lymphocytes/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Germinal Center/immunology , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Lymphocytic choriomeningitis virus/immunology , Receptors, CXCR5/genetics , Receptors, CXCR5/metabolism , Homeodomain Proteins
8.
Neuroreport ; 35(6): 406-412, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38526919

ABSTRACT

Chronic postsurgical pain (CPSP) with high incidence negatively impacts the quality of life. X-C motif chemokine 13 (CXCL13) has been associated with postsurgery inflammation and exacerbates neuropathic pain in patients with CPSP. This study was aimed to illustrate the relationship between CXCL13 and nod-like receptor protein-3 (NLRP3), which is also involved in CPSP. A CPSP model was constructed by skin/muscle incision and retraction (SMIR) in right medial thigh, and the rats were divided into three groups: Sham, SMIR, and SMIR + anti-CXCL13 (intrathecally injected with anti-CXCL13 antibody). Then, the paw withdrawal threshold (PWT) score of rats was recorded. Primary rat astrocytes were isolated and treated with recombinant protein CXCL13 with or without NLRP3 inhibitor INF39. The expressions of CXCL13, CXCR5, IL-1ß, IL-18, GFAP, NLRP3, and Caspase-1 p20 were detected by real-time quantitative reverse transcription PCR, western blot, ELISA, immunocytochemistry, and immunofluorescence analyses. The anti-CXCL13 antibody alleviated SMIR-induced decreased PWT and increased expression of GFAP, CXCL13, CXCR5, NLRP3, and Caspase-1 p20 in spinal cord tissues. The production of IL-1ß, IL-18, and expression of CXCL13, CXCR5, GFAP, NLRP3, and Caspase-1 p20 were increased in recombinant protein CXCL13-treated primary rat astrocytes in a dose-dependent manner. Treatment with NLRP3 inhibitor INF39 inhibited the function of recombinant protein CXCL13 in primary rat astrocytes. The CXCL13/CXCR5 signaling could promote neuropathic pain, astrocytes activation, and NLRP3 inflammasome activation in CPSP model rats by targeting NLRP3. NLRP3 may be a potential target for the management of CPSP.


Subject(s)
Chemokine CXCL13 , NLR Family, Pyrin Domain-Containing 3 Protein , Neuralgia , Pain, Postoperative , Receptors, CXCR5 , Animals , Rats , Astrocytes/metabolism , Caspases , Chemokine CXCL13/metabolism , Interleukin-18 , Neuralgia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pain, Postoperative/metabolism , Rats, Sprague-Dawley , Receptors, CXCR5/metabolism , Recombinant Proteins
9.
J Immunol ; 212(9): 1504-1518, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38517294

ABSTRACT

Adoptive cell therapy (ACT), especially with CD4+ regulatory T cells (CD4+ Tregs), is an emerging therapeutic strategy to minimize immunosuppression and promote long-term allograft acceptance, although much research remains to realize its potential. In this study, we investigated the potency of novel Ab-suppressor CXCR5+CD8+ T cells (CD8+ TAb-supp) in comparison with conventional CD25highFoxp3+CD4+ Tregs for suppression of humoral alloimmunity in a murine kidney transplant (KTx) model of Ab-mediated rejection (AMR). We examined quantity of peripheral blood, splenic and graft-infiltrating CD8+ TAb-supp, and CD4+ Tregs in KTx recipients and found that high alloantibody-producing CCR5 knockout KTx recipients have significantly fewer post-transplant peripheral blood and splenic CD8+ TAb-supp, as well as fewer splenic and graft-infiltrating CD4+ Tregs compared with wild-type KTx recipients. ACT with alloprimed CXCR5+CD8+ T cells reduced alloantibody titer, splenic alloprimed germinal center (GC) B cell quantity, and improved AMR histology in CCR5 knockout KTx recipients. ACT with alloprimed CD4+ Treg cells improved AMR histology without significantly inhibiting alloantibody production or the quantity of splenic alloprimed GC B cells. Studies with TCR transgenic mice confirmed Ag specificity of CD8+ TAb-supp-mediated effector function. In wild-type recipients, CD8 depletion significantly increased alloantibody titer, GC B cells, and severity of AMR pathology compared with isotype-treated controls. Anti-CD25 mAb treatment also resulted in increased but less pronounced effect on alloantibody titer, quantity of GC B cells, and AMR pathology than CD8 depletion. To our knowledge, this is the first report that CD8+ TAb-supp cells are more potent regulators of humoral alloimmunity than CD4+ Treg cells.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Kidney Transplantation , T-Lymphocytes, Regulatory , Animals , Mice , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Graft Rejection/immunology , Isoantibodies , Kidney Transplantation/adverse effects , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptors, CXCR5/immunology , Immunity, Humoral/immunology
10.
Front Immunol ; 15: 1295309, 2024.
Article in English | MEDLINE | ID: mdl-38426098

ABSTRACT

Background: Chronic rhinosinusitis (CRS) is a chronic inflammatory disease with an autoimmune background. Altered expression levels of T cell immunoglobulin and mucin-domain containing-3 (TIM-3), C-X-C chemokine receptor type 5 (CXCR5), and programmed cell death protein 1 (PD-1) are implicated in the progression of inflammatory and autoimmune diseases. Moreover, CXCR5+TIM-3-PD-1+ stem-like cytotoxic T cells function as memory stem cells during chronic disease processes and retain cytotoxicity-related gene networks. Objectives: To explore the expressions of CXCR5, TIM-3, and PD-1 on T cells and their correlation with clinical parameters in CRS. Methods: Flow cytometry was used to assess the expressions and co-expressions of CXCR5, TIM-3, and PD-1 on T cells in the tissues of the paranasal sinus and peripheral blood of patients with CRS as well as healthy controls. Immunofluorescence was used to assess the co-localization of TIM-3, CXCR5, and PD-1 with T cells. The disease severity of our patients with CRS was evaluated using the Lund-Mackay score. A complete blood count was also performed for the patients with CRS. Results: Expression levels of CXCR5 and PD-1 on T cells were significantly increased in the nasal tissues of patients with CRS. Compared with those in healthy controls, patients with CRS had high percentages of CXCR5+TIM-3-PD-1+ CD8+ and CD4+ T cells in nasal tissues, while no significant difference was observed in peripheral blood levels. Patients with CRS had a higher density of nasal CXCR5+TIM-3-PD-1+ T cells than that in healthy controls. CXCR5+TIM-3-PD-1+ CD8+ T cell levels in the nasal polyps of patients with CRS were negatively correlated with the patients' Lund-Mackay scores. The levels of CXCR5+TIM-3-PD-1+ T cells in nasal tissues were also negatively associated with disease duration and positively associated with the chronic inflammatory state of CRS. Conclusions: The level of CXCR5+TIM-3-PD-1+ stem cell-like T cells, especially CXCR5+TIM-3-PD-1+ CD8+ T cells, is increased in CRS. Therefore, inducing CXCR5+TIM-3-PD-1+ T cell exhaustion may be an effective immunotherapy for CRS.


Subject(s)
Rhinosinusitis , Sinusitis , Humans , CD8-Positive T-Lymphocytes , T-Lymphocytes, Cytotoxic/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Programmed Cell Death 1 Receptor/metabolism , Chronic Disease , Patient Acuity , Receptors, CXCR5/metabolism
11.
Arthritis Rheumatol ; 76(7): 1023-1035, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38412870

ABSTRACT

OBJECTIVE: To investigate immune dysregulation in the peripheral blood that contributes to the pre-rheumatoid arthritis (RA) stage of RA development in anticitrullinated protein antibody (ACPA)+ individuals. METHODS: Using 37 markers by mass cytometry, we investigated peripheral blood mononuclear cells (PBMCs) from ACPA+ at-risk individuals, ACPA+ early untreated patients with RA, and ACPA- controls in the Tokyo Women's Medical University cohort (n = 17 in each group). Computational algorithms, FlowSOM and Optimized t-Distributed Stochastic Neighbor Embedding, were employed to explore specific immunologic differences between study groups. These findings were further evaluated, and longitudinal changes were explored, using flow cytometry and PBMCs from the US-based Targeting Immune Responses for Prevention of RA cohort that included 11 ACPA+ individuals who later developed RA (pre-RA), of which 9 had post-RA diagnosis PBMCs (post-RA), and 11 ACPA- controls. RESULTS: HLA-DR+ peripheral helper T (Tph) cells, activated regulatory T cells, PD-1hi CD8+ T cells, and CXCR5-CD11c-CD38+ naive B cells were significantly expanded in PBMCs from at-risk individuals and patients with early RA from the Tokyo Women's Medical University cohort. Expansion of HLA-DR+ Tph cells and CXCR5-CD11c-CD38+ naive B cells was likewise found in both pre-RA and post-RA time points in the Targeting Immune Responses for Prevention of RA cohort. CONCLUSION: The expansion of HLA-DR+ Tph cells and CXCR5-CD11c-CD38+ naive B cells in ACPA+ individuals, including those who developed inflammatory arthritis and classified RA, supports a key role of these cells in transition from pre-RA to classified RA. These findings may identify a new mechanistic target for treatment and prevention in RA.


Subject(s)
Anti-Citrullinated Protein Antibodies , Arthritis, Rheumatoid , B-Lymphocytes , HLA-DR Antigens , T-Lymphocytes, Helper-Inducer , Humans , Arthritis, Rheumatoid/immunology , Female , Anti-Citrullinated Protein Antibodies/immunology , Anti-Citrullinated Protein Antibodies/blood , Middle Aged , B-Lymphocytes/immunology , T-Lymphocytes, Helper-Inducer/immunology , HLA-DR Antigens/immunology , Male , Adult , Aged , Receptors, CXCR5/immunology , Leukocytes, Mononuclear/immunology , Case-Control Studies , Flow Cytometry
12.
Cell Rep ; 43(3): 113879, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38416647

ABSTRACT

Maintenance of CD4 T cells during chronic infections is vital for limiting pathogen burden and disease recrudescence. Although inhibitory receptor expression by CD4 T cells is commonly associated with immune suppression and exhaustion, such cell-intrinsic mechanisms that control activation are also associated with cell survival. Using a mouse model of visceral leishmaniasis (VL), we discovered a subset of lymphocyte activation gene 3 (LAG-3)-expressing CD4 T cells that co-express CXCR5. Although LAG3+CXCR5+ CD4 T cells are present in naive mice, they expand during VL. These cells express gene signatures associated with self-renewal capacity, suggesting progenitor-like properties. When transferred into Rag1-/- mice, these LAG3+CXCR5+ CD4 T cells differentiated into multiple effector types upon Leishmania donovani infection. The transcriptional repressor B cell lymphoma-6 was partially required for their maintenance. Altogether, we propose that the LAG3+CXCR5+ CD4 T cell subset could play a role in maintaining CD4 T cell responses during persistent infections.


Subject(s)
CD4-Positive T-Lymphocytes , Leishmaniasis, Visceral , Humans , T-Lymphocyte Subsets , Transcription Factors , Receptors, CXCR5
13.
BMC Pediatr ; 24(1): 154, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424520

ABSTRACT

BACKGROUND: Allergic asthma is a type I allergic reaction mediated by serum Immunoglobulin E (IgE). B cell-mediated humoral immune response to allergens in the pathophysiology of allergic asthma have not been thoroughly elucidated. Peripheral helper T cells (Tph) and follicular helper T cells (Tfh) promote B cell differentiation and antibody production in inflamed tissues. OBJECTIVE: To investigate the roles of B cell subsets, Tph cell subsets and Tfh cell subsets in allergic immune responses. METHODS: Circulating B cell subsets, Tph cell subsets and Tfh cell subsets in 33 children with allergic asthma and 17 healthy children were analyzed using multicolor flow cytometry. The level of serum total IgE was also assessed. RESULTS: Our study found that CD27+CD38+ plasmablasts and CD24hiCD38hi transitional B cells increased and were correlated with serum total IgE level, CD27- naive B cells and CD24hiCD27+ B cells decreased in children with allergic asthma. CXCR5- Tph, CXCR5-ICOS+ Tph, CXCR5-ICOS+PD-1+ Tph, CXCR5+ICOS+ Tfh and CXCR5+ICOS+PD-1+ Tfh increased in children with allergic asthma. Further analysis showed increased Tph2, Tph17, Tfh2 and Tfh17 subtypes while decreased Tph1 and Tfh1 subtypes in children with allergic asthma. Most interestingly, Tph2 or Tfh2 subtypes had a positive correlation with serum total IgE level. CONCLUSION: Overall, these results provide insight into the allergens elicited B, Tph or Tfh cell response and identify heretofore unappreciated CD24hiCD38hi transitional B cells, CD24hiCD27+ B cells, CXCR5- Tph, CXCR5-ICOS+PD-1+ Tph, Tph2 subtypes and Tfh2 subtypes response to allergens.


Subject(s)
Asthma , Programmed Cell Death 1 Receptor , Child , Humans , Precursor Cells, B-Lymphoid , Allergens , Immunoglobulin E , Receptors, CXCR5 , CD24 Antigen , Inducible T-Cell Co-Stimulator Protein
15.
J Exp Med ; 221(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38047912

ABSTRACT

T follicular helper (Tfh) cells, essential for germinal center reactions, are not identical, with different phenotypes reported. Whether, when, and how they generate memory cells is still poorly understood. Here, through single-cell RNA-sequencing analysis of CXCR5+Bcl6+ Tfh cells generated under different conditions, we discovered, in addition to PD-1hi effector Tfh cells, a CD62L+PD1low subpopulation. CD62L-expressing Tfh cells developed independently from PD-1+ cells and not in direct contact with B cells. More importantly, CD62L+ Tfh cells expressed memory- and stemness-associated genes, and with better superior long-term survival, they readily generated PD-1hi cells in the recall response. Finally, KLF2 and IL7R, also highly expressed by CD62L+ Tfh cells, were required to regulate their development. Our work thus demonstrates a novel Tfh memory-like cell subpopulation, which may benefit our understanding of immune responses and diseases.


Subject(s)
B-Lymphocytes , T Follicular Helper Cells , Germinal Center , Phenotype , Receptors, CXCR5
16.
Front Immunol ; 14: 1231836, 2023.
Article in English | MEDLINE | ID: mdl-37691941

ABSTRACT

T-cell exhaustion is a key stage in chronic infections since it limits immunopathology, but also hinders the elimination of pathogens. Exhausted T (Tex) cells encompass dynamic subsets, including progenitor cells that sustain long-term immunity through their memory/stem like properties, and terminally-differentiated cells, resembling the so-called Tex cells. The presence of Tex cells in chronic leishmaniasis has been reported in humans and murine models, yet their heterogeneity remains unexplored. Using flow cytometry, we identified Tex cells subtypes based on PD-1, CXCR5 and TIM-3 expressions in draining lymph nodes (dLNs) and lesion sites of C57BL/6 mice infected with L. mexicana at 30-, 60- and 90-days post-infection. We showed that infected mice developed a chronic infection characterized by non-healing lesions with a high parasite load and impaired Th1/Th2 cytokine production. Throughout the infection, PD-1+ cells were observed in dLNs, in addition to an enhanced expression of PD-1 in both CD4+ and CD8+ T lymphocytes. We demonstrated that CD4+ and CD8+ T cells were subdivided into PD-1+CXCR5+TIM-3- (CXCR5+), PD-1+CXCR5+TIM-3+ (CXCR5+TIM-3+), and PD-1+CXCR5-TIM-3+ (TIM-3+) subsets. CXCR5+ Tex cells were detected in dLNs during the whole course of the infection, whereas TIM-3+ cells were predominantly localized in the infection sites at day 90. CXCR5+TIM-3+ cells only increased at 30 and 60 days of infection in dLNs, whereas no increase was observed in the lesions. Phenotypic analysis revealed that CXCR5+ cells expressed significantly higher levels of CCR7 and lower levels of CX3CR1, PD-1, TIM-3, and CD39 compared to the TIM-3+ subset. CXCR5+TIM-3+ cells expressed the highest levels of all exhaustion-associated markers and of CX3CR1. In agreement with a less exhausted phenotype, the frequency of proliferating Ki-67 and IFN-γ expressing cells was significantly higher in the CXCR5+ subset within both CD4+ and CD8+ T cells compared to their respective TIM-3+ subsets, whereas CD8+CXCR5+TIM-3+ and CD8+TIM-3+ subsets showed an enhanced frequency of degranulating CD107a+ cells. In summary, we identified a novel, less-differentiated CXCR5+ Tex subset in experimental cutaneous leishmaniasis caused by L. mexicana. Targeting these cells through immune checkpoint inhibitors such as anti-PD-1 or anti PD-L1 might improve the current treatment for patients with the chronic forms of leishmaniasis.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Leishmania mexicana , Receptors, CXCR5 , Skin Diseases, Infectious , Animals , Mice , CD8-Positive T-Lymphocytes , Mice, Inbred C57BL , T-Lymphocyte Subsets
17.
Clin Transplant ; 37(11): e15104, 2023 11.
Article in English | MEDLINE | ID: mdl-37589946

ABSTRACT

BACKGROUND AND AIMS: The relationship between the Follicular Cytotoxic T cell subgroup and expression levels of PD1/PD-L1 genes and the development of donor specific antibody (DSA) is unknown. In this study, we aimed to examine CD8+CXCR5+PD-1+ follicular cytotoxic T cell levels and expression levels of PD1/PD-L1 genes in peripheral blood lymphocytes in de-novo DSA positive and negative kidney transplant recipients (KTR). METHODS: In our study, expression of PD-1/ PD-L1 genes by Real-Time Quantitative PCR method and CD8+CXCR5+PD-1+ T cell expression levels by flow cytometric method were obtained from peripheral blood samples. 63 participants were included in the study (de-novo DSA positive recipients (n = 22, group 1), de-novo DSA negative recipients (n = 20, group 2) and healthy control (n = 21, group 3). All patients had negative PRA before kidney transplantation. Expression (%) levels of target cells were evaluated by flow cytometry method. IBM SPSS Statistics for Windows Version 22 and R.3.3.2 software were used to evaluate the data. RESULTS: The demographic data of the groups were similar. PD-1 mRNA expression was higher in de-novo DSA positive KTR than negative (respectively, 1.03 ± .29/.82 ± .15, p: .001). CD8+CXCR5+PD-1+ T cell expression levels were found to be higher in the de-novo DSA positive group than in the negative group and similar to the healthy group (respectively, 3.06 ± 1.98/.52 ± .40, p:.001, 3.06 ± 1.98/2.78 ± .59, p:.62). The percentage of CD8+CXCR5+PD-1+ expressing T cells was significantly lower in the HLA-Class II+ group than other groups (HLA CI/II/ I+II, respectively, 3.63 ± 2.72/1.65 ± .50/3.68 ± 1.67, p: .04). CONCLUSIONS: In our study, a significant relationship was found between DSA formation and PD-1 mRNA level and CD8+CXCR5+PD-1+ follicular cytotoxic T cell in KTR.


Subject(s)
Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Programmed Cell Death 1 Receptor/genetics , B7-H1 Antigen/genetics , Antibodies , CD8-Positive T-Lymphocytes , Transplant Recipients , Graft Rejection/etiology , Receptors, CXCR5/genetics
18.
Int J Mol Sci ; 24(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569326

ABSTRACT

Primary Sjögren's syndrome (pSS) is an autoimmune disease characterised by B cell hyperactivity. CXCR5+ follicular helper T cells (Tfh), CXCR5-PD-1hi peripheral helper T cells (Tph) and CCR9+ Tfh-like cells have been implicated in driving B cell hyperactivity in pSS; however, their potential overlap has not been evaluated. Our aim was to study the overlap between the two CXCR5- cell subsets and to study their PD-1/ICOS expression compared to "true" CXCR5/PD-1/ICOS-expressing Tfh cells. CXCR5- Tph and CCR9+ Tfh-like cell populations from peripheral blood mononuclear cells of pSS patients and healthy controls (HC) were compared using flow cytometry. PD-1/ICOS expression from these cell subsets was compared to each other and to CXCR5+ Tfh cells, taking into account their differentiation status. CXCR5- Tph cells and CCR9+ Tfh-like cells, both in pSS patients and HC, showed limited overlap. PD-1/ICOS expression was higher in memory cells expressing CXCR5 or CCR9. However, the highest expression was found in CXCR5/CCR9 co-expressing T cells, which are enriched in the circulation of pSS patients. CXCR5- Tph and CCR9+ Tfh-like cells are two distinct cell populations that both are enriched in pSS patients and can drive B cell hyperactivity in pSS. The known upregulated expression of CCL25 and CXCL13, ligands of CCR9 and CXCR5, at pSS inflammatory sites suggests concerted action to facilitate the migration of CXCR5+CCR9+ T cells, which are characterised by the highest frequencies of PD-1/ICOS-positive cells. Hence, these co-expressing effector T cells may significantly contribute to the ongoing immune responses in pSS.


Subject(s)
CD4-Positive T-Lymphocytes , Sjogren's Syndrome , Humans , Inducible T-Cell Co-Stimulator Protein/metabolism , Interleukins/metabolism , Leukocytes, Mononuclear , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Receptors, CXCR5/metabolism , T-Lymphocytes, Helper-Inducer
19.
Neurosci Bull ; 39(11): 1605-1622, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37460877

ABSTRACT

Epilepsy is a common, chronic neurological disorder that has been associated with impaired neurodevelopment and immunity. The chemokine receptor CXCR5 is involved in seizures via an unknown mechanism. Here, we first determined the expression pattern and distribution of the CXCR5 gene in the mouse brain during different stages of development and the brain tissue of patients with epilepsy. Subsequently, we found that the knockdown of CXCR5 increased the susceptibility of mice to pentylenetetrazol- and kainic acid-induced seizures, whereas CXCR5 overexpression had the opposite effect. CXCR5 knockdown in mouse embryos via viral vector electrotransfer negatively influenced the motility and multipolar-to-bipolar transition of migratory neurons. Using a human-derived induced an in vitro multipotential stem cell neurodevelopmental model, we determined that CXCR5 regulates neuronal migration and polarization by stabilizing the actin cytoskeleton during various stages of neurodevelopment. Electrophysiological experiments demonstrated that the knockdown of CXCR5 induced neuronal hyperexcitability, resulting in an increased number of seizures. Finally, our results suggested that CXCR5 deficiency triggers seizure-related electrical activity through a previously unknown mechanism, namely, the disruption of neuronal polarity.


Subject(s)
Actins , Epilepsy , Animals , Humans , Mice , Actin Cytoskeleton/metabolism , Actins/metabolism , Epilepsy/metabolism , Neurons/metabolism , Receptors, CXCR5/metabolism , Seizures/metabolism
20.
Lupus ; 32(9): 1093-1104, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37460408

ABSTRACT

BACKGROUND: Circulating T follicular helper (cTfh) and T peripheral helper (Tph) subpopulations are shown to be higher in systemic lupus erythematosus (SLE) patients and have been involved in promoting extrafollicular B cell responses. However, a possible association with the B cell activating factor (BAFF), a cytokine mainly related to B cell responses and disease activity in SLE, has not been investigated. Therefore, this study aimed to evaluate the association of cTfh and Tph subpopulations with the BAFF system expression and clinical activity in SLE patients. METHODS: This study included 43 SLE patients and 12 healthy subjects (HS). The identification of cTfh (CD4+CXCR5+PD-1+), Tph (CD4+CXCR5-PD-1+) cells, expression of membrane-bound BAFF (mBAFF), BAFFR, TACI, BCMA, and intracellular IL-21 was performed by flow cytometry. Serum levels of IL-21, CXCL13, and BAFF were analyzed using ELISA. The SLEDAI-2K score was used to evaluate disease activity in SLE patients. RESULTS: Compared with HS, SLE patients showed a significantly increased percentage of cTfh and Tph cells, higher in patients with clearly active disease. SLE patients had markedly higher IL-21-producing cTfh and Tph cells than HS. Both subpopulations were positively correlated with the disease activity in SLE patients. Tph cells were negatively correlated with CD19+CXCR5+ B cells and positively correlated with CD19+CXCR5- B cells. A low expression of mBAFF and their receptors TACI and BCMA was found on cTfh and Tph cells in SLE patients and HS. However, SLE patients with clearly active disease showed decreased expression of BAFFR on cTfh and Tph subpopulations than patients with mildly active/nonactive disease. Serum IL-21, CXCL13, and BAFF levels were higher in SLE patients than in HS. Levels of CXCL13 were correlated with disease activity. Non-significant correlations were observed among T cell subpopulations and IL-21, CXCL13, and BAFF levels. CONCLUSIONS: This study emphasizes the importance of cTfh and Tph cells in SLE pathogenesis. Besides the importance of IL-21, our results suggest that BAFFR could play a role in cTfh and Tph subpopulations in the autoimmunity context.


Subject(s)
Lupus Erythematosus, Systemic , Humans , B-Cell Maturation Antigen , CD4-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor/metabolism , Receptors, CXCR5/metabolism , T-Lymphocytes, Helper-Inducer
SELECTION OF CITATIONS
SEARCH DETAIL