Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.906
Filter
1.
J Pregnancy ; 2024: 6620156, 2024.
Article in English | MEDLINE | ID: mdl-38745869

ABSTRACT

Background: The cannabinoid receptor (CBR) plays a significant role in oogenesis, pregnancy, and childbirth. It might also play a significant role in preterm birth (PTB). The aim of the study was to investigate the association between the expression of the CBR in the placenta and the incidence of PTB. Methods: This prospective, observational, multicentre preliminary study was conducted on placental samples obtained from 109 women. The study included 95 patients hospitalized due to the high risk of PTB. They were divided into two groups: Group 1, where the expression of the CBR1 and CBR1a was analyzed, and Group 2, in which we examined CBR2 expression. The control group, that is, Group 3, consisted of 14 women who delivered at term, and their placentas were tested for the presence of all three receptor types (CBR1, CBR1a, and CBR2). Results: The study used reverse transcription and real-time PCR methods to assess the expression of CBRs in the placental tissues. The expression of the CBR2, CBR1, and CBR1a receptors was significantly lower in the placentas of women after PTB compared to those after term births, p = 0.038, 0.033, and 0.034, respectively. Conclusions: The presence of CBR mRNA in the human placental tissue was confirmed. The decreased expression of CBRs could serve as an indicator in predicting PTB.


Subject(s)
Placenta , Premature Birth , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Humans , Female , Pregnancy , Placenta/metabolism , Premature Birth/metabolism , Prospective Studies , Adult , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Case-Control Studies , RNA, Messenger/metabolism , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/genetics
2.
Neuromolecular Med ; 26(1): 20, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744725

ABSTRACT

The salient features of autism spectrum disorder (ASD) encompass persistent difficulties in social communication, as well as the presence of restricted and repetitive facets of behavior, hobbies, or pursuits, which are often accompanied with cognitive limitations. Over the past few decades, a sizable number of studies have been conducted to enhance our understanding of the pathophysiology of ASD. Preclinical rat models have proven to be extremely valuable in simulating and analyzing the roles of a wide range of established environmental and genetic factors. Recent research has also demonstrated the significant involvement of the endocannabinoid system (ECS) in the pathogenesis of several neuropsychiatric diseases, including ASD. In fact, the ECS has the potential to regulate a multitude of metabolic and cellular pathways associated with autism, including the immune system. Moreover, the ECS has emerged as a promising target for intervention with high predictive validity. Particularly noteworthy are resent preclinical studies in rodents, which describe the onset of ASD-like symptoms after various genetic or pharmacological interventions targeting the ECS, providing encouraging evidence for further exploration in this area.


Subject(s)
Autism Spectrum Disorder , Disease Models, Animal , Endocannabinoids , Endocannabinoids/physiology , Endocannabinoids/metabolism , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Animals , Humans , Rats , Receptors, Cannabinoid/physiology , Mice , Child
3.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673761

ABSTRACT

Multiple sclerosis (MS) is an autoimmune, inflammatory, and neurodegenerative disease of the central nervous system for which there is no cure, making it necessary to search for new treatments. The endocannabinoid system (ECS) plays a very important neuromodulatory role in the CNS. In recent years, the formation of heteromers containing cannabinoid receptors and their up/downregulation in some neurodegenerative diseases have been demonstrated. Despite the beneficial effects shown by some phytocannabinoids in MS, the role of the ECS in its pathophysiology is unknown. The main objective of this work was to identify heteromers of cell surface proteins receptive to cannabinoids, namely GPR55, CB1 and CB2 receptors, in brain samples from control subjects and MS patients, as well as determining their cellular localization, using In Situ Proximity Ligation Assays and immunohistochemical techniques. For the first time, CB1R-GPR55 and CB2R-GPR55 heteromers are identified in the prefrontal cortex of the human brain, more in the grey than in the white matter. Remarkably, the number of CB1R-GPR55 and CB2R-GPR55 complexes was found to be increased in MS patient samples. The results obtained open a promising avenue of research on the use of these receptor complexes as potential therapeutic targets for the disease.


Subject(s)
Multiple Sclerosis , Prefrontal Cortex , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Receptors, Cannabinoid , Humans , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Prefrontal Cortex/metabolism , Receptors, Cannabinoid/metabolism , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB1/metabolism , Male , Adult , Female , Receptors, G-Protein-Coupled/metabolism , Middle Aged , Up-Regulation , Protein Multimerization
4.
Nutrients ; 16(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674820

ABSTRACT

Sarcopenia, a decline in muscle mass and strength, can be triggered by aging or medications like glucocorticoids. This study investigated cornflower (Centaurea cyanus) water extract (CC) as a potential protective agent against DEX-induced muscle wasting in vitro and in vivo. CC and its isolated compounds mitigated oxidative stress, promoted myofiber growth, and boosted ATP production in C2C12 myotubes. Mechanistically, CC reduced protein degradation markers, increased mitochondrial content, and activated protein synthesis signaling. Docking analysis suggested cannabinoid receptors (CB) 1 and 2 as potential targets of CC compounds. Specifically, graveobioside A from CC inhibited CB1 and upregulated CB2, subsequently stimulating protein synthesis and suppressing degradation. In vivo, CC treatment attenuated DEX-induced muscle wasting, as evidenced by enhanced grip strength, exercise performance, and modulation of muscle gene expression related to differentiation, protein turnover, and exercise performance. Moreover, CC enriched gut microbial diversity, and the abundance of Clostridium sensu stricto 1 positively correlated with muscle mass. These findings suggest a multifaceted mode of action for CC: (1) direct modulation of the muscle cannabinoid receptor system favoring anabolic processes and (2) indirect modulation of muscle health through the gut microbiome. Overall, CC presents a promising therapeutic strategy for preventing and treating muscle atrophy.


Subject(s)
Dexamethasone , Gastrointestinal Microbiome , Muscular Atrophy , Plant Extracts , Gastrointestinal Microbiome/drug effects , Animals , Plant Extracts/pharmacology , Mice , Dexamethasone/pharmacology , Dexamethasone/adverse effects , Muscular Atrophy/drug therapy , Muscular Atrophy/chemically induced , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Receptors, Cannabinoid/metabolism , Receptor, Cannabinoid, CB1/metabolism , Cell Line , Mice, Inbred C57BL , Oxidative Stress/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Sarcopenia/drug therapy
5.
BMC Infect Dis ; 24(1): 398, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609845

ABSTRACT

BACKGROUND: This study aims to explore the potential of utilizing the expression levels of cannabinoid receptor 2 (CB2), µ-opioid receptor (MOR), MCP-1, IL-17, IFN-γ, and osteopontin as predictors for the severity of SARS-CoV-2 infection. The overarching goal is to delineate the pathogenic mechanisms associated with SARS-CoV-2. METHODS: Using quantitative Real-time PCR, we analyzed the gene expression levels of CB2 and MOR in nasopharynx specimens obtained from patients diagnosed with SARS-CoV-2 infection, with 46 individuals classified as having severe symptoms and 46 as non-severe. Additionally, we measured the circulating levels of MCP-1, IL-17, IFN-γ, and osteopontin using an ELISA assay. We examined the predictive capabilities of these variables and explored their correlations across all patient groups. RESULTS: Our results demonstrated a significant increase in MOR gene expression in the epithelium of patients with severe infection. The expression of CB2 receptor was also elevated in both male and female patients with severe symptoms. Furthermore, we observed concurrent rises in MCP-1, IL-17, IFN-γ, and osteopontin levels in patients, which were linked to disease severity. CB2, MOR, MCP-1, IL-17, IFN-γ, and osteopontin showed strong predictive abilities in distinguishing between patients with varying degrees of SARS-CoV-2 severity. Moreover, we identified a significant correlation between CB2 expression and the levels of MOR, MCP-1, osteopontin, and IFN-γ. CONCLUSIONS: These results underline the interconnected nature of molecular mediators in a sequential manner, suggesting that their overexpression may play a role in the development of SARS-CoV-2 infections.


Subject(s)
COVID-19 , Humans , Female , Male , Prognosis , COVID-19/diagnosis , Receptors, Cannabinoid , Analgesics, Opioid , Interleukin-17 , Osteopontin , SARS-CoV-2 , Immunologic Factors
6.
ACS Chem Neurosci ; 15(8): 1669-1683, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38575140

ABSTRACT

The cannabinoid receptor 1 (CB1) is famous as the target of Δ9-tetrahydrocannabinol (THC), which is the active ingredient of marijuana. Suppression of CB1 is frequently suggested as a drug target or gene therapy for many conditions (e.g., obesity, Parkinson's disease). However, brain networks affected by CB1 remain elusive, and unanticipated psychological effects in a clinical trial had dire consequences. To better understand the whole brain effects of CB1 suppression we performed in vivo imaging on mice under complete knockout of the gene for CB1 (cnr1-/-) and also under the CB1 inverse agonist rimonabant. We examined white matter structural changes and brain function (network activity and directional uniformity) in cnr1-/- mice. In cnr1-/- mice, white matter (in both sexes) and functional directional uniformity (in male mice) were altered across the brain but network activity was largely unaltered. Conversely, under rimonabant, functional directional uniformity was not altered but network activity was altered in cortical regions, primarily in networks known to be altered by THC (e.g., neocortex, hippocampal formation). However, rimonabant did not alter many brain regions found in both our cnr1-/- results and previous behavioral studies of cnr1-/- mice (e.g., thalamus, infralimbic area). This suggests that chronic loss of cnr1 is substantially different from short-term suppression, subtly rewiring the brain but largely maintaining the network activity. Our results help explain why pathological mutations in CB1 (e.g., chronic pain) do not always provide insight into the side effects of CB1 suppression (e.g., clinical depression), and thus urge more preclinical studies for any drugs that suppress CB1.


Subject(s)
Drug Inverse Agonism , Piperidines , Female , Mice , Male , Animals , Rimonabant/pharmacology , Piperidines/pharmacology , Pyrazoles/pharmacology , Mice, Knockout , Brain , Receptors, Cannabinoid , Receptor, Cannabinoid, CB1/genetics , Dronabinol/pharmacology
7.
Eur J Pharmacol ; 971: 176549, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38561104

ABSTRACT

Synthetic cannabinoid receptor agonists (SCRAs) remain one the largest classes of new psychoactive substances, and are increasingly associated with severe adverse effects and death compared to the phytocannabinoid Δ9-tetrahydrocannabinol (THC). In the attempt to circumvent the rapid emergence of novel SCRAs, several nations have implemented 'generic' legislations, or 'class-wide' bans based on common structural scaffolds. However, this has only encouraged the incorporation of new chemical entities, including distinct core and linker structures, for which there is a dearth of pharmacological data. The current study evaluated five emergent OXIZID SCRAs for affinity and functional activity at the cannabinoid CB1 receptor (CB1) in HEK 293 cells, as well as pharmacological equivalence with THC in drug discrimination in mice. All OXIZID compounds behaved as agonists in Gαi protein activation and ß-arrestin 2 translocation assays, possessing low micromolar affinity at CB1. All ligands also substituted for THC in drug discrimination, where potencies broadly correlated with in vitro activity, with the methylcyclohexane analogue BZO-CHMOXIZID being the most potent. Notably, MDA-19 (BZO-HEXOXIZID) exhibited partial efficacy in vitro, generating an activity profile most similar to that of THC, and partial substitution in vivo. Overall, the examined OXIZIDs were comparatively less potent and efficacious than previous generations of SCRAs. Further toxicological data will elucidate whether the moderate cannabimimetic activity for this series of SCRAs will translate to severe adverse health effects as seen with previous generations of SCRAs.


Subject(s)
Cannabinoid Receptor Agonists , Protein Processing, Post-Translational , Humans , Mice , Animals , Cannabinoid Receptor Agonists/pharmacology , HEK293 Cells , Receptors, Cannabinoid/metabolism , Ligands , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism
8.
J Mol Neurosci ; 74(2): 41, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602576

ABSTRACT

KLS-13019 was reported previously to reverse paclitaxel-induced mechanical allodynia in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). Recent studies demonstrated that paclitaxel-induced increases in inflammatory markers (GPR55, NLRP3, and IL-1ß) of dorsal root ganglion (DRG) cultures were shown to be reversed by KLS-13019 treatment. The mechanism of action for KLS-13019-mediated reversal of paclitaxel-induced neuroinflammation now has been explored using GPR55 siRNA. Pre-treatment of DRG cultures with GPR55 siRNA produced a 21% decrease of immunoreactive (IR) area for GPR55 in cell bodies and a 59% decrease in neuritic IR area, as determined by high-content imaging. Using a 24-h reversal treatment paradigm, paclitaxel-induced increases in the inflammatory markers were reversed back to control levels after KLS-3019 treatment. Decreases in these inflammatory markers produced by KLS-13019 were significantly attenuated by GPR55 siRNA co-treatment, with mean IR area responses being attenuated by 56% in neurites and 53% in cell bodies. These data indicate that the percentage decreases in siRNA-mediated attenuation of KLS-13019-related efficacy on the inflammatory markers were similar to the percentage knockdown observed for neuritic GPR55 IR area. Similar studies conducted with cannabidiol (CBD), the parent compound of KLS-13019, produced low efficacy (25%) reversal of all inflammatory markers that were poorly attenuated (29%) by GPR55 siRNA. CBD was shown previously to be ineffective in reversing paclitaxel-induced mechanical allodynia. The present studies indicated significant differences between the anti-inflammatory properties of KLS-13019 and CBD which may play a role in their observed differences in the reversibility of mechanical allodynia in a mouse model of CIPN.


Subject(s)
Cannabidiol , Animals , Mice , RNA, Small Interfering/genetics , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Hyperalgesia/drug therapy , Anti-Inflammatory Agents , Disease Models, Animal , Paclitaxel/toxicity , Receptors, Cannabinoid/genetics
9.
Chin J Nat Med ; 22(4): 293-306, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658093

ABSTRACT

Icariin, a flavonoid glycoside, is extracted from Epimedium. This study aimed to investigate the vascular protective effects of icariin in type 1 diabetic rats by inhibiting high-mobility group box 1 (HMGB1)-related inflammation and exploring its potential mechanisms. The impact of icariin on vascular dysfunction was assessed in streptozotocin (STZ)-induced diabetic rats through vascular reactivity studies. Western blotting and immunofluorescence assays were performed to measure the expressions of target proteins. The release of HMGB1 and pro-inflammation cytokines were measured by enzyme-linked immunosorbent assay (ELISA). The results revealed that icariin administration enhanced acetylcholine-induced vasodilation in the aortas of diabetic rats. It also notably reduced the release of pro-inflammatory cytokines, including interleukin-8 (IL-8), IL-6, IL-1ß, and tumor necrosis factor-alpha (TNF-α) in diabetic rats and high glucose (HG)-induced human umbilical vein endothelial cells (HUVECs). The results also unveiled that the pro-inflammatory cytokines in the culture medium of HUVECs could be increased by rHMGB1. The increased release of HMGB1 and upregulated expressions of HMGB1-related inflammatory factors, including advanced glycation end products (RAGE), Toll-like receptor 4 (TLR4), and phosphorylated p65 (p-p65) in diabetic rats and HG-induced HUVECs, were remarkably suppressed by icariin. Notably, HMGB1 translocation from the nucleus to the cytoplasm in HUVECs under HG was inhibited by icariin. Meanwhile, icariin could activate G protein-coupled estrogen receptor (GPER) and sirt1. To explore the role of GPER and Sirt1 in the inhibitory effect of icariin on HMGB1 release and HMGB-induced inflammation, GPER inhibitor and Sirt1 inhibitor were used in this study. These inhibitors diminished the effects of icariin on HMGB1 release and HMGB1-induced inflammation. Specifically, the GPER inhibitor also negated the activation of Sirt1 by icariin. These findings suggest that icariin activates GPER and increases the expression of Sirt1, which in turn reduces HMGB1 translocation and release, thereby improving vascular endothelial function in type 1 diabetic rats by inhibiting inflammation.


Subject(s)
Diabetes Mellitus, Experimental , Flavonoids , HMGB1 Protein , Rats, Sprague-Dawley , Receptors, Cannabinoid , Receptors, G-Protein-Coupled , Signal Transduction , Sirtuin 1 , Animals , HMGB1 Protein/metabolism , HMGB1 Protein/genetics , Sirtuin 1/metabolism , Sirtuin 1/genetics , Flavonoids/pharmacology , Signal Transduction/drug effects , Rats , Male , Humans , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Receptors, G-Protein-Coupled/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Cytokines/metabolism , Epimedium/chemistry
10.
Pharmacol Res ; 203: 107176, 2024 May.
Article in English | MEDLINE | ID: mdl-38583687

ABSTRACT

Cannabidiol (CBD), a non-psychotomimetic constituent of Cannabis sativa, has been recently approved for epileptic syndromes often associated with Autism spectrum disorder (ASD). However, the putative efficacy and mechanism of action of CBD in patients suffering from ASD and related comorbidities remain debated, especially because of the complex pharmacology of CBD. We used pharmacological, immunohistochemical and biochemical approaches to investigate the effects and mechanisms of action of CBD in the recently validated Fmr1-Δexon 8 rat model of ASD, that is also a model of Fragile X Syndrome (FXS), the leading monogenic cause of autism. CBD rescued the cognitive deficits displayed by juvenile Fmr1-Δexon 8 animals, without inducing tolerance after repeated administration. Blockade of CA1 hippocampal GPR55 receptors prevented the beneficial effect of both CBD and the fatty acid amide hydrolase (FAAH) inhibitor URB597 in the short-term recognition memory deficits displayed by Fmr1-Δexon 8 rats. Thus, CBD may exert its beneficial effects through CA1 hippocampal GPR55 receptors. Docking analysis further confirmed that the mechanism of action of CBD might involve competition for brain fatty acid binding proteins (FABPs) that deliver anandamide and related bioactive lipids to their catabolic enzyme FAAH. These findings demonstrate that CBD reduced cognitive deficits in a rat model of FXS and provide initial mechanistic insights into its therapeutic potential in neurodevelopmental disorders.


Subject(s)
Cannabidiol , Disease Models, Animal , Fragile X Syndrome , Hippocampus , Receptors, Cannabinoid , Recognition, Psychology , Animals , Fragile X Syndrome/drug therapy , Fragile X Syndrome/metabolism , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Receptors, Cannabinoid/metabolism , Male , Recognition, Psychology/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Rats , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , Memory/drug effects , Receptors, G-Protein-Coupled/metabolism , Molecular Docking Simulation
11.
Cells ; 13(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474425

ABSTRACT

Cannabis use stimulates calorie intake, but epidemiological studies show that people who regularly use it are leaner than those who don't. Two explanations have been proposed for this paradoxical finding. One posits that Δ9-tetrahydrocannabinol (THC) in cannabis desensitizes adipose CB1 cannabinoid receptors, stopping their stimulating effects on lipogenesis and adipogenesis. Another explanation is that THC exposure in adolescence, when habitual cannabis use typically starts, produces lasting changes in the developing adipose organ, which impacts adult systemic energy use. Here, we consider these possibilities in the light of a study which showed that daily THC administration in adolescent mice produces an adult metabolic phenotype characterized by reduced fat mass, partial resistance to obesity and dyslipidemia, and impaired thermogenesis and lipolysis. The phenotype, whose development requires activation of CB1 receptors in differentiated adipocytes, is associated with overexpression of myocyte proteins in the adipose organ with unchanged CB1 expression. We propose that adolescent exposure to THC causes lasting adipocyte dysfunction and the consequent emergence of a metabolic state that only superficially resembles healthy leanness. A corollary of this hypothesis, which should be addressed in future studies, is that CB1 receptors and their endocannabinoid ligands may contribute to the maintenance of adipocyte differentiation during adolescence.


Subject(s)
Cannabis , Endocannabinoids , Humans , Mice , Animals , Adolescent , Endocannabinoids/metabolism , Obesity/metabolism , Adipocytes/metabolism , Receptors, Cannabinoid/metabolism , Adiposity
12.
Exp Dermatol ; 33(3): e15064, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38532572

ABSTRACT

In recent years, the medical use of cannabinoids has attracted growing attention worldwide. In particular, anti-inflammatory properties of cannabinoids led to their emergence as potential therapeutic options for autoimmune and inflammatory disorders. Recent studies have also shown that cannabinoid receptors are widely expressed and have endogenous ligands in the skin, suggesting that the skin has its own endocannabinoid system. The aim of this review is to discuss the potential therapeutic effects of cannabinoids in autoimmune and inflammatory skin diseases. Following an overview of cannabinoids and the endocannabinoid system, we describe the cellular and molecular mechanisms of cannabinoids in skin health and disease. We then review the clinical studies of cannabinoids in autoimmune and inflammatory skin diseases including systemic sclerosis (SSc), dermatomyositis (DM), psoriasis (Pso) and atopic dermatitis (AD). A primary literature search was conducted in July 2023, using PubMed and Web of Science. A total of 15 articles were included after excluding reviews, non-human studies and in vitro studies from 389 non-duplicated articles. Available evidence suggests that cannabinoids may be beneficial for SSc, DM, Pso and AD. However, further studies, ideally randomized controlled trials, are needed to further evaluate the use of cannabinoids in autoimmune and inflammatory skin diseases.


Subject(s)
Cannabinoids , Dermatitis, Atopic , Psoriasis , Humans , Cannabinoids/pharmacology , Endocannabinoids , Receptors, Cannabinoid , Skin , Psoriasis/drug therapy , Dermatitis, Atopic/drug therapy
13.
Int J Mol Sci ; 25(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38542177

ABSTRACT

Mental disorders account for one of the most prevalent categories of the burden of disease worldwide, with depression expected to be the largest contributor by 2030, closely followed by anxiety. The COVID-19 pandemic possibly exacerbated these challenges, especially amongst adolescents, who experienced isolation, disrupted routines, and limited healthcare access. Notably, the pandemic has been associated with long-term neurological effects known as "long-COVID", characterized by both cognitive and psychopathological symptoms. In general, psychiatric disorders, including those related to long-COVID, are supposed to be due to widespread inflammation leading to neuroinflammation. Recently, the endocannabinoid system (ECS) emerged as a potential target for addressing depression and anxiety pathophysiology. Specifically, natural or synthetic cannabinoids, able to selectively interact with cannabinoid type-2 receptor (CB2R), recently revealed new therapeutic potential in neuropsychiatric disorders with limited or absent psychotropic activity. Among the most promising natural CB2R ligands, the bicyclic sesquiterpene ß-caryophyllene (BCP) has emerged as an excellent anti-inflammatory and antioxidant therapeutic agent. This review underscores BCP's immunomodulatory and anti-inflammatory properties, highlighting its therapeutic potential for the management of depression and anxiety.


Subject(s)
Cannabinoid Receptor Agonists , Cognitive Dysfunction , Polycyclic Sesquiterpenes , Humans , Adolescent , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Agonists/therapeutic use , Pandemics , Post-Acute COVID-19 Syndrome , Receptors, Cannabinoid , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Receptor, Cannabinoid, CB2
14.
Clin Sci (Lond) ; 138(6): 413-434, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38505994

ABSTRACT

Drug-induced cardiotoxicity has become one of the most common and detrimental health concerns, which causes significant loss to public health and drug resources. Cannabinoid receptors (CBRs) have recently achieved great attention for their vital roles in the regulation of heart health and disease, with mounting evidence linking CBRs with the pathogenesis and progression of drug-induced cardiotoxicity. This review aims to summarize fundamental characteristics of two well-documented CBRs (CB1R and CB2R) from aspects of molecular structure, signaling and their functions in cardiovascular physiology and pathophysiology. Moreover, we describe the roles of CB1R and CB2R in the occurrence of cardiotoxicity induced by common drugs such as antipsychotics, anti-cancer drugs, marijuana, and some emerging synthetic cannabinoids. We highlight the 'yin-yang' relationship between CB1R and CB2R in drug-induced cardiotoxicity and propose future perspectives for CBR-based translational medicine toward cardiotoxicity curation and clinical monitoring.


Subject(s)
Cannabinoids , Cardiotoxicity , Humans , Receptors, Cannabinoid/physiology , Cannabinoid Receptor Agonists/adverse effects , Cannabinoids/adverse effects , Receptor, Cannabinoid, CB2 , Receptor, Cannabinoid, CB1
15.
Transl Psychiatry ; 14(1): 170, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555299

ABSTRACT

Chronic stress is a major risk factor for neuropsychiatric conditions such as depression. Adult hippocampal neurogenesis (AHN) has emerged as a promising target to counteract stress-related disorders given the ability of newborn neurons to facilitate endogenous plasticity. Recent data sheds light on the interaction between cannabinoids and neurotrophic factors underlying the regulation of AHN, with important effects on cognitive plasticity and emotional flexibility. Since physical exercise (PE) is known to enhance neurotrophic factor levels, we hypothesised that PE could engage with cannabinoids to influence AHN and that this would result in beneficial effects under stressful conditions. We therefore investigated the actions of modulating cannabinoid type 2 receptors (CB2R), which are devoid of psychotropic effects, in combination with PE in chronically stressed animals. We found that CB2R inhibition, but not CB2R activation, in combination with PE significantly ameliorated stress-evoked emotional changes and cognitive deficits. Importantly, this combined strategy critically shaped stress-induced changes in AHN dynamics, leading to a significant increase in the rates of cell proliferation and differentiation of newborn neurons, overall reduction in neuroinflammation, and increased hippocampal levels of BDNF. Together, these results show that CB2Rs are crucial regulators of the beneficial effects of PE in countering the effects of chronic stress. Our work emphasises the importance of understanding the mechanisms behind the actions of cannabinoids and PE and provides a framework for future therapeutic strategies to treat stress-related disorders that capitalise on lifestyle interventions complemented with endocannabinoid pharmacomodulation.


Subject(s)
Cannabinoids , Animals , Cannabinoids/pharmacology , Receptors, Cannabinoid , Exercise , Hippocampus , Neurogenesis/physiology , Antidepressive Agents/pharmacology
16.
Biochem Pharmacol ; 222: 116082, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38438052

ABSTRACT

Toll-like receptors (TLRs) have become a focus in biomedicine and biomedical research given the roles of this unique family of innate immune proteins in immune activation, infection, and autoimmunity. It is evident that TLR dysregulation, and subsequent alterations in TLR-mediated inflammatory signalling, can contribute to disease pathogenesis, and TLR targeted therapies are in development. This review highlights evidence that cannabinoids are key regulators of TLR signalling. Cannabinoids include component of the plant Cannabis sativa L. (C. sativa), synthetic and endogenous ligands, and overall represent a class of compounds whose therapeutic potential and mechanism of action continues to be elucidated. Cannabinoid-based medicines are in the clinic, and are furthermore under intense investigation for broad clinical development to manage symptoms of a range of disorders. In this review, we present an overview of research evidence that signalling linked to a range of TLRs is targeted by cannabinoids, and such cannabinoid mediated effects represent therapeutic avenues for further investigation. First, we provide an overview of TLRs, adaptors and key signalling events, alongside a summary of evidence that TLRs are linked to disease pathologies. Next, we discuss the cannabinoids system and the development of cannabinoid-based therapeutics. Finally, for the bulk of this review, we systematically outline the evidence that cannabinoids (plant-derived cannabinoids, synthetic cannabinoids, and endogenous cannabinoid ligands) can cross-talk with innate immune signalling governed by TLRs, focusing specifically on each member of the TLR family. Cannabinoids should be considered as key regulators of signalling controlled by TLRs, and such regulation should be a major focus in terms of the anti-inflammatory propensity of the cannabinoid system.


Subject(s)
Cannabinoids , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Cannabinoids/metabolism , Toll-Like Receptors , Signal Transduction , Endocannabinoids , Cannabinoid Receptor Modulators , Ligands , Receptors, Cannabinoid
17.
J Nucl Med Technol ; 52(1): 8-14, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443102

ABSTRACT

The use of medicinal cannabis has a long history dating back thousands of years. Recent discoveries have shed light on its mechanism of action with the identification of cannabinoid receptors and endocannabinoids, which make up the body's endocannabinoid system. Cannabinoid receptors, particularly the cannabinoid 1 and 2 receptors, play a crucial role in modulating the gut-brain axis and serve as potential therapeutic targets for gastrointestinal motility and inflammatory disorders. With increasing legalization of cannabis and a rising number of users, understanding the effects of cannabis on gut motility is essential for nuclear medicine providers. Although tetrahydrocannabinol, the principal psychoactive constituent of cannabis, may decrease gut motility in experimental settings, it appears to paradoxically improve symptoms in gastroparesis. Treatment effects are difficult to measure given the large number of variables that could significantly alter outcomes, such as cannabinoid type, potency, and route of intake. Another consideration is the highly personalized gut microbiome, which directly interacts with the endocannabinoid system. Further research is required to delineate these multifaceted, complex cannabinoid interactions. The goal of this article is to explore the knowns and unknowns of the impact of cannabis on the alimentary system.


Subject(s)
Cannabis , Endocannabinoids , Dronabinol , Gastrointestinal Motility , Receptors, Cannabinoid
18.
Sci Rep ; 14(1): 5782, 2024 03 09.
Article in English | MEDLINE | ID: mdl-38461339

ABSTRACT

To test the hypothesis that genetic and pharmacological modulation of the classical cannabinoid type 1 (CB1) and 2 (CB2) receptors attenuate cancer-induced bone pain, we searched Medline, Web of Science and Scopus for relevant skeletal and non-skeletal cancer studies from inception to July 28, 2022. We identified 29 animal and 35 human studies. In mice, a meta-analysis of pooled studies showed that treatment of osteolysis-bearing males with the endocannabinoids AEA and 2-AG (mean difference [MD] - 24.83, 95% confidence interval [95%CI] - 34.89, - 14.76, p < 0.00001) or the synthetic cannabinoid (CB) agonists ACPA, WIN55,212-2, CP55,940 (CB1/2-non-selective) and AM1241 (CB2-selective) (MD - 28.73, 95%CI - 45.43, - 12.02, p = 0.0008) are associated with significant reduction in paw withdrawal frequency. Consistently, the synthetic agonists AM1241 and JWH015 (CB2-selective) increased paw withdrawal threshold (MD 0.89, 95%CI 0.79, 0.99, p < 0.00001), and ACEA (CB1-selective), AM1241 and JWH015 (CB2-selective) reduced spontaneous flinches (MD - 4.85, 95%CI - 6.74, - 2.96, p < 0. 00001) in osteolysis-bearing male mice. In rats, significant increase in paw withdrawal threshold is associated with the administration of ACEA and WIN55,212-2 (CB1/2-non-selective), JWH015 and AM1241 (CB2-selective) in osteolysis-bearing females (MD 8.18, 95%CI 6.14, 10.21, p < 0.00001), and treatment with AM1241 (CB2-selective) increased paw withdrawal thermal latency in males (mean difference [MD]: 3.94, 95%CI 2.13, 5.75, p < 0.0001), confirming the analgesic capabilities of CB1/2 ligands in rodents. In human, treatment of cancer patients with medical cannabis (standardized MD - 0.19, 95%CI - 0.35, - 0.02, p = 0.03) and the plant-derived delta-9-THC (20 mg) (MD 3.29, CI 2.24, 4.33, p < 0.00001) or its synthetic derivative NIB (4 mg) (MD 2.55, 95%CI 1.58, 3.51, p < 0.00001) are associated with reduction in pain intensity. Bioinformatics validation of KEGG, GO and MPO pathway, function and process enrichment analysis of mouse, rat and human data revealed that CB1 and CB2 receptors are enriched in a cocktail of nociceptive and sensory perception, inflammatory, immune-modulatory, and cancer pathways. Thus, we cautiously conclude that pharmacological modulators of CB1/2 receptors show promise in the treatment of cancer-induced bone pain, however further assessment of their effects on bone pain in genetically engineered animal models and cancer patients is warranted.


Subject(s)
Cancer Pain , Cannabinoids , Neoplasms , Osteolysis , Male , Rats , Humans , Mice , Animals , Receptors, Cannabinoid , Osteolysis/drug therapy , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Cannabinoid Receptor Agonists , Cancer Pain/drug therapy , Cancer Pain/etiology , Neoplasms/drug therapy , Receptor, Cannabinoid, CB2 , Receptor, Cannabinoid, CB1
19.
Glia ; 72(6): 1096-1116, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38482984

ABSTRACT

The medial prefrontal cortex (mPFC) is involved in cognitive functions such as working memory. Astrocytic cannabinoid type 1 receptor (CB1R) induces cytosolic calcium (Ca2+) concentration changes with an impact on neuronal function. mPFC astrocytes also express adenosine A1 and A2A receptors (A1R, A2AR), being unknown the crosstalk between CB1R and adenosine receptors in these cells. We show here that a further level of regulation of astrocyte Ca2+ signaling occurs through CB1R-A2AR or CB1R-A1R heteromers that ultimately impact mPFC synaptic plasticity. CB1R-mediated Ca2+ transients increased and decreased when A1R and A2AR were activated, respectively, unveiling adenosine receptors as modulators of astrocytic CB1R. CB1R activation leads to an enhancement of long-term potentiation (LTP) in the mPFC, under the control of A1R but not of A2AR. Notably, in IP3R2KO mice, that do not show astrocytic Ca2+ level elevations, CB1R activation decreases LTP, which is not modified by A1R or A2AR. The present work suggests that CB1R has a homeostatic role on mPFC LTP, under the control of A1R, probably due to physical crosstalk between these receptors in astrocytes that ultimately alters CB1R Ca2+ signaling.


Subject(s)
Astrocytes , Cannabinoids , Mice , Animals , Receptors, Cannabinoid , Receptor, Adenosine A2A , Neuronal Plasticity , Receptor, Cannabinoid, CB1/genetics
20.
Biochem Pharmacol ; 222: 116052, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354957

ABSTRACT

The cannabinoid CB1 receptor (CB1) is a G protein-coupled receptor (GPCR) with widespread expression in the central nervous system. This canonically G⍺i/o-coupled receptor mediates the effects of Δ9-tetrahydrocannabinol (THC) and synthetic cannabinoid receptor agonists (SCRAs). Recreational use of SCRAs is associated with serious adverse health effects, making pharmacological research into these compounds a priority. Several studies have hypothesised that signalling bias may explain the different toxicological profiles between SCRAs and THC. Previous studies have focused on bias between G protein activation measured by cyclic adenosine monophosphate (cAMP) inhibition and ß-arrestin translocation. In contrast, the current study characterises bias between G⍺ subtypes of the G⍺i/o family and ß-arrestins; this method facilitates a more accurate assessment of ligand bias by assessing signals that have not undergone major amplification. We have characterised G protein dissociation and translocation of ß-arrestin 1 and 2 using real-time BRET reporters. The responses produced by each SCRA across the G protein subtypes tested were consistent with the responses produced by the reference ligand AMB-FUBINACA. Ligand bias was probed by applying the operational analysis to determine biases within the G⍺i/o family, and between G protein subtypes and ß-arrestins. Overall, these results confirm SCRAs to be balanced, high-efficacy ligands compared to the low efficacy ligand THC, with only one SCRA, 4CN-MPP-BUT7IACA, demonstrating statistically significant bias in one pathway comparison (towards ß-arrestin 1 when compared with G⍺oA/oB). This suggests that the adverse effects caused by SCRAs are due to high potency and efficacy at CB1, rather than biased agonism.


Subject(s)
Cannabinoid Receptor Agonists , Cannabinoids , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Agonists/metabolism , beta-Arrestins/metabolism , Receptors, Cannabinoid/metabolism , beta-Arrestin 1/metabolism , Ligands , GTP-Binding Proteins/metabolism , Cannabinoids/pharmacology , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...