Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 300(1): 105505, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029963

ABSTRACT

Mutations in receptor guanylyl cyclase C (GC-C) cause severe gastrointestinal disease, including meconium ileus, early onset acute diarrhea, and pediatric inflammatory bowel disease that continues into adulthood. Agonists of GC-C are US Food and Drug Administration-approved drugs for the treatment of constipation and irritable bowel syndrome. Therapeutic strategies targeting GC-C are tested in preclinical mouse models, assuming that murine GC-C mimics human GC-C in its biochemical properties and downstream signaling events. Here, we reveal important differences in ligand-binding affinity and GC activity between mouse GC-C and human GC-C. We generated a series of chimeric constructs of various domains of human and mouse GC-C to show that the extracellular domain of mouse GC-C contributed to log-orders lower affinity of mouse GC-C for ligands than human GC-C. Further, the Vmax of the murine GC domain was lower than that of human GC-C, and allosteric regulation of the receptor by ATP binding to the intracellular kinase-homology domain also differed. These altered properties are reflected in the high concentrations of ligands required to elicit signaling responses in the mouse gut in preclinical models and the specificity of a GC inhibitor towards human GC-C. Therefore, our studies identify considerations in using the murine model to test molecules for therapeutic purposes that work as either agonists or antagonists of GC-C, and vaccines for the bacterial heat-stable enterotoxin that causes watery diarrhea in humans.


Subject(s)
Receptors, Guanylate Cyclase-Coupled , Animals , Child , Humans , Mice , Diarrhea , Enterotoxins , Guanylate Cyclase/metabolism , Ligands , Receptors, Enterotoxin/genetics , Receptors, Guanylate Cyclase-Coupled/antagonists & inhibitors , Receptors, Guanylate Cyclase-Coupled/genetics , Receptors, Guanylate Cyclase-Coupled/metabolism , Gastrointestinal Diseases/drug therapy , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/pathology
3.
Cell Mol Gastroenterol Hepatol ; 13(4): 1276-1296, 2022.
Article in English | MEDLINE | ID: mdl-34954189

ABSTRACT

BACKGROUND & AIMS: Sporadic colorectal cancers arise from initiating mutations in APC, producing oncogenic ß-catenin/TCF-dependent transcriptional reprogramming. Similarly, the tumor suppressor axis regulated by the intestinal epithelial receptor GUCY2C is among the earliest pathways silenced in tumorigenesis. Retention of the receptor, but loss of its paracrine ligands, guanylin and uroguanylin, is an evolutionarily conserved feature of colorectal tumors, arising in the earliest dysplastic lesions. Here, we examined a mechanism of GUCY2C ligand transcriptional silencing by ß-catenin/TCF signaling. METHODS: We performed RNA sequencing analysis of 4 unique conditional human colon cancer cell models of ß-catenin/TCF signaling to map the core Wnt-transcriptional program. We then performed a comparative analysis of orthogonal approaches, including luciferase reporters, chromatin immunoprecipitation sequencing, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) knockout, and CRISPR epigenome editing, which were cross-validated with human tissue chromatin immunoprecipitation sequencing datasets, to identify functional gene enhancers mediating GUCY2C ligand loss. RESULTS: RNA sequencing analyses reveal the GUCY2C hormones as 2 of the most sensitive targets of ß-catenin/TCF signaling, reflecting transcriptional repression. The GUCY2C hormones share an insulated genomic locus containing a novel locus control region upstream of the guanylin promoter that mediates the coordinated silencing of both genes. Targeting this region with CRISPR epigenome editing reconstituted GUCY2C ligand expression, overcoming gene inactivation by mutant ß-catenin/TCF signaling. CONCLUSIONS: These studies reveal DNA elements regulating corepression of GUCY2C ligand transcription by ß-catenin/TCF signaling, reflecting a novel pathophysiological step in tumorigenesis. They offer unique genomic strategies that could reestablish hormone expression in the context of canonical oncogenic mutations to reconstitute the GUCY2C axis and oppose transformation.


Subject(s)
Colorectal Neoplasms , beta Catenin , Carcinogenesis/genetics , Catenins/genetics , Catenins/metabolism , Colorectal Neoplasms/pathology , Humans , Ligands , Locus Control Region , Receptors, Enterotoxin/genetics , Receptors, Enterotoxin/metabolism , TCF Transcription Factors/metabolism , beta Catenin/genetics , beta Catenin/metabolism
4.
Clin Transl Gastroenterol ; 12(11): e00427, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34797252

ABSTRACT

INTRODUCTION: Gain-of-function mutations in guanylyl cyclase C (GCC) result in persistent diarrhea with perinatal onset. We investigated a specific GCC inhibitor, SSP2518, for its potential to treat this disorder. METHODS: We investigated the effect of SSP2518 on GCC-mediated intracellular cyclic guanosine monophosphate (cGMP) levels and on GCC-mediated chloride secretion in intestinal organoids from 3 patients with distinct activating GCC mutations and from controls, with and without stimulation of GCC with heat-stable enterotoxin. RESULTS: Patient-derived organoids had significantly higher basal cGMP levels than control organoids, which were lowered by SSP2518 to levels found in control organoids. In addition, SSP2518 significantly reduced cGMP levels and chloride secretion in patient-derived and control organoids (P < 0.05 for all comparisons) after heat-stable enterotoxin stimulation. DISCUSSION: We reported in this study that the GCC inhibitor SSP2518 normalizes cGMP levels in intestinal organoids derived from patients with GCC gain-of-function mutations and markedly reduces cystic fibrosis transmembrane conductance regulator-dependent chloride secretion, the driver of persistent diarrhea.


Subject(s)
Abnormalities, Multiple/drug therapy , Abnormalities, Multiple/genetics , Diarrhea/congenital , Metabolism, Inborn Errors/drug therapy , Metabolism, Inborn Errors/genetics , Receptors, Enterotoxin/antagonists & inhibitors , Abnormalities, Multiple/metabolism , Cyclic GMP/metabolism , Diarrhea/drug therapy , Diarrhea/genetics , Diarrhea/metabolism , Gain of Function Mutation , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Humans , Metabolism, Inborn Errors/metabolism , Receptors, Enterotoxin/genetics
5.
J Exp Med ; 218(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34546338

ABSTRACT

Activating mutations in receptor guanylyl cyclase C (GC-C), the target of gastrointestinal peptide hormones guanylin and uroguanylin, and bacterial heat-stable enterotoxins cause early-onset diarrhea and chronic inflammatory bowel disease (IBD). GC-C regulates ion and fluid secretion in the gut via cGMP production and activation of cGMP-dependent protein kinase II. We characterize a novel mouse model harboring an activating mutation in Gucy2c equivalent to that seen in an affected Norwegian family. Mutant mice demonstrated elevated intestinal cGMP levels and enhanced fecal water and sodium content. Basal and linaclotide-mediated small intestinal transit was higher in mutant mice, and they were more susceptible to DSS-induced colitis. Fecal microbiome and gene expression analyses of colonic tissue revealed dysbiosis, up-regulation of IFN-stimulated genes, and misregulation of genes associated with human IBD and animal models of colitis. This novel mouse model thus provides molecular insights into the multiple roles of intestinal epithelial cell cGMP, which culminate in dysbiosis and the induction of inflammation in the gut.


Subject(s)
Colitis/metabolism , Colon/metabolism , Cyclic GMP/metabolism , Dysbiosis/metabolism , Intestines/metabolism , Mutation/genetics , Receptors, Enterotoxin/genetics , Animals , Cyclic GMP-Dependent Protein Kinase Type II/metabolism , Disease Models, Animal , Gene Expression/genetics , Inflammation/genetics , Inflammation/metabolism , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Mice , Receptors, Enterotoxin/metabolism , Signal Transduction/genetics
6.
Cell Host Microbe ; 29(9): 1342-1350.e5, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34358433

ABSTRACT

The pathogenesis of infectious diarrheal diseases is largely attributed to enterotoxins that cause dehydration by disrupting intestinal water absorption. We investigated patterns of genetic variation in mammalian guanylate cyclase-C (GC-C), an intestinal receptor targeted by bacterially encoded heat-stable enterotoxins (STa), to determine how host species adapt in response to diarrheal infections. Our phylogenetic and functional analysis of GC-C supports long-standing evolutionary conflict with diarrheal bacteria in primates and bats, with highly variable susceptibility to STa across species. In bats, we further show that GC-C diversification has sparked compensatory mutations in the endogenous uroguanylin ligand, suggesting an unusual scenario of pathogen-driven evolution of an entire signaling axis. Together, these findings suggest that conflicts with diarrheal pathogens have had far-reaching impacts on the evolution of mammalian gut physiology.


Subject(s)
Bacterial Toxins/metabolism , Cyclic GMP-Dependent Protein Kinase Type II/metabolism , Enterotoxins/metabolism , Guanylate Cyclase/metabolism , Natriuretic Peptides/metabolism , Animals , Chiroptera , Cyclic GMP/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Diarrhea/microbiology , Diarrhea/pathology , Enterocytes/metabolism , Enterotoxigenic Escherichia coli/metabolism , Enterotoxigenic Escherichia coli/pathogenicity , Guanylate Cyclase/genetics , Natriuretic Peptides/genetics , Protein Binding , Receptors, Enterotoxin/genetics , Receptors, Enterotoxin/metabolism , Signal Transduction , Sodium-Hydrogen Exchangers/metabolism , Vibrio cholerae/metabolism , Vibrio cholerae/pathogenicity
7.
Am J Med Genet A ; 185(7): 2046-2055, 2021 07.
Article in English | MEDLINE | ID: mdl-33949097

ABSTRACT

Guanylate cyclase 2C (GC-C), encoded by the GUCY2C gene, is implicated in hereditary early onset chronic diarrhea. Several families with chronic diarrhea symptoms have been identified with autosomal dominant, gain-of-function mutations in GUCY2C. We have identified a Mennonite patient with a novel GUCY2C variant (c.2381A > T; p.Asp794Val) with chronic diarrhea and an extensive maternal family history of chronic diarrhea and bowel dilatation. Functional studies including co-segregation analysis showed that all family members who were heterozygous for this variant had GI-related symptoms. HEK-293 T cells expressing the Asp794Val GC-C variant showed increased cGMP production when stimulated with Escherichia coli heat-stable enterotoxin STp (HST), which was reversed when 5-(3-Bromophenyl)-5,11-dihydro-1,3-dimethyl-1H-indeno[2',1':5,6]pyrido[2,3-d]pyrimidine-2,4,6(3H)-trione (BPIPP; a GC-C inhibitor) was used. In addition, cystic fibrosis transmembrane conductance regulator (CFTR) activity measured with SPQ fluorescence assay was increased in these cells after treatment with HST, indicating a crucial role for CFTR activity in the pathogenesis of this disorder. These results support pathogenicity of the GC-C Asp794Val variant as a cause of chronic diarrhea in this family. Furthermore, this work identifies potential candidate drug, GC-C inhibitor BPIPP, to treat diarrhea caused by this syndrome.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Diarrhea/genetics , Genetic Predisposition to Disease , Receptors, Enterotoxin/genetics , Adolescent , Bacterial Toxins/antagonists & inhibitors , Bacterial Toxins/genetics , Child , Diarrhea/drug therapy , Diarrhea/pathology , Enterotoxins/antagonists & inhibitors , Enterotoxins/genetics , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/genetics , Female , Gain of Function Mutation/genetics , HEK293 Cells , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Male , Pedigree , Young Adult
9.
Retin Cases Brief Rep ; 15(1): 89-92, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-29979251

ABSTRACT

PURPOSE: To report the presence of drusen in infancy, in a patient with Type 1 retinopathy of prematurity and a rare congenital sodium diarrhea secondary to a sporadic GUCY2C mutation. METHODS: A case report generated by review of clinical course, with imaging of 1 patient and literature review. RESULTS: A 1.075-kg infant born at gestation age 27 weeks was admitted to our institution with respiratory distress and secretory diarrhea. During screening for retinopathy of prematurity, peripheral drusen-like subretinal deposits were identified. There were no similar findings in either parent or family history of ocular pathologies. Their distribution is atypical for that seen in other causes of early onset drusen such as autosomal dominant drusen or Sorsby fundus dystrophy. Retinopathy of prematurity was identified, which progressed to Type 1, and was treated with bilateral indirect peripheral retinal photocoagulation at gestational age of 40 weeks. Fluorescein angiography was performed and was consistent with peripheral drusen. Optical coherence tomography of the central macula and an awake electroretinogram at 6 months were normal. Serial examinations confirmed no progression in the drusen-like deposits or in retinopathy of prematurity, with clinically appropriate visual development observed during close follow-up. CONCLUSION: We identify a unique ocular phenotype of retinal drusen-like deposits in an infant with a rare, sporadic GUCY2C mutation.


Subject(s)
DNA/genetics , Diarrhea/congenital , Metabolism, Inborn Errors/complications , Receptors, Enterotoxin/genetics , Retina/pathology , Retinal Drusen/etiology , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , DNA Mutational Analysis , Diarrhea/complications , Diarrhea/genetics , Diarrhea/metabolism , Electroretinography , Female , Fluorescein Angiography/methods , Fundus Oculi , Humans , Infant, Newborn , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/metabolism , Receptors, Enterotoxin/metabolism , Retina/metabolism , Retinal Drusen/diagnosis , Retinal Drusen/metabolism , Retinopathy of Prematurity/complications , Retinopathy of Prematurity/diagnosis , Tomography, Optical Coherence/methods
10.
Expert Rev Clin Pharmacol ; 13(10): 1125-1137, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32945718

ABSTRACT

Introduction: Colorectal cancer remains the second leading cause of cancer death in the United States, underscoring the need for novel therapies. Despite the successes of new targeted agents for other cancers, colorectal cancer suffers from a relative scarcity of actionable biomarkers. In this context, the intestinal receptor, guanylyl cyclase C (GUCY2C), has emerged as a promising target.Areas covered: GUCY2C regulates a tumor-suppressive signaling axis that is silenced through loss of its endogenous ligands at the earliest stages of tumorigenesis. A body of literature supports a cancer chemoprevention strategy involving reactivation of GUCY2C through FDA-approved cGMP-elevating agents such as linaclotide, plecanatide, and sildenafil. Its limited expression in extra-intestinal tissues, and retention on the surface of cancer cells, also positions GUCY2C as a target for immunotherapies to treat metastatic disease, including vaccines, chimeric antigen receptor T-cells, and antibody-drug conjugates. Likewise, GUCY2C mRNA identifies metastatic cells, enhancing colorectal cancer detection, and staging. Pre-clinical and clinical programs exploring these GUCY2C-targeting strategies will be reviewed.Expert opinion: Recent mechanistic insights characterizing GUCY2C ligand loss early in tumorigenesis, coupled with results from the first clinical trials testing GUCY2C-targeting strategies, continue to elevate GUCY2C as an ideal target for prevention, detection, and therapy.


Subject(s)
Colorectal Neoplasms/therapy , Molecular Targeted Therapy , Receptors, Enterotoxin/drug effects , Animals , Chemoprevention/methods , Colorectal Neoplasms/pathology , Colorectal Neoplasms/prevention & control , Guanylyl Cyclase C Agonists/administration & dosage , Guanylyl Cyclase C Agonists/pharmacology , Humans , Immunotherapy/methods , Neoplasm Staging , Receptors, Enterotoxin/genetics , Receptors, Enterotoxin/metabolism , Signal Transduction
11.
Cancer Biol Ther ; 21(9): 799-805, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32594830

ABSTRACT

Most sporadic colorectal cancer reflects acquired mutations in the adenomatous polyposis coli (APC) tumor suppressor gene, while germline heterozygosity for mutant APC produces the autosomal dominant disorder Familial Adenomatous Polyposis (FAP) with a predisposition to colorectal cancer. In these syndromes, loss of heterozygosity (LOH) silences the remaining normal allele of APC, through an unknown mechanism, as the initiating step in transformation. Guanylyl cyclase C receptor (GUCY2C) and its hormones, uroguanylin and guanylin, have emerged as a key signaling axis opposing mutations driving intestinal tumorigenesis. Indeed, uroguanylin and guanylin are among the most commonly repressed genes in colorectal cancer. Here, we explored the role of APC heterozygosity in mechanisms repressing hormone expression which could contribute to LOH. In genetic mouse models of APC loss, uroguanylin and guanylin expression were quantified following monoallelic or biallelic deletion of the Apc gene. Induced biallelic loss of APC repressed uroguanylin and guanylin expression. However, monoallelic APC loss in Apcmin/+ mice did not alter hormone expression. Similarly, in FAP patients, normal colonic mucosa (monoallelic APC loss) expressed guanylin while adenomas and an invasive carcinoma (biallelic APC loss) were devoid of hormone expression. Thus, uroguanylin and guanylin expression by normal intestinal epithelial cells persists in the context of APC heterozygosity and is lost only after tumor initiation by APC LOH. These observations reveal a role for loss of the hormones silencing the GUCY2C axis in tumor progression following biallelic APC loss, but not in mechanisms creating the genetic vulnerability in epithelial cells underlying APC LOH initiating tumorigenesis.


Subject(s)
Adenomatous Polyposis Coli/genetics , Genes, Tumor Suppressor , Receptors, Enterotoxin/genetics , Adenomatous Polyposis Coli/pathology , Animals , Cell Transformation, Neoplastic , Gene Silencing , Humans , Male , Mice
12.
Cell Host Microbe ; 28(3): 402-410.e5, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32544461

ABSTRACT

Bacteria and their toxins are associated with significant human morbidity and mortality. While a few bacterial toxins are well characterized, the mechanism of action for most toxins has not been elucidated, thereby limiting therapeutic advances. One such example is the highly potent pore-forming toxin, hemolysin BL (HBL), produced by the gram-positive pathogen Bacillus cereus. However, how HBL exerts its effects and whether it requires any host factors is unknown. Here, we describe an unbiased genome-wide CRISPR-Cas9 knockout screen that identified LPS-induced TNF-α factor (LITAF) as the HBL receptor. Using LITAF-deficient cells, a second, subsequent whole-genome CRISPR-Cas9 screen identified the LITAF-like protein CDIP1 as a second, alternative receptor. We generated LITAF-deficient mice, which exhibit marked resistance to lethal HBL challenges. This work outlines and validates an approach to use iterative genome-wide CRISPR-Cas9 screens to identify the complement of host factors exploited by bacterial toxins to exert their myriad biological effects.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Bacillus cereus/pathogenicity , Bacterial Proteins/physiology , DNA-Binding Proteins/physiology , Hemolysin Proteins/physiology , Receptors, Enterotoxin/physiology , Transcription Factors/physiology , Animals , Apoptosis Regulatory Proteins/genetics , CHO Cells , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Cricetulus , DNA-Binding Proteins/genetics , Endothelial Cells , Female , Gene Knockdown Techniques , Genome-Wide Association Study , Host-Pathogen Interactions , Humans , Macrophages , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Enterotoxin/genetics , Transcription Factors/genetics , Virulence Factors
13.
Scand J Gastroenterol ; 55(4): 449-453, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32306784

ABSTRACT

Background: Guanylin (GN) and uroguanylin (UGN) are endogenous ligands for the intestinal receptor guanylate cyclase C (GC-C), an important regulator of intestinal fluid homeostasis. Gene expression and protein levels of GN are suppressed in inflamed intestinal tissue from patients with inflammatory bowel disease (IBD), but knowledge about plasma levels of guanylins in these conditions is sparse. We aimed to investigate the fasting plasma levels of the prohormones proGN and proUGN in patients with Crohn's Disease (CD) and relate these to levels found in persons with other diarrheal conditions, as well as persons with normal bowel habits.Methods: Plasma from patients with CD, patients with Familial GUCY2C Diarrheal Disease (FGDS), diarrhea-predominant irritable bowel syndrome (IBS-D) and healthy controls (HC) was analyzed using ELISA assays.Results: Significantly lower fasting plasma levels of proguanylins were found in CD and FGDS patients, compared to HC. In CD patients, plasma proGN levels correlated negatively with Harvey Bradshaw Index and with number of stools/24 h.Conclusion: Our data indicate that diarrhea may be a determinant for levels of proGN in plasma, and should be further explored in studies of different diarrheal disorders.


Subject(s)
Crohn Disease/blood , Diarrhea/blood , Gastrointestinal Hormones/blood , Irritable Bowel Syndrome/blood , Natriuretic Peptides/blood , Adolescent , Adult , Aged , Case-Control Studies , Child , Child, Preschool , Diarrhea/genetics , Female , Gene Expression , Humans , Irritable Bowel Syndrome/genetics , Male , Middle Aged , Plasma/chemistry , Receptors, Enterotoxin/genetics , Young Adult
14.
IUBMB Life ; 72(6): 1145-1159, 2020 06.
Article in English | MEDLINE | ID: mdl-32293781

ABSTRACT

Guanylyl cyclase C (GC-C) is the receptor for the heat-stable enterotoxin, which causes diarrhea, and the endogenous ligands, guanylin and uroguanylin. GC-C is predominantly expressed in the intestinal epithelium and regulates fluid and ion secretion in the gut. The receptor has a complex domain organization, and in the absence of structural information, mutational analysis provides clues to mechanisms of regulation of this protein. Here, we review the mutational landscape of this receptor that reveals regulatory features critical for its activity. We also summarize the available information on mutations in GC-C that have been reported in humans and contribute to severe gastrointestinal abnormalities. Since GC-C is also expressed in extra-intestinal tissues, it is likely that mutations thus far reported in humans may also affect other organ systems, warranting a close observation of these patients in future.


Subject(s)
Meconium Ileus/genetics , Mutation , Receptors, Enterotoxin/genetics , Receptors, Enterotoxin/metabolism , Allosteric Regulation , Humans , Protein Domains , Receptors, Enterotoxin/chemistry , Signal Transduction
15.
J Pediatr ; 211: 207-210, 2019 08.
Article in English | MEDLINE | ID: mdl-31079856

ABSTRACT

Meconium ileus is caused by cystic fibrosis; however, mutations in the GUCY2C gene also cause this disease. We report non-cystic fibrosis meconium ileus in an infant of non-Middle Eastern origin with compound heterozygous mutations in GUCY2C.


Subject(s)
Exome Sequencing , Meconium Ileus/genetics , Mutation, Missense , Receptors, Enterotoxin/genetics , Heterozygote , Humans , Infant, Newborn , Male
16.
Genes Brain Behav ; 18(5): e12573, 2019 06.
Article in English | MEDLINE | ID: mdl-30953414

ABSTRACT

Guanylyl cyclase C (GC-C) is found in brain regions where dopamine is expressed. We characterized a mouse in which GC-C was knocked out (KO) that was reported to be a model of attention deficit hyperactivity disorder (ADHD). We re-examined this model and controlled for litter effects, used 16 to 23 mice per genotype per sex and assessed an array of behavioral and neurochemical outcomes. GC-C KO mice showed no phenotypic differences from wild-type mice on most behavioral tests, or on striatal or hippocampal monoamines, and notably no evidence of an ADHD-like phenotype. KO mice were impaired on novel object recognition, had decreased tactile startle but not acoustic startle, and females had increased latency on cued training trials in the Morris water maze, but not hidden platform spatial learning trials. Open-field activity showed small differences in females but not males. The data indicate that the GC-C KO mouse with proper controls and sample sizes has a moderate cognitive and startle phenotype but has no ADHD-like phenotype.


Subject(s)
Memory Disorders/genetics , Receptors, Enterotoxin/genetics , Animals , Female , Hippocampus/metabolism , Male , Maze Learning , Mice , Mice, Inbred C57BL , Phenotype , Receptors, Enterotoxin/metabolism , Reflex, Startle , Touch Perception
17.
J Immunother Cancer ; 7(1): 104, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31010434

ABSTRACT

BACKGROUND: The colorectal cancer antigen GUCY2C exhibits unique split tolerance, evoking antigen-specific CD8+, but not CD4+, T-cell responses that deliver anti-tumor immunity without autoimmunity in mice. Here, the cancer vaccine Ad5-GUCY2C-PADRE was evaluated in a first-in-man phase I clinical study of patients with early-stage colorectal cancer to assess its safety and immunological efficacy. METHODS: Ten patients with surgically-resected stage I or stage II (pN0) colon cancer received a single intramuscular injection of 1011 viral particles (vp) of Ad5-GUCY2C-PADRE. Safety assessment and immunomonitoring were carried out for 6 months following immunization. This trial employed continual monitoring of both efficacy and toxicity of subjects as joint primary outcomes. RESULTS: All patients receiving Ad5-GUCY2C-PADRE completed the study and none developed adverse events greater than grade 1. Antibody responses to GUCY2C were detected in 10% of patients, while 40% exhibited GUCY2C-specific T-cell responses. GUCY2C-specific responses were exclusively CD8+ cytotoxic T cells, mimicking pre-clinical studies in mice in which GUCY2C-specific CD4+ T cells are eliminated by self-tolerance, while CD8+ T cells escape tolerance and mediate antitumor immunity. Moreover, pre-existing neutralizing antibodies (NAbs) to the Ad5 vector were associated with poor vaccine-induced responses, suggesting that Ad5 NAbs oppose GUCY2C immune responses to the vaccine in patients and supported by mouse studies. CONCLUSIONS: Split tolerance to GUCY2C in cancer patients can be exploited to safely generate antigen-specific cytotoxic CD8+, but not autoimmune CD4+, T cells by Ad5-GUCY2C-PADRE in the absence of pre-existing NAbs to the viral vector. TRIAL REGISTRATION: This trial (NCT01972737) was registered at ClinicalTrials.gov on October 30th, 2013. https://clinicaltrials.gov/ct2/show/NCT01972737.


Subject(s)
Cancer Vaccines/adverse effects , Colorectal Neoplasms/therapy , Immunotherapy/methods , Receptors, Enterotoxin/immunology , T-Lymphocytes, Cytotoxic/immunology , Adenoviridae/genetics , Adenoviridae/immunology , Aged , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , CD4-Positive T-Lymphocytes/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Colon/pathology , Colon/surgery , Colorectal Neoplasms/blood , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Combined Modality Therapy/methods , Dose-Response Relationship, Immunologic , Female , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Immune Tolerance , Immunogenicity, Vaccine , Male , Mice , Middle Aged , Neoplasm Staging , Receptors, Enterotoxin/genetics , Rectum/pathology , Rectum/surgery , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology
18.
Hum Pathol ; 87: 103-114, 2019 05.
Article in English | MEDLINE | ID: mdl-30716341

ABSTRACT

Colorectal cancers (CRCs) initiate through distinct mutations, including in APC pathway components leading to tubular adenomas (TAs); in BRAF, with epigenetic silencing of CDX2, leading to serrated adenomas (SAs); and in the DNA mismatch repair machinery driving microsatellite instability (MSI). Transformation through the APC pathway involves loss of the hormone GUCA2A that silences the tumor-suppressing receptor GUCY2C. Indeed, oral hormone replacement is an emerging strategy to reactivate GUCY2C and prevent CRC initiation and progression. Moreover, retained expression by tumors arising from TAs has established GUCY2C as a diagnostic and therapeutic target to prevent and treat metastatic CRC. Here, we defined the potential role of the GUCA2A-GUCY2C axis and its suitability as a target in tumors arising through the SA and MSI pathways. GUCA2A hormone expression was eliminated in TAs, SAs, and MSI tumors compared to their corresponding normal adjacent tissues. In contrast to the hormone, the tumor-suppressing receptor GUCY2C was retained in TA and MSI tumors. Surprisingly, GUCY2C expression was nearly eliminated in SAs, reflecting loss of the transcription factor CDX2. Changes in the GUCA2A-GUCY2C axis in human SAs and MSI tumors were precisely recapitulated in genetic mouse models. These data reveal the possibility of GUCA2A loss silencing GUCY2C in the pathophysiology of, and oral hormone replacement to restore GUCY2C signaling to prevent, MSI tumors. Also, they highlight the potential for targeting GUCY2C to prevent and treat metastases arising from TA and MSI tumors. In contrast, loss of GUCY2C excludes patients with SAs as candidates for GUCY2C-based prevention and therapy.


Subject(s)
Adenoma/genetics , Colorectal Neoplasms/genetics , Receptors, Enterotoxin/genetics , Adenoma/pathology , Adult , Aged , Animals , Colorectal Neoplasms/pathology , Female , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Signal Transduction
19.
Scand J Gastroenterol ; 53(10-11): 1264-1273, 2018.
Article in English | MEDLINE | ID: mdl-30353760

ABSTRACT

OBJECTIVE: Activating mutations in the GUCY2C gene, which encodes the epithelial receptor guanylate cyclase C, cause diarrhea due to increased loss of sodium chloride to the intestinal lumen. Patients with familial GUCY2C diarrhea syndrome (FGDS) are predisposed to inflammatory bowel disease (IBD). We investigated whether genes in the guanylate cyclase C pathway are enriched for association with IBD and reversely whether genetic or transcriptional changes associated with IBD are found in FGDS patients. METHODS: (1) A set of 27 genes from the guanylate cyclase C pathway was tested for enrichment of association with IBD by Gene Set Enrichment Analysis, using genome-wide association summary statistics from 12,882 IBD patients and 21,770 controls. (2) We genotyped 163 known IBD risk loci and sequenced NOD2 in 22 patients with FGDS. Eight of them had concomitant Crohn's disease. (3) Global gene expression analysis was performed in ileal tissue from patients with FGDS, Crohn's disease and healthy individuals. RESULTS: The guanylate cyclase C gene set showed a significant enrichment of association in IBD genome-wide association data. Risk variants in NOD2 were found in 7/8 FGDS patients with concomitant Crohn's disease and in 2/14 FDGS patients without Crohn's disease. In ileal tissue, downregulation of metallothioneins characterized FGDS patients compared to healthy controls. CONCLUSIONS: Our results support a role of guanylate cyclase C signaling and disturbed electrolyte homeostasis in development of IBD. Furthermore, downregulation of metallothioneins in the ileal mucosa of FGDS patients may contribute to IBD development, possibly alongside effects from NOD2 risk variants.


Subject(s)
Diarrhea/genetics , Inflammatory Bowel Diseases/genetics , Receptors, Enterotoxin/genetics , Adult , Aged , Case-Control Studies , Diarrhea/metabolism , Down-Regulation , Family Health , Female , Gene Expression , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Ileum/pathology , Inflammatory Bowel Diseases/complications , Male , Middle Aged , Nod2 Signaling Adaptor Protein/genetics , Norway , Plasma/chemistry , Risk Assessment , Syndrome , Young Adult
20.
Sci Rep ; 8(1): 7233, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29740148

ABSTRACT

Restrictive anorexia nervosa is associated with reduced eating and severe body weight loss leading to a cachectic state. Hypothalamus plays a major role in the regulation of food intake and energy homeostasis. In the present study, alterations of hypothalamic proteome and particularly of proteins involved in energy and mitochondrial metabolism have been observed in female activity-based anorexia (ABA) mice that exhibited a reduced food intake and a severe weight loss. In the hypothalamus, mitochondrial dynamic was also modified during ABA with an increase of fission without modification of fusion. In addition, increased dynamin-1, and LC3II/LC3I ratio signed an activation of autophagy while protein synthesis was increased. In conclusion, proteomic analysis revealed an adaptive hypothalamic protein response in ABA female mice with both altered mitochondrial response and activated autophagy.


Subject(s)
Anorexia Nervosa/genetics , Dynamin I/genetics , Hypothalamus/metabolism , Microtubule-Associated Proteins/genetics , Mitochondrial Dynamics/genetics , Proteome/genetics , Aconitate Hydratase/genetics , Aconitate Hydratase/metabolism , Animals , Anorexia , Anorexia Nervosa/metabolism , Anorexia Nervosa/physiopathology , Autophagy/genetics , Disease Models, Animal , Dynamin I/metabolism , Eating/genetics , Female , Gene Expression Profiling , Gene Expression Regulation , Hypothalamus/physiopathology , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Physical Conditioning, Animal , Protein Biosynthesis , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proteome/metabolism , Receptors, Enterotoxin/genetics , Receptors, Enterotoxin/metabolism , Signal Transduction , Weight Loss/genetics
SELECTION OF CITATIONS
SEARCH DETAIL