Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 936
Filter
1.
Sci Rep ; 14(1): 10176, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702476

ABSTRACT

Experimental evidence indicates that follicle-stimulating hormone (FSH), an essential hormone for reproduction, can act directly on endothelial cells inducing atherosclerosis activation and development. However, it remains unknown whether the FSH-receptor (FSHR) is expressed in human atherosclerosis plaques. To demonstrate the FSHR presence, we used immunohistochemical and immunoelectron microscopy involving a specific monoclonal antibody FSHR1A02 that recognizes an epitope present in the FSHR-ectodomain. In all 55 patients with atherosclerotic plaques located in carotid, coronary, femoral arteries, and iliac aneurysm, FSHR was selectively expressed in arterial endothelium covering atherosclerotic plaques and endothelia lining intraplaque neovessels. Lymphatic neovessels were negative for FSHR. M1-macrophages, foam cells, and giant multinucleated cells were also FSHR-positive. FSHR was not detected in normal internal thoracic artery. Immunoelectron microscopy performed in ApoEKO/hFSHRKI mice with atherosclerotic plaques, after injection in vivo with mouse anti-hFSHR monoclonal antibody FSHR1A02 coupled to colloidal gold, showed FSHR presence on the luminal surface of arterial endothelial cells covering atherosclerotic plaques. Therefore, FSHR can bind, internalize, and deliver into the plaque circulating ligands to FSHR-positive cells. In conclusion, we report FSHR expression in endothelial cells, M1-macrophages, M1-derived foam cells, giant multinucleated macrophages, and osteoclasts associated with human atherosclerotic plaques.


Subject(s)
Plaque, Atherosclerotic , Receptors, FSH , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Humans , Receptors, FSH/metabolism , Animals , Mice , Female , Male , Macrophages/metabolism , Aged , Middle Aged , Endothelial Cells/metabolism , Foam Cells/metabolism , Foam Cells/pathology
2.
Endocrinology ; 165(4)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38298132

ABSTRACT

Early puberty poses a significant challenge for male Atlantic salmon in aquaculture due to its negative impact on growth and welfare. The regulation of puberty in vertebrates involves 2 key reproductive hormones: follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and their gonadal receptors. In male mice lacking FSH receptor, testes size is reduced, but fertility is maintained, while medaka and zebrafish with a disrupted fshr gene exhibit near normal testis size and fertility. In these fishes both Fsh and Lh are present during puberty and Lh may rescue fertility, while in salmonid fish only Fsh is present in the circulation during puberty. Using CRISPR-Cas9, we produced crispants with a high prevalence of fshr mutations at the target site, which remained fertile, although more than half showed a testis development deviating from wild-type (wt) males. Crossing out these F0 crispants to each other produced a viable F1 generation showing frameshift (fshr-/-) or in-frame mutations (fshrif/if). Nearly all wt males matured while all fshr-/- males remained immature with small testes containing A spermatogonia as the furthest developed germ cell type and prepubertal plasma androgen levels. Also, the pituitary transcript levels of gnrhr2bba and lhb, but not for fshb, were reduced in the fshr-/- males compared with maturing males. More than half of the fshrif/if mutant males showed no or a delayed maturation. In conclusion, Atlantic salmon show the unique characteristic that loss of Fshr function alone results in male infertility, offering new opportunities to control precocious puberty or fertility in salmon.


Subject(s)
Receptors, FSH , Salmo salar , Male , Animals , Mice , Receptors, FSH/genetics , Receptors, FSH/metabolism , Salmo salar/genetics , Salmo salar/metabolism , Zebrafish/genetics , Sexual Maturation/genetics , Follicle Stimulating Hormone/metabolism , Testis/metabolism
3.
PLoS Comput Biol ; 20(1): e1011415, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38206994

ABSTRACT

Glycoprotein hormone receptors [thyrotropin (TSHR), luteinizing hormone/chorionic gonadotropin (LHCGR), and follicle stimulating hormone (FSHR) receptors] are rhodopsin-like G protein-coupled receptors. These receptors display common structural features including a prominent extracellular domain with leucine-rich repeats (LRR) stabilized by ß-sheets and a long and flexible loop known as the hinge region (HR), and a transmembrane (TM) domain with seven α-helices interconnected by intra- and extracellular loops. Binding of the ligand to the LRR resembles a hand coupling transversally to the α- and ß-subunits of the hormone, with the thumb being the HR. The structure of the FSH-FSHR complex suggests an activation mechanism in which Y335 at the HR binds into a pocket between the α- and ß-chains of the hormone, leading to an adjustment of the extracellular loops. In this study, we performed molecular dynamics (MD) simulations to identify the conformational changes of the FSHR and LHCGR. We set up a FSHR structure as predicted by AlphaFold (AF-P23945); for the LHCGR structure we took the cryo-electron microscopy structure for the active state (PDB:7FII) as initial coordinates. Specifically, the flexibility of the HR domain and the correlated motions of the LRR and TM domain were analyzed. From the conformational changes of the LRR, TM domain, and HR we explored the conformational landscape by means of MD trajectories in all-atom approximation, including a membrane of polyunsaturated phospholipids. The distances and procedures here defined may be useful to propose reaction coordinates to describe diverse processes, such as the active-to-inactive transition, and to identify intermediaries suited for allosteric regulation and biased binding to cellular transducers in a selective activation strategy.


Subject(s)
Follicle Stimulating Hormone , Molecular Dynamics Simulation , Amino Acid Sequence , Cryoelectron Microscopy , Receptors, FSH/chemistry , Receptors, FSH/metabolism , Lipids
4.
Zygote ; 32(2): 130-138, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38248872

ABSTRACT

Spermatogenesis is a developmental process driven by interactions between germ cells and Sertoli cells. This process depends on appropriate gene expression, which might be regulated by transcription factors. This study focused on Rreb1, a zinc finger transcription factor, and explored its function and molecular mechanisms in spermatogenesis in a mouse model. Our results showed that RREB1 was predominantly expressed in the Sertoli cells of the testis. The decreased expression of RREB1 following injection of siRNA caused impaired Sertoli cell development, which was characterized using a defective blood-testis barrier structure and decreased expression of Sertoli cell functional maturity markers; its essential trigger might be SMAD3 destabilization. The decreased expression of RREB1 in mature Sertoli cells influenced the cell structure and function, which resulted in abnormal spermatogenesis, manifested as oligoasthenoteratozoospermia, and we believe RREB1 plays this role by regulating the transcription of Fshr and Wt1. RREB1 has been reported to activate Fshr transcription, and we demonstrated that the knockdown of Rreb1 caused a reduction in follicle-stimulating hormone receptor (FSHR) in the testis, which could be the cause of the increased sperm malformation. Furthermore, we confirmed that RREB1 directly activates Wt1 promoter activity, and RREB1 downregulation induced the decreased expression of Wt1 and its downstream polarity-associated genes Par6b and E-cadherin, which caused increased germ-cell death and reduced sperm number and motility. In conclusion, RREB1 is a key transcription factor essential for Sertoli cell development and function and is required for normal spermatogenesis.


Subject(s)
Receptors, FSH , Sertoli Cells , Spermatogenesis , Transcription Factors , Animals , Male , Sertoli Cells/metabolism , Spermatogenesis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Mice , Receptors, FSH/genetics , Receptors, FSH/metabolism , WT1 Proteins/genetics , WT1 Proteins/metabolism , Testis/metabolism , Testis/cytology , Smad3 Protein/metabolism , Smad3 Protein/genetics , Blood-Testis Barrier/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mice, Inbred C57BL
5.
FEBS Lett ; 598(2): 220-232, 2024 01.
Article in English | MEDLINE | ID: mdl-37923554

ABSTRACT

Intracellular variable fragments of heavy-chain antibody from camelids (intra-VHH) have been successfully used as chaperones to solve the 3D structure of active G protein-coupled receptors bound to their transducers. However, their effect on signalling has been poorly explored, although they may provide a better understanding of the relationships between receptor conformation and activity. Here, we isolated and characterized iPRC1, the first intra-VHH recognizing a member of the large glycoprotein hormone receptor family, the follicle-stimulating hormone receptor (FSHR). This intra-VHH recognizes the FSHR third intracellular loop and decreases cAMP production in response to FSH, without altering Gαs recruitment. Hence, iPRC1 behaves as an allosteric modulator and provides a new tool to complete structure/activity studies performed thus far on this receptor.


Subject(s)
Follicle Stimulating Hormone , Receptors, FSH , Receptors, FSH/genetics , Receptors, FSH/chemistry , Receptors, FSH/metabolism , Follicle Stimulating Hormone/chemistry , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , GTP-Binding Proteins/metabolism , Signal Transduction
6.
Int J Mol Sci ; 24(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37958944

ABSTRACT

Developing modulatory antibodies against G protein-coupled receptors is challenging. In this study, we targeted the follicle-stimulating hormone receptor (FSHR), a significant regulator of reproduction, with variable domains of heavy chain-only antibodies (VHHs). We built two immune VHH libraries and submitted them to multiplexed phage display approaches. We used next-generation sequencing to identify 34 clusters of specifically enriched sequences that were functionally assessed in a primary screen based on a cAMP response element (CRE)-dependent reporter gene assay. In this assay, 23 VHHs displayed negative or positive modulation of FSH-induced responses, suggesting a high success rate of the multiplexed strategy. We then focused on the largest cluster identified (i.e., PRC1) that displayed positive modulation of FSH action. We demonstrated that PRC1 specifically binds to the human FSHR and human FSHR/FSH complex while potentiating FSH-induced cAMP production and Gs recruitment. We conclude that the improved selection strategy reported here is effective for rapidly identifying functionally active VHHs and could be adapted to target other challenging membrane receptors. This study also led to the identification of PRC1, the first potential positive modulator VHH reported for the human FSHR.


Subject(s)
Bacteriophages , Receptors, FSH , Humans , Receptors, FSH/genetics , Receptors, FSH/metabolism , Follicle Stimulating Hormone/metabolism , Signal Transduction , High-Throughput Nucleotide Sequencing , Bacteriophages/genetics
7.
Nat Commun ; 14(1): 6991, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914684

ABSTRACT

Follicle-stimulating hormone (FSH) is involved in mammalian reproduction via binding to FSH receptor (FSHR). However, several studies have found that FSH and FSHR play important roles in extragonadal tissue. Here, we identified the expression of FSHR in human and mouse pancreatic islet ß-cells. Blocking FSH signaling by Fshr knock-out led to impaired glucose tolerance owing to decreased insulin secretion, while high FSH levels caused insufficient insulin secretion as well. In vitro, we found that FSH orchestrated glucose-stimulated insulin secretion (GSIS) in a bell curve manner. Mechanistically, FSH primarily activates Gαs via FSHR, promoting the cAMP/protein kinase A (PKA) and calcium pathways to stimulate GSIS, whereas high FSH levels could activate Gαi to inhibit the cAMP/PKA pathway and the amplified effect on GSIS. Our results reveal the role of FSH in regulating pancreatic islet insulin secretion and provide avenues for future clinical investigation and therapeutic strategies for postmenopausal diabetes.


Subject(s)
Follicle Stimulating Hormone , Islets of Langerhans , Mice , Animals , Humans , Follicle Stimulating Hormone/pharmacology , Follicle Stimulating Hormone/metabolism , Insulin Secretion , Glucose/pharmacology , Glucose/metabolism , Receptors, FSH/genetics , Receptors, FSH/metabolism , Islets of Langerhans/metabolism , Signal Transduction , Insulin/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Mammals/metabolism
8.
Anim Reprod Sci ; 256: 107306, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37541020

ABSTRACT

The process of testis development in mammals is accompanied by the proliferation and maturation of Sertoli, Leydig and germ cells. Spermatogenesis depends on hormone regulation, which must bind to a receptor to exert its biological effects. The changes in Hu sheep testis cell composition and FSHR, LHR and AR expression during different developmental stages are unclear (newborn, puberty and adulthood). To address this, using single-cell RNA sequencing, we analyzed testis cell composition and hormone receptor expression changes during three important developmental stages of Hu sheep. We observed significant changes in the composition of somatic and germ cells in different Hu sheep testis developmental stages. Furthermore, we analyzed the FSHR, LHR and AR distribution and expression changes at three important periods and verified them by qRT-PCR and immunofluorescence. Our results suggest that after birth, the proportion of germ cells increased gradually, peaking in adulthood; the proportion of Sertoli cells decreased gradually, reaching the lowest in adulthood; and the proportion of Leydig cells increased and then decreased, reaching the lowest in adulthood. In addition, FSHR, LHR and AR are mainly located in Sertoli, Leydig and germ cells. LHR and FSHR expression decreased with increasing age, while AR expression increased and then decreased with increasing age.


Subject(s)
Receptors, FSH , Testis , Male , Animals , Sheep , Testis/metabolism , Receptors, FSH/genetics , Receptors, FSH/metabolism , Leydig Cells/metabolism , Sertoli Cells/metabolism , Hormones/metabolism , Mammals
9.
Fertil Steril ; 120(5): 1061-1070, 2023 11.
Article in English | MEDLINE | ID: mdl-37532169

ABSTRACT

OBJECTIVE: To determine whether TOP5300, a novel oral follicle-stimulating hormone (FSH) receptor (FSHR) allosteric agonist, elicits a different cellular response than recombinant human FSH (rh-FSH) in human granulosa cells from patients undergoing in vitro fertilization. DESIGN: Basic science research with a preclinical allosteric FSHR agonist. SETTING: University hospital. PATIENT(S): Patients with infertility at a single academic fertility clinic were recruited under an Institutional Review Board-approved protocol. Primary granulosa cell cultures were established for 41 patients, of whom 8 had normal ovarian reserve (NOR), 17 were of advanced reproductive age (ARA), 12 had a diagnosis of polycystic ovary syndrome (PCOS), and 4 had a combination of diagnoses, such as ARA and PCOS. INTERVENTION(S): Primary granulosa-lutein (GL) cell cultures were treated with rh-FSH, TOP5300, or vehicle. MAIN OUTCOME MEASURE(S): Estradiol (E2) production using enzyme-linked immunosorbent assay, steroid pathway gene expression of StAR and aromatase using quantitative polymerase chain reaction, and FSHR membrane localization using immunofluorescence were measured in human GL cells. RESULT(S): TOP5300 consistently stimulated E2 production among patients with NOR, ARA, and PCOS. Recombinant FSH was the more potent ligand in GL cells from patients with NOR but was ineffective in cells from patients with ARA or PCOS. The lowest level of FSHR plasma membrane localization was seen in patients with ARA, although FSHR localization was more abundant in cells from patients with PCOS; the highest levels were present in cells from patients with NOR. The localization of FSHR was not affected by TOP5300 relative to rh-FSH in any patient group. TOP5300 stimulated greater expression of StAR and CYP19A1 across cells from all patients with NOR, ARA, and PCOS combined, although rh-FSH was unable to stimulate StAR and aromatase (CYP19A1) expression in cells from patients with PCOS. TOP5300-induced expression of StAR and CYP19A1 mRNA among patients with ARA and NOR was consistently lower than that observed in cells from patients with PCOS. CONCLUSION(S): TOP5300 appears to stimulate E2 production and steroidogenic gene expression from GL cells more than rh-FSH in PCOS, relative to patients with ARA and NOR. It does not appear that localization of FSHR at cell membranes is a limiting step for TOP5300 or rh-FSH stimulation of steroidogenic gene expression and E2 production.


Subject(s)
Polycystic Ovary Syndrome , Receptors, FSH , Female , Humans , Receptors, FSH/genetics , Receptors, FSH/metabolism , Follicle Stimulating Hormone, Human/pharmacology , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Aromatase/genetics , Follicle Stimulating Hormone/pharmacology , Granulosa Cells/metabolism , Gonadal Steroid Hormones/metabolism
10.
Cell Biochem Funct ; 41(6): 633-641, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37287186

ABSTRACT

Follicle-stimulating hormone receptor (FSHR) belongs to the family of G-protein coupled receptors and acts as a cognate receptor for follicle-stimulating hormone (FSH). Among the various polymorphic changes reported in FSHR, rs6165 polymorphism leading to Ala307Thr variation in the extracellular domain of the FSHR (FSHRED ) is widely reported. Therefore we attempted to evaluate the functional implications of this variation by studying its effects on FSHRED structure as well as FSH binding. Our atomic-scale investigations reveal that the hinge region, a key hormone interaction site in the extracellular domain of Wt FSHR, exhibits significantly more flexibility compared with the variant structure. Moreover, the Wt receptor in complex with FSH was observed to form a pocket-like structure in its hinge region whereas such a structure was not detected in the variant. The study further reveals that the key residue, sTyr335, required for FSH recognition and FSHR activation, exhibits lower binding free energy in the variant structure as compared to the Wt. In conclusion, our results point out that Ala307Thr variation leads to structural and conformational anomalies in FSHRED which may alter its FSH binding and affect its activation.


Subject(s)
Polycystic Ovary Syndrome , Receptors, FSH , Female , Humans , Follicle Stimulating Hormone/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Receptors, FSH/genetics , Receptors, FSH/metabolism , Mutation , Amino Acid Substitution
11.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37047508

ABSTRACT

To evaluate whether the follicle-stimulating hormone (FSH) receptor (FSHR) is expressed in human spermatozoa and the effects of FSH incubation on sperm function. Twenty-four Caucasian men were recruited. Thirteen patients had asthenozoospermia, and the remaining 11 had normal sperm parameters (controls). After confirming FSHR expression, spermatozoa from patients and controls were incubated with increasing concentrations of human purified FSH (hpFSH) to reassess FSHR expression and localization and to evaluate progressive and total sperm motility, the mitochondrial membrane potential, and protein kinase B (AKT) 473 and 308 phosphorylation. FSHR is expressed in the post-acrosomal segment, neck, midpiece, and tail of human spermatozoa. Its localization does not differ between patients and controls. Incubation with hpFSH at a concentration of 30 mIU/mL appeared to increase FSHR expression mainly in patients. Incubation of human spermatozoa with hpFSH overall resulted in an overall deterioration of both progressive and total motility in patients and controls and worse mitochondrial function only in controls. Finally, incubation with FSH increased AKT473/tubulin phosphorylation to a greater extent than AKT308. FSHR is expressed in the post-acrosomal region, neck, midpiece, and tail of human spermatozoa. Contrary to a previous study, we report a negative effect of FSH on sperm motility and mitochondrial function. FSH also activates the AKT473 signaling pathway.


Subject(s)
Follicle Stimulating Hormone , Proto-Oncogene Proteins c-akt , Humans , Male , Follicle Stimulating Hormone/pharmacology , Sperm Motility , Semen/metabolism , Follicle Stimulating Hormone, Human/pharmacology , Receptors, FSH/metabolism , Spermatozoa/metabolism
12.
JBRA Assist Reprod ; 27(1): 78-84, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36995260

ABSTRACT

OBJECTIVE: Follicle-stimulating hormone (FSH) is essential for folliculogenesis, acting through the follicle-stimulating hormone receptor (FSHR) that is present on the membrane of granulosa cells. Polymorphisms in the FSHR gene may lead to an altered pattern of receptor expression on the cell surface or to changes in affinity for FSH. The aim of this prospective study was to detect any association between the follicle-stimulating hormone receptor (FSHR) gene Ala307Thr polymorphism (rs6165) and ovarian reserve, ovarian response or clinical results in IVF/ICSI treatment. METHODS: This prospective cohort study included 450 women who underwent IVF/ICSI cycles. DNA was extracted from peripheral blood, and the Ala307Thr FSHR polymorphism (rs6165) was genotyped using the TaqMan SNP genotyping assay. Participants were divided into three groups according to their Ala307Thr FSHR genotype: Thr/Thr (n:141), Thr/Ala (n=213) and Ala/Ala (n=96). The results were tested for associations with age, anti-Mullerian hormone (AMH) levels, antral follicle count (AFC), total dose of r-FSH, follicle size, number of retrieved oocytes, and clinical outcome of IVF/ICSI cycles. The statistical analyses were performed using Fisher's exact test and the Kruskal‒Wallis test. RESULTS: An association between the genotype of the FSHR (Ala307Thr) polymorphism and the dose of r-FSH was observed. Patients with the Ala/Ala genotype received a higher r-FSH dose than patients with the Ala/Thr (p=0.0002) and Thr/Thr (p=0.02) genotypes. No other correlation was observed. CONCLUSION: The Ala/Ala genotype was associated with the use of higher doses of recombinant FSH (r-FSH), suggesting that homozygosis of this allelic variant (Ala) provides lower sensitivity to r-FSH.


Subject(s)
Receptors, FSH , Sperm Injections, Intracytoplasmic , Female , Animals , Receptors, FSH/genetics , Receptors, FSH/metabolism , Prospective Studies , Ovulation Induction/methods , Follicle Stimulating Hormone/therapeutic use , Follicle Stimulating Hormone, Human/therapeutic use , Fertilization in Vitro/methods
13.
Comput Biol Med ; 154: 106588, 2023 03.
Article in English | MEDLINE | ID: mdl-36746114

ABSTRACT

Follicle-stimulating hormone receptor (FSHR) is a glycoprotein hormone receptor that plays a vital role in reproduction, cancer progression and osteoporosis. Owing to its therapeutic importance, several small molecule modulators have been identified by researchers through high throughput studies that usually include virtual screening of chemical libraries followed by in vitro validation through radio-ligand binding assays, cAMP accumulation and luciferase-based luminescence assays. The binding site of these modulators and structural changes that accompany modulator binding remains elusive. Here, we address these aspects through molecular docking and MD simulations on well-studied FSHR modulators and comparing the domain motions between agonist/FSH bound and antagonist bound FSHR structures. It was observed that agonist and antagonist modulators bind to the same site, but interact with distinct residues in transmembrane domain(TMD). FSHR(TMD) residues Ile522, Ala595, Ile602 and Val604 were found to interact only with agonist. Notably, these residues are conserved in the close homolog luteinizing hormone/choriogonadotropin receptor (LHCGR) and participate in interaction with its agonist Org43553. We observed distinctly prominent domain motions and conformational changes in TM helices 3, 4 and 6 for agonist bound FSHR structure. These structural changes have also been reported for LHCGR, and few GPCR members suggesting an important and well conserved mechanism of GPHR activation that could be exploited for design of novel modulators.


Subject(s)
Follicle Stimulating Hormone , Receptors, FSH , Receptors, FSH/chemistry , Receptors, FSH/metabolism , Follicle Stimulating Hormone/chemistry , Follicle Stimulating Hormone/metabolism , Molecular Docking Simulation , Binding Sites , Protein Structure, Secondary
14.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674596

ABSTRACT

After the controlled ovarian stimulation (COS), the number of cumulus oocyte complexes collected is lower than predicted. The aim of this study is to understand if there is a possible reason for that deficient ovarian response. It was hypothesized that this is associated with the SNP (single-nucleotide polymorphism) of the FSH receptor (FSHr), specifically c.2039A > G, resulting in Asn680Ser. Two groups of patients were enrolled for this purpose: the normal (n = 36) and abnormal responses (n = 31). To predict the number of retrievable oocytes, according to the anti-Mullerian hormone (AMH) and the antral follicle count (AFC), the following formula was applied in a log scale: the number of oocytes retrieved = 2.584 − 0.015 × (age) − 0.035 × (FSH) + 0.038 × (AMH) + 0.026 × (AFC). Then, when the number of oocytes collected was less than 50% of the calculated value, it was proposed that the patients result in an abnormal response. DNA sample blood was collected from the women, and then the genetic assessment for the Asn680Ser of the FSHr was evaluated in both groups. The differences between the two categories were statistically analyzed with an independent samples t test, a Mann−Whitney U test and a Chi-squared test. In a patient with an abnormal response, a significant prevalence of the amino acid serine at position 680 of the FSHr compared to the counterpart group (p < 0.05) was detected. In conclusion, according to the results, the genetic evaluation of the FSHr could represent an accurate and predictive feature for patients undergoing assisted reproductive technology treatment.


Subject(s)
Ovarian Follicle , Receptors, FSH , Female , Animals , Ovarian Follicle/metabolism , Receptors, FSH/genetics , Receptors, FSH/metabolism , Anti-Mullerian Hormone/metabolism , Reference Values , Oocytes
15.
Mol Ecol Resour ; 23(4): 886-904, 2023 May.
Article in English | MEDLINE | ID: mdl-36587276

ABSTRACT

Sex determination (SD) shows huge variation among fish and a high evolutionary rate, as illustrated by the Pleuronectiformes (flatfishes). This order is characterized by its adaptation to demersal life, compact genomes and diversity of SD mechanisms. Here, we assembled the Solea senegalensis genome, a flatfish of great commercial value, into 82 contigs (614 Mb) combining long- and short-read sequencing, which were next scaffolded using a highly dense genetic map (28,838 markers, 21 linkage groups), representing 98.9% of the assembly. Further, we established the correspondence between the assembly and the 21 chromosomes by using BAC-FISH. Whole genome resequencing of six males and six females enabled the identification of 41 single nucleotide polymorphism variants in the follicle stimulating hormone receptor (fshr) consistent with an XX/XY SD system. The observed sex association was validated in a broader independent sample, providing a novel molecular sexing tool. The fshr gene displayed differential expression between male and female gonads from 86 days post-fertilization, when the gonad is still an undifferentiated primordium, concomitant with the activation of amh and cyp19a1a, testis and ovary marker genes, respectively, in males and females. The Y-linked fshr allele, which included 24 nonsynonymous variants and showed a highly divergent 3D protein structure, was overexpressed in males compared to the X-linked allele at all stages of gonadal differentiation. We hypothesize a mechanism hampering the action of the follicle stimulating hormone driving the undifferentiated gonad toward testis.


Subject(s)
Flatfishes , Receptors, FSH , Female , Male , Animals , Receptors, FSH/genetics , Receptors, FSH/metabolism , Genome/genetics , Chromosomes , Flatfishes/genetics , Hormones/metabolism
16.
JCI Insight ; 7(22)2022 11 22.
Article in English | MEDLINE | ID: mdl-36509287

ABSTRACT

Despite advances in ovarian cancer (OC) therapy, recurrent OC remains a poor-prognosis disease. Because of the close interaction between OC cells and the tumor microenvironment (TME), it is important to develop strategies that target tumor cells and engage components of the TME. A major obstacle in the development of OC therapies is the identification of targets with expression limited to tumor surface to avoid off-target interactions. The follicle-stimulating hormone receptor (FSHR) has selective expression on ovarian granulosa cells and is expressed on 50%-70% of serous OCs. We generated mAbs targeting the external domain of FSHR using in vivo-expressed FSHR vector. By high-throughput flow analysis, we identified multiple clones and downselected D2AP11, a potent FSHR surface-targeted mAb. D2AP11 identifies important OC cell lines derived from tumors with different mutations, including BRCA1/2, and lines resistant to a wide range of therapies. We used D2AP11 to develop a bispecific T cell engager. In vitro addition of PBMCs and T cells to D2AP11-TCE induced specific and potent killing of different genetic and immune escape OC lines, with EC50s in the ng/ml range, and attenuated tumor burden in OC-challenged mouse models. These studies demonstrate the potential utility of biologics targeting FSHR for OC and perhaps other FSHR-positive cancers.


Subject(s)
Ovarian Neoplasms , Receptors, FSH , Humans , Animals , Mice , Female , Receptors, FSH/genetics , Receptors, FSH/metabolism , Neoplasm Recurrence, Local , Immunotherapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/therapy , Ovarian Neoplasms/pathology , Antibodies, Monoclonal/therapeutic use , Adaptive Immunity , Tumor Microenvironment
17.
Front Endocrinol (Lausanne) ; 13: 767661, 2022.
Article in English | MEDLINE | ID: mdl-36329887

ABSTRACT

Follicle-stimulating hormone (FSH), an α/ß heterodimeric glycoprotein hormone, consists of functionally significant variants resulting from the presence or absence of either one of two FSHß subunit N-glycans. The two most abundant variants are fully-glycosylated FSH24 (based on 24 kDa FSHß band in Western blots) and hypo-glycosylated FSH21 (21 kDa band, lacks ßAsn24 glycans). Due to its ability to bind more rapidly to the FSH receptor and occupy more FSH binding sites than FSH24, hypo-glycosylated FSH21 exhibits greater biological activity. Endoglycosidase F1-deglycosylated FSH bound to the complete extracellular domain of the FSH receptor crystallized as a trimeric complex. It was noted that a single biantennary glycan attached to FSHα Asn52 might preemptively fill the central pocket in this complex and prevent the other two FSH ligands from binding the remaining ligand-binding sites. As the most active FSH21 preparations possessed more rapidly migrating α-subunit bands in Western blots, we hypothesized that Asn52 glycans in these preparations were small enough to enable greater FSH21 receptor occupancy in the putative FSHR trimer model. Highly purified hFSH oligosaccharides derived from each FSH subunit, were characterized by electrospray ionization-ion mobility-collision-induced dissociation (ESI-IM-CID) mass spectrometry. FSHß glycans typically possessed core-linked fucose and were roughly one third bi-antennary, one third tri-antennary and one third tetra-antennary. FSHα oligosaccharides largely lacked core fucose and were bi- or tri-antennary. Those αAsn52 glycans exhibiting tetra-antennary glycan m/z values were found to be tri-antennary, with lactosamine repeats accounting for the additional mass. Selective αAsn52 deglycosylation of representative pituitary hFSH glycoform Superdex 75 gel filtration fractions followed by ESI-IM-CID mass spectrometry revealed tri-antennary glycans predominated even in the lowest molecular weight FSH glycoforms. Accordingly, the differences in binding capacity of the same receptor preparation to different FSH glycoforms are likely the organization of the FSH receptor in cell membranes, rather than the αAsn52 oligosaccharide.


Subject(s)
Follicle Stimulating Hormone, Human , Receptors, FSH , Humans , Receptors, FSH/chemistry , Receptors, FSH/metabolism , Follicle Stimulating Hormone, Human/chemistry , Asparagine , Fucose , Follicle Stimulating Hormone/metabolism , Polysaccharides
18.
Int J Mol Sci ; 23(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36361582

ABSTRACT

The follicle-stimulating hormone receptor (FSHR) contains several N-linked glycosylation sites in its extracellular region. We conducted the present study to determine whether conserved glycosylated sites in eel FSHR are necessary for cyclic adenosine monophosphate (cAMP) signal transduction. We used site-directed mutagenesis to induce four mutations (N120Q, N191Q, N272Q, and N288Q) in the N-linked glycosylation sites of eel FSHR. In the eel FSHR wild-type (wt), the cAMP response was gradually increased in a dose-dependent manner (0.01-1500 ng/mL), displaying a high response (approximately 57.5 nM/104 cells) at the Rmax level. Three mutants (N120Q, N272Q, and N288Q) showed a considerably decreased signal transduction as a result of high-ligand treatment, whereas one mutant (N191Q) exhibited a completely impaired signal transduction. The expression level of the N191Q mutant was only 9.2% relative to that of the eel FSHR-wt, indicating a negligible expression level. The expression levels of the N120Q and N272Q mutants were approximately 35.9% and 24% of the FSHG-wt, respectively. The N288Q mutant had an expression level similar to that of the eel FSHR-wt, despite the mostly impaired cAMP responsiveness. The loss of the cell surface agonist-receptor complexes was very rapid in the cells expressing eel FSHR-wt and FSHR-N288Q mutants. Specifically, the N191Q mutant was completely impaired by the loss of cell surface receptors, despite treatment with a high concentration of the agonist. Therefore, we suggest that the N191 site is necessary for cAMP signal transduction. This finding implies that the cAMP response, mediated by G proteins, is directly related to the loss of cell surface receptors as a result of high-agonist treatment.


Subject(s)
Cyclic AMP , Receptors, FSH , Animals , Receptors, FSH/genetics , Receptors, FSH/metabolism , Glycosylation , Cyclic AMP/metabolism , Signal Transduction , Eels/genetics , Eels/metabolism , Follicle Stimulating Hormone/metabolism
19.
Endocrinology ; 163(12)2022 10 23.
Article in English | MEDLINE | ID: mdl-36201606

ABSTRACT

Follicle-stimulating hormone (FSH) is a key endocrine regulator of ovarian function. FSH is secreted as 2 macroglycosylation variants: partially glycosylated FSH (FSH21/18) and fully glycosylated FSH (FSH24). FSH21/18 is more potent than FSH24 at binding to and activating the FSH receptor (R). The ratio of FSH21/18:FSH24 has been shown to change with age, with FSH21/18 predominant at reproductive prime, and FSH24 predominant during perimenopause/menopause. How these FSH glycosylation variants modulate ovarian follicle functions remains largely unknown. The aim of this study was to investigate the effect of FSH glycosylation variants of pre-antral follicle function. Pre-antral follicles were isolated from 3- to 5-week-old C57BL/6 mice and treated ±10 ng/mL FSH21/18, FSH24, a ratio of 80:20 FSH21/18:FSH24 (to mimic reproductive prime), 50:50 FSH21/18:FSH24 (perimenopause), or 20:80 FSH21/18:FSH24 (menopause) for up to 96 hours. FSH21/18 and 80:20 FSH21/18:FSH24 increased follicle growth, in comparison with control, contrasting with FSH24 and 20:80 FSH21/18:FSH24. Survival rates were decreased in follicles treated with FSH24 or 20:80 FSH21/18:FSH24, with follicles undergoing basement membrane rupture and oocyte extrusion, increased Caspase3 gene and protein expression, and decreased markers of cell proliferation in FSH24 or 20:80 FSH21/18:FSH24-treated follicles. Moreover, this correlated with differential regulation of key genes modulating follicular functions. Pharmacological inhibitors of key FSH signal pathways suggests FSH21/18 and FSH24 initiate different FSHR signal pathway activation, which may determine their differential effects on follicle growth and survival. These data suggest that the nature of FSH glycosylation modulates the follicular cellular environment to regulate follicle growth and survival and may underpin the increasing ovarian resistance to FSH observed during aging.


Subject(s)
Follicle Stimulating Hormone , Receptors, FSH , Female , Mice , Animals , Follicle Stimulating Hormone/metabolism , Receptors, FSH/genetics , Receptors, FSH/metabolism , Glycosylation , Mice, Inbred C57BL , Ovarian Follicle/metabolism
20.
Genes (Basel) ; 13(10)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36292659

ABSTRACT

The signaling pathway of the wingless-type mouse mammary tumor virus integration site (Wnt) plays an important role in ovarian and follicular development. In our previous study, WNT4 was shown to be involved in the selection and development of chicken follicles by upregulating the expression of follicle-stimulating hormone receptors (FSHR), stimulating the proliferation of follicular granulosa cells, and increasing the secretion of steroidal hormones. FSH also stimulates the expression of WNT4. To further explore the molecular mechanism by which FSH upregulates WNT4 and characterize the cis-elements regulating WNT4 transcription, in this study, we determined the critical regulatory regions affecting chicken WNT4 transcription. We then identified a single-nucleotide polymorphism (SNP) in this region, and finally analyzed the associations of the SNP with chicken production traits. The results showed that the 5' regulatory region from −3354 to −2689 of WNT4 had the strongest activity and greatest response to FSH stimulation, and we identified one SNP site in this segment, −3015 (G > C), as affecting the binding of NFAT5 (nuclear factor of activated T cells 5) and respones to FSH stimulation. When G was replaced with C at this site, it eliminated the NFAT5 binding. The mRNA level of WNT4 in small yellow follicles of chickens with genotype GG was significantly higher than that of the other two genotypes. Moreover, this locus was found to be significantly associated with comb length in hens. Individuals with the genotype CC had longer combs. Collectively, these data suggested that SNP−3015 (G > C) is involved in the regulation of WNT4 gene expression by responding FSH and affecting the binding of NFAT5 and that it is associated with chicken comb length. The current results provide a reference for further revealing the response mechanism between WNT and FSH.


Subject(s)
Chickens , Receptors, FSH , Animals , Female , Chickens/metabolism , Follicle Stimulating Hormone/genetics , Follicle Stimulating Hormone/pharmacology , Polymorphism, Single Nucleotide , Receptors, FSH/genetics , Receptors, FSH/metabolism , RNA, Messenger , Wnt4 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...