Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.081
Filter
1.
Cell Commun Signal ; 22(1): 307, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831315

ABSTRACT

BACKGROUND: Interleukin 24 (IL-24) has been implicated in the nociceptive signaling. However, direct evidence and the precise molecular mechanism underlying IL-24's role in peripheral nociception remain unclear. METHODS: Using patch clamp recording, molecular biological analysis, immunofluorescence labeling, siRNA-mediated knockdown approach and behavior tests, we elucidated the effects of IL-24 on sensory neuronal excitability and peripheral pain sensitivity mediated by T-type Ca2+ channels (T-type channels). RESULTS: IL-24 enhances T-type channel currents (T-currents) in trigeminal ganglion (TG) neurons in a reversible and dose-dependent manner, primarily by activating the interleukin-22 receptor 1 (IL-22R1). Furthermore, we found that the IL-24-induced T-type channel response is mediated through tyrosine-protein kinase Lyn, but not its common downstream target JAK1. IL-24 application significantly activated protein kinase A; this effect was independent of cAMP and prevented by Lyn antagonism. Inhibition of PKA prevented the IL-24-induced T-current response, whereas inhibition of protein kinase C or MAPK kinases had no effect. Functionally, IL-24 increased TG neuronal excitability and enhanced pain sensitivity to mechanical stimuli in mice, both of which were suppressed by blocking T-type channels. In a trigeminal neuropathic pain model induced by chronic constriction injury of the infraorbital nerve, inhibiting IL-22R1 signaling alleviated mechanical allodynia, which was reversed by blocking T-type channels or knocking down Cav3.2. CONCLUSION: Our findings reveal that IL-24 enhances T-currents by stimulating IL-22R1 coupled to Lyn-dependent PKA signaling, leading to TG neuronal hyperexcitability and pain hypersensitivity. Understanding the mechanism of IL-24/IL-22R1 signaling in sensory neurons may pave the way for innovative therapeutic strategies in pain management.


Subject(s)
Calcium Channels, T-Type , Cyclic AMP-Dependent Protein Kinases , Receptors, Interleukin , Sensory Receptor Cells , Signal Transduction , Trigeminal Ganglion , src-Family Kinases , Animals , Calcium Channels, T-Type/metabolism , Calcium Channels, T-Type/genetics , src-Family Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Trigeminal Ganglion/metabolism , Male , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/physiology , Receptors, Interleukin/metabolism , Mice , Mice, Inbred C57BL , Interleukins/metabolism
2.
Eur J Dermatol ; 34(2): 193-197, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38907550

ABSTRACT

Previous studies reveal that psoriatic arthritis (PsA) and ankylosing spondylitis (AS) share susceptibility genes, such as HLA-B27, demonstrating a degree of genetic overlap between these diseases. Recent studies have identified a number of novel AS and PsA genetic susceptibility loci, but data on these loci in Chinese PsA patients are limited. To identify candidate genes that confer susceptibility to PsA in Chinese patients with PsA, psoriasis vulgaris (PsV), and healthy controls. Sixteen susceptibility loci, reported in a genome-wide association study of AS, and nine susceptibility loci, reported in candidate gene studies of PsA, were examined. Single-nucleotide polymorphisms (SNPs) were genotyped in 503 patients with PsA, 496 patients with PsV, and 979 healthy controls using the SNPscanTM multiplex SNP genotyping platform. PLINK software and logistic regression analysis were used to estimate the statistical significance of associations. PPP2R3C (rs8006884) was shown to significantly associate with PsA+PsV (p = 1.92×10-3, OR = 1.28) and was suggested to associate with PsV (p = 0.03, OR = 1.19). A suggestive association was also observed between IL-23R (rs12141575) and PsA as well as with axial PsA based on subtype analysis, KIF3A (rs2897442) and PsV, and ERN1 (rs196941) or IFIH1 (rs984971) and axial PsA. Our results suggest that PPP2R3C confers susceptibility to PsA and PsV, and that this gene may be related to the pathogenesis of psoriatic lesions and arthritis. Moreover, our results indicate a possible association between IL-23R, ERN1, or IFIH1 and subtypes of PsA, and between KIF3A and PsV.


Subject(s)
Arthritis, Psoriatic , Asian People , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Spondylitis, Ankylosing , Humans , Arthritis, Psoriatic/genetics , Spondylitis, Ankylosing/genetics , Male , Female , Asian People/genetics , Adult , Middle Aged , Case-Control Studies , China , Receptors, Interleukin/genetics , Protein Phosphatase 2/genetics , Genotype , Genome-Wide Association Study , Psoriasis/genetics , East Asian People
3.
Clin Immunol ; 264: 110260, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788885

ABSTRACT

Sjögren's disease (SjD) is a chronic autoimmune disease characterized by focal lymphocytic inflammation in lacrimal and salivary glands. We recently identified IL-27 as a requisite signal for the spontaneous SjD-like manifestations in nonobese diabetic (NOD) mice. Here, we define T cell-intrinsic effects of IL-27 in lacrimal gland disease in NOD mice. IL-27 receptor was required by both CD4 T effector (Te) cells and CD8 T cells to mediate focal inflammation. Intrinsic IL-27 signaling was associated with PD-1 and ICOS expressing T follicular helper (Tfh)-like CD4 Te cells within lacrimal glands, including subsets defined by CD73 or CD39 expression. CD8 T cells capable of IL-27 signaling also expressed PD-1 with subsets expressing ICOS and CD73 demonstrating a T follicular cytotoxic (Tfc)-like cell phenotype and others expressing a CD39hi exhausted-like phenotype. These findings suggest IL-27 is a key early signal driving a follicular-type response in lacrimal gland inflammation in NOD mice.


Subject(s)
CD8-Positive T-Lymphocytes , Disease Models, Animal , Lacrimal Apparatus , Mice, Inbred NOD , Sjogren's Syndrome , Animals , Sjogren's Syndrome/immunology , Mice , CD8-Positive T-Lymphocytes/immunology , Lacrimal Apparatus/immunology , Lacrimal Apparatus/pathology , Interleukins/immunology , Interleukins/metabolism , CD4-Positive T-Lymphocytes/immunology , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Female , Signal Transduction/immunology , Receptors, Interleukin/immunology , Interleukin-27/metabolism , Interleukin-27/immunology , Inducible T-Cell Co-Stimulator Protein/immunology , Inducible T-Cell Co-Stimulator Protein/metabolism , Apyrase/immunology , Apyrase/metabolism
4.
Nat Commun ; 15(1): 4528, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811532

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is the most prevalent cause of liver disease worldwide, with a single approved therapeutic. Previous research has shown that interleukin-22 (IL-22) can suppress ß-cell stress, reduce local islet inflammation, restore appropriate insulin production, reverse hyperglycemia, and ameliorate insulin resistance in preclinical models of diabetes. In clinical trials long-acting forms of IL-22 have led to increased proliferation in the skin and intestine, where the IL-22RA1 receptor is highly expressed. To maximise beneficial effects whilst reducing the risk of epithelial proliferation and cancer, we designed short-acting IL-22-bispecific biologic drugs that successfully targeted the liver and pancreas. Here we show 10-fold lower doses of these bispecific biologics exceed the beneficial effects of native IL-22 in multiple preclinical models of MASH, without off-target effects. Treatment restores glycemic control, markedly reduces hepatic steatosis, inflammation, and fibrogenesis. These short-acting IL-22-bispecific targeted biologics are a promising new therapeutic approach for MASH.


Subject(s)
Fatty Liver , Interleukin-22 , Interleukins , Liver , Pancreas , Interleukins/metabolism , Animals , Liver/metabolism , Liver/pathology , Liver/drug effects , Pancreas/pathology , Pancreas/metabolism , Pancreas/drug effects , Humans , Mice , Fatty Liver/drug therapy , Fatty Liver/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal , Insulin Resistance , Receptors, Interleukin/metabolism
5.
Nat Commun ; 15(1): 4527, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811550

ABSTRACT

The IL-22RA1 receptor is highly expressed in the pancreas, and exogenous IL-22 has been shown to reduce endoplasmic reticulum and oxidative stress in human pancreatic islets and promote secretion of high-quality insulin from beta-cells. However, the endogenous role of IL-22RA1 signaling on these cells remains unclear. Here, we show that antibody neutralisation of IL-22RA1 in cultured human islets leads to impaired insulin quality and increased cellular stress. Through the generation of mice lacking IL-22ra1 specifically on pancreatic alpha- or beta-cells, we demonstrate that ablation of murine beta-cell IL-22ra1 leads to similar decreases in insulin secretion, quality and islet regeneration, whilst increasing islet cellular stress, inflammation and MHC II expression. These changes in insulin secretion led to impaired glucose tolerance, a finding more pronounced in female animals compared to males. Our findings attribute a regulatory role for endogenous pancreatic beta-cell IL-22ra1 in insulin secretion, islet regeneration, inflammation/cellular stress and appropriate systemic metabolic regulation.


Subject(s)
Glucose , Homeostasis , Insulin-Secreting Cells , Insulin , Mice, Knockout , Receptors, Interleukin , Animals , Insulin-Secreting Cells/metabolism , Receptors, Interleukin/metabolism , Receptors, Interleukin/genetics , Female , Humans , Male , Insulin/metabolism , Mice , Glucose/metabolism , Insulin Secretion , Mice, Inbred C57BL , Interleukin-22 , Glucose Intolerance/metabolism , Interleukins/metabolism , Interleukins/genetics , Aging/metabolism
6.
Epigenetics ; 19(1): 2352683, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38723244

ABSTRACT

Some benign and malignant breast tumours are similar in pathological morphology, which are difficult to be distinguished in clinical diagnosis. In this study, we intended to explore novel biomarkers for differential diagnosis of benign and malignant breast tumours. Methylation EPIC 850K beadchip and RNA-sequencing were used to analyse 29 tissue samples from patients with early-stage breast cancer (BC) and benign breast tumours for differently methylated and expressed genes. The altered methylation of IL21R was semi-quantitatively validated in an independent study with 566 tissue samples (279 BC vs. 287 benign breast tumours) using mass spectrometry. Binary logistic regression analysis was performed to evaluate the association between IL21R methylation and BC. BC-associated IL21R hypomethylation and overexpression were identified in the discovery round. In the validation round, BC patients presented significant IL21R hypomethylation compared to women with benign breast tumours (ORs ≥1.29 per-10% methylation, p-values ≤ 5.69E-14), and this hypomethylation was even enhanced in BC patients with ER-negative and PR-negative tumours as well as with triple-negative tumours. The methylation of IL21R showed efficient discriminatory power to distinguish benign breast tumours from BC (area under curve (AUC) = 0.88), and especially from ER-negative BC (AUC = 0.95), PR-negative BC (AUC = 0.93) and triple-negative BC (AUC = 0.96). We disclosed significant IL21R hypomethylation in patients with BC compared to women with benign breast tumours, and revealed the somatic change of DNA methylation could be a potential biomarker for molecular pathology of BC.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , DNA Methylation , Female , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Diagnosis, Differential , Interleukin-21 Receptor alpha Subunit , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism
7.
Immunity ; 57(6): 1306-1323.e8, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38815582

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) regulate inflammation and tissue repair at mucosal sites, but whether these functions pertain to other tissues-like the kidneys-remains unclear. Here, we observed that renal fibrosis in humans was associated with increased ILC3s in the kidneys and blood. In mice, we showed that CXCR6+ ILC3s rapidly migrated from the intestinal mucosa and accumulated in the kidney via CXCL16 released from the injured tubules. Within the fibrotic kidney, ILC3s increased the expression of programmed cell death-1 (PD-1) and subsequent IL-17A production to directly activate myofibroblasts and fibrotic niche formation. ILC3 expression of PD-1 inhibited IL-23R endocytosis and consequently amplified the JAK2/STAT3/RORγt/IL-17A pathway that was essential for the pro-fibrogenic effect of ILC3s. Thus, we reveal a hitherto unrecognized migration pathway of ILC3s from the intestine to the kidney and the PD-1-dependent function of ILC3s in promoting renal fibrosis.


Subject(s)
Cell Movement , Fibrosis , Kidney , Lymphocytes , Programmed Cell Death 1 Receptor , Receptors, CXCR6 , Receptors, Interleukin , Signal Transduction , Animals , Fibrosis/immunology , Mice , Receptors, CXCR6/metabolism , Receptors, CXCR6/immunology , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction/immunology , Cell Movement/immunology , Humans , Kidney/pathology , Kidney/immunology , Kidney/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Receptors, Interleukin/metabolism , Receptors, Interleukin/immunology , Mice, Inbred C57BL , Kidney Diseases/immunology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Immunity, Innate/immunology , Mice, Knockout , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestines/immunology , Intestines/pathology
8.
Cell Rep ; 43(5): 114206, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38733584

ABSTRACT

The interleukin (IL)-22 cytokine can be protective or inflammatory in the intestine. It is unclear if IL-22 receptor (IL-22Ra1)-mediated protection involves a specific type of intestinal epithelial cell (IEC). By using a range of IEC type-specific Il22Ra1 conditional knockout mice and a dextran sulfate sodium (DSS) colitis model, we demonstrate that IL-22Ra1 signaling in MATH1+ cells (goblet and progenitor cells) is essential for maintaining the mucosal barrier and intestinal tissue regeneration. The IL-22Ra1 signaling in IECs promotes mucin core-2 O-glycan extension and induces beta-1,3-galactosyltransferase 5 (B3GALT5) expression in the colon. Adenovirus-mediated expression of B3galt5 is sufficient to rescue Il22Ra1IEC mice from DSS colitis. Additionally, we observe a reduction in the expression of B3GALT5 and the Tn antigen, which indicates defective mucin O-glycan, in the colon tissue of patients with ulcerative colitis. Lastly, IL-22Ra1 signaling in MATH1+ progenitor cells promotes organoid regeneration after DSS injury. Our findings suggest that IL-22-dependent protective responses involve O-glycan modification, proliferation, and differentiation in MATH1+ progenitor cells.


Subject(s)
Colitis , Dextran Sulfate , Interleukin-22 , Interleukins , Receptors, Interleukin , Animals , Interleukins/metabolism , Mice , Glycosylation , Colitis/metabolism , Colitis/pathology , Colitis/chemically induced , Receptors, Interleukin/metabolism , Mucins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Humans , Signal Transduction , Mice, Inbred C57BL , Inflammation/pathology , Inflammation/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice, Knockout , Galactosyltransferases/metabolism , Galactosyltransferases/genetics , Stem Cells/metabolism
9.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791570

ABSTRACT

INTRODUCTION: Optimizing treatment with biological agents is an ideal goal for patients with ulcerative colitis (UC). Recent data suggest that mucosal inflammation patterns and serum cytokine profiles differ between patients who respond and those who do not. Ustekinumab, a monoclonal antibody targeting the p40 subunit of interleukin (IL)-12 and IL-23, has shown promise, but predicting treatment response remains a challenge. We aimed to identify prognostic markers of response to ustekinumab in patients with active UC, utilizing information from their mucosal transcriptome. METHODS: We performed a prospective observational study of 36 UC patients initiating treatment with ustekinumab. Colonic mucosal biopsies were obtained before treatment initiation for a gene expression analysis using a microarray panel of 84 inflammatory genes. A differential gene expression analysis (DGEA), correlation analysis, and network centrality analysis on co-expression networks were performed to identify potential biomarkers. Additionally, machine learning (ML) models were employed to predict treatment response based on gene expression data. RESULTS: Seven genes, including BCL6, CXCL5, and FASLG, were significantly upregulated, while IL23A and IL23R were downregulated in non-responders compared to responders. The co-expression analysis revealed distinct patterns between responders and non-responders, with key genes like BCL6 and CRP highlighted in responders and CCL11 and CCL22 in non-responders. The ML algorithms demonstrated a high predictive power, emphasizing the significance of the IL23R, IL23A, and BCL6 genes. CONCLUSIONS: Our study identifies potential biomarkers associated with ustekinumab response in UC patients, shedding light on its underlying mechanisms and variability in treatment outcomes. Integrating transcriptomic approaches, including gene expression analyses and ML, offers valuable insights for personalized treatment strategies and highlights avenues for further research to enhance therapeutic outcomes for patients with UC.


Subject(s)
Colitis, Ulcerative , Computational Biology , Ustekinumab , Humans , Ustekinumab/therapeutic use , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Male , Female , Computational Biology/methods , Adult , Middle Aged , Treatment Outcome , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Prospective Studies , Transcriptome , Gene Expression Profiling/methods , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/drug effects , Machine Learning , Prognosis
10.
Br J Cancer ; 130(12): 1979-1989, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643339

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor survival rate, largely due to the lack of early diagnosis. Although myeloid cells are crucial in the tumour microenvironment, whether their specific subset can be a biomarker of PDAC progression is unclear. METHODS: We analysed IL-22 receptor expression in PDAC and peripheral blood. Additionally, we analysed gene expression profiles of IL-10R2+/IL-22R1+ myeloid cells and the presence of these cells using single-cell RNA sequencing and murine orthotropic PDAC models, respectively, followed by examining the immunosuppressive function of IL-10R2+/IL-22R1+ myeloid cells. Finally, the correlation between IL-10R2 expression and PDAC progression was evaluated. RESULTS: IL-10R2+/IL-22R1+ myeloid cells were present in PDAC and peripheral blood. Blood IL-10R2+ myeloid cells displayed a gene expression signature associated with tumour-educated circulating monocytes. IL-10R2+/IL-22R1+ myeloid cells from human myeloid cell culture inhibited T cell proliferation. By mouse models for PDAC, we found a positive correlation between pancreatic tumour growth and increased blood IL-10R2+/IL-22R1+ myeloid cells. IL-10R2+/IL-22R1+ myeloid cells from an early phase of the PDAC model suppressed T cell proliferation and cytotoxicity. IL-10R2+ myeloid cells indicated tumour recurrence 130 days sooner than CA19-9 in post-pancreatectomy patients. CONCLUSIONS: IL-10R2+/IL-22R1+ myeloid cells in the peripheral blood might be an early marker of PDAC prognosis.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Interleukin-10 Receptor beta Subunit , Myeloid Cells , Neoplasm Recurrence, Local , Pancreatic Neoplasms , Receptors, Interleukin , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/blood , Humans , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/blood , Mice , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Receptors, Interleukin/genetics , Myeloid Cells/metabolism , Myeloid Cells/pathology , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Interleukin-10 Receptor beta Subunit/genetics , Female , Male , Tumor Microenvironment/genetics , Cell Line, Tumor
11.
Front Endocrinol (Lausanne) ; 15: 1343977, 2024.
Article in English | MEDLINE | ID: mdl-38628584

ABSTRACT

Background: This study aimed to characterize the clinical phenotype and genetic variations in patients with Kallmann syndrome (KS). Methods: This study involved the collection and analysis of clinical data from an individual with sporadic KS. Following this, peripheral blood samples were obtained from the patient and his parents. Genomic deoxyribonucleic acid was extracted and subjected to whole-exome sequencing and genomic copy number variation (CNV) detection. Finally, Sanger sequencing was performed to validate the suspected pathogenic variants. Results: Whole-exome sequencing confirmed that the child carried both the IL17RD variant (c.2101G>A, p.Gly701Ser) inherited from the mother and the new CPEB4 variant (c.1414C>T, p.Arg472*). No pathogenic CNVs were identified in CNV testing. Conclusion: Bioinformatics analysis shows that the IL17RD protein undergoing Gly701Ser mutation and is speculated to be phosphorylated and modified, thereby disrupting fibroblast growth factor signaling. This study also suggested that the CPEB4 might play a crucial role in the key signaling process affecting olfactory bulb morphogenesis. Overall, the findings of this study broaden the gene expression profile of KS-related pathogenic genes. This offers a new avenue for exploring the pathogenic mechanism of KS and provides valuable insights for precise clinical diagnosis and treatment strategies for this condition.


Subject(s)
Kallmann Syndrome , Female , Child , Humans , Kallmann Syndrome/genetics , DNA Copy Number Variations , Mutation , Phenotype , Mothers , Receptors, Interleukin/genetics , RNA-Binding Proteins/genetics
12.
Proc Natl Acad Sci U S A ; 121(19): e2321836121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38687788

ABSTRACT

Interleukin 22 (IL-22) promotes intestinal barrier integrity, stimulating epithelial cells to enact defense mechanisms against enteric infections, including the production of antimicrobial peptides. IL-22 binding protein (IL-22BP) is a soluble decoy encoded by the Il22ra2 gene that decreases IL-22 bioavailability, attenuating IL-22 signaling. The impact of IL-22BP on gut microbiota composition and functioning is poorly understood. We found that Il22ra2-/- mice are better protected against Clostridioides difficile and Citrobacter rodentium infections. This protection relied on IL-22-induced antimicrobial mechanisms before the infection occurred, rather than during the infection itself. Indeed, the gut microbiota of Il22ra2-/- mice mitigated infection of wild-type (WT) mice when transferred via cohousing or by cecal microbiota transplantation. Indicator species analysis of WT and Il22ra2-/- mice with and without cohousing disclosed that IL22BP deficiency yields a gut bacterial composition distinct from that of WT mice. Manipulation of dietary fiber content, measurements of intestinal short-chain fatty acids and oral treatment with acetate disclosed that resistance to C. difficile infection is related to increased production of acetate by Il22ra2-/--associated microbiota. Together, these findings suggest that IL-22BP represents a potential therapeutic target for those at risk for or with already manifest infection with this and perhaps other enteropathogens.


Subject(s)
Citrobacter rodentium , Clostridioides difficile , Enterobacteriaceae Infections , Gastrointestinal Microbiome , Interleukin-22 , Mice, Knockout , Animals , Mice , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/prevention & control , Receptors, Interleukin/metabolism , Receptors, Interleukin/genetics , Interleukins/metabolism , Mice, Inbred C57BL , Clostridium Infections/immunology , Clostridium Infections/microbiology , Clostridium Infections/prevention & control
13.
Pharmacol Res ; 203: 107178, 2024 May.
Article in English | MEDLINE | ID: mdl-38583686

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is one of the most fatal chronic interstitial lung diseases with unknown pathogenesis, current treatments cannot truly reverse the progression of the disease. Pulmonary macrophages, especially bone marrow derived pro-fibrotic macrophages, secrete multiple kinds of profibrotic mediators (SPP1, CD206, CD163, IL-10, CCL18…), thus further promote myofibroblast activation and fibrosis procession. IL20Rb is a cell-surface receptor that belongs to IL-20 family. The role of IL20Rb in macrophage activation and pulmonary fibrosis remains unclear. In this study, we established a bleomycin-induced pulmonary fibrosis model, used IL4/13-inducing THP1 cells to induce profibrotic macrophage (M2-like phenotype) polarization models. We found that IL20Rb is upregulated in the progression of pulmonary fibrosis, and its absence can alleviate the progression of pulmonary fibrosis. In addition, we demonstrated that IL20Rb promote the activation of bone marrow derived profibrotic macrophages by regulating the Jak2/Stat3 and Pi3k/Akt signaling pathways. In terms of therapeutic strategy, we used IL20Rb neutralizing antibodies for animal administration, which was found to alleviate the progression of IPF. Our results suggest that IL20Rb plays a profibrotic role by promoting profibrotic macrophage polarization, and IL20Rb may become a potential therapeutic target for IPF. Neutralizing antibodies against IL20Rb may become a potential drug for the clinical treatment of IPF.


Subject(s)
Bleomycin , Macrophage Activation , Macrophages , Animals , Humans , Male , Mice , Bleomycin/toxicity , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/immunology , Janus Kinase 2/metabolism , Lung/pathology , Lung/metabolism , Lung/immunology , Lung/drug effects , Macrophages/metabolism , Macrophages/immunology , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/chemically induced , Receptors, Interleukin/metabolism , Signal Transduction , STAT3 Transcription Factor/metabolism , THP-1 Cells
14.
Nature ; 628(8008): 620-629, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509369

ABSTRACT

Epstein-Barr virus (EBV) infection can engender severe B cell lymphoproliferative diseases1,2. The primary infection is often asymptomatic or causes infectious mononucleosis (IM), a self-limiting lymphoproliferative disorder3. Selective vulnerability to EBV has been reported in association with inherited mutations impairing T cell immunity to EBV4. Here we report biallelic loss-of-function variants in IL27RA that underlie an acute and severe primary EBV infection with a nevertheless favourable outcome requiring a minimal treatment. One mutant allele (rs201107107) was enriched in the Finnish population (minor allele frequency = 0.0068) and carried a high risk of severe infectious mononucleosis when homozygous. IL27RA encodes the IL-27 receptor alpha subunit5,6. In the absence of IL-27RA, phosphorylation of STAT1 and STAT3 by IL-27 is abolished in T cells. In in vitro studies, IL-27 exerts a synergistic effect on T-cell-receptor-dependent T cell proliferation7 that is deficient in cells from the patients, leading to impaired expansion of potent anti-EBV effector cytotoxic CD8+ T cells. IL-27 is produced by EBV-infected B lymphocytes and an IL-27RA-IL-27 autocrine loop is required for the maintenance of EBV-transformed B cells. This potentially explains the eventual favourable outcome of the EBV-induced viral disease in patients with IL-27RA deficiency. Furthermore, we identified neutralizing anti-IL-27 autoantibodies in most individuals who developed sporadic infectious mononucleosis and chronic EBV infection. These results demonstrate the critical role of IL-27RA-IL-27 in immunity to EBV, but also the hijacking of this defence by EBV to promote the expansion of infected transformed B cells.


Subject(s)
Epstein-Barr Virus Infections , Interleukin-27 , Receptors, Interleukin , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Young Adult , Alleles , B-Lymphocytes/pathology , B-Lymphocytes/virology , CD8-Positive T-Lymphocytes/pathology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/therapy , Finland , Gene Frequency , Herpesvirus 4, Human , Homozygote , Infectious Mononucleosis/complications , Infectious Mononucleosis/genetics , Infectious Mononucleosis/therapy , Interleukin-27/immunology , Interleukin-27/metabolism , Loss of Function Mutation , Receptors, Interleukin/deficiency , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Treatment Outcome
15.
Br J Dermatol ; 190(6): 798-810, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38345154

ABSTRACT

Prurigo nodularis (PN) is an inflammatory skin condition characterized by intensely pruritic nodules on the skin. Patients with PN suffer from an intractable itch-scratch cycle leading to impaired sleep, psychosocial distress and a significant disruption in quality of life. The pathogenesis of PN is associated with immune and neural dysregulation, mediated by inflammatory cytokines [such as interleukin (IL)-4, -13, -17, -22 and -31] and neuropeptides (such as substance P and calcitonin gene-related peptide). There is a role for type 2 inflammation in PN in addition to T-helper (Th)17 and Th22-mediated inflammation. The neuroimmune feedback loop in PN involves neuropeptides released from nerve fibres that cause vasodilation and further recruitment of inflammatory cells. Inflammatory cells, particularly mast cells and eosinophils, degranulate and release neurotoxins, as well as nerve growth factor, which may contribute to the neuronal hyperplasia seen in the dermis of patients with PN and neural sensitization. Recent studies have also indicated underlying genetic susceptibility to PN in addition to environmental factors, the existence of various disease endotypes centred around degrees of type 2 inflammation or underlying myelopathy or spinal disc disease, and significant race and ethnicity-based differences, with African Americans having densely fibrotic skin lesions. Dupilumab became the first US Food and Drug Administration-approved therapeutic for PN, and there are several other agents currently in development. The anti-IL-31 receptor A inhibitor nemolizumab is in late-stage development with positive phase III data reported. In addition, the oral Janus kinase (JAK) 1 inhibitors, abrocitinib and povorcitinib, are in phase II trials while a topical JAK1/2 inhibitor, ruxolitinib, is in phase III studies.


Prurigo nodularis (PN) is a chronic skin condition featuring extremely itchy nodules on the skin of the legs, arms and trunk of the body. PN affects approximately 72 per 100 000 people and the severe itch associated with the condition can negatively impact a person's sleep, work and social life. However, the cause of PN remains unclear. Current understanding of PN is based on imbalances in the immune system leading to widespread inflammation as well as dysregulation of the nerves in the skin. Immune molecules released from T cells [such as interleukin (IL)-4, -13, -31, -17, -22 and -31] increase systemic inflammation and are elevated in people with PN. Activated inflammatory cells (such as mast cells or eosinophils) may also release factors that promote inflammation, itch and neural changes within the skin. Neural dysregulation in PN features a lower density of itch-sensing nerve fibres in the epidermis (upper layer of the skin) and a higher density of itch-sensing nerve fibres in the dermis (lower layer of the skin). Because the pathogenesis of PN is not fully understood, the therapies available for PN have had limited success in reducing itch and nodules. The only drug currently approved for PN in the USA and Europe is dupilumab, an IL-4Rα inhibitor that blocks signalling through IL-4 and IL-13, which is undergoing post-marketing surveillance. Other new drugs are being assessed in various phases of clinical trials, including nemolizumab, vixarelimab, barzolvolimab, ruxolitinib, abrocitinib, povorcitinib and nalbuphine.


Subject(s)
Prurigo , Humans , Prurigo/etiology , Prurigo/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Nitriles/therapeutic use , Receptors, Interleukin/antagonists & inhibitors , Cytokines/metabolism , Pyrazoles
16.
Biochem Biophys Res Commun ; 701: 149552, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38335918

ABSTRACT

The Interleukin-17 (IL17) family is a group of cytokines implicated in the etiology of several inflammatory diseases. Interleukin-17 receptor D (IL17RD), also known as Sef (similar expression to fibroblast growth factor) belonging to the family of IL17 receptors, has been shown to modulate IL17A-associated inflammatory phenotypes. The objective of this study was to test the hypothesis that IL17RD promotes endothelial cell activation and consequent leukocyte adhesion. We utilized primary human aortic endothelial cells and demonstrated that RNAi targeting of IL17RD suppressed transcript levels by 83 % compared to non-targeted controls. Further, RNAi knockdown of IL17RD decreased the adhesion of THP-1 monocytic cells onto a monolayer of aortic endothelial cells in response to IL17A. Additionally, we determined that IL17A did not significantly enhance the activation of canonical MAPK and NFκB pathways in endothelial cells, and further did not significantly affect the expression of VCAM-1 and ICAM-1 in aortic endothelial cells, which is contrary to previous findings. We also determined the functional relevance of our findings in vivo by comparing the expression of endothelial VCAM-1 and ICAM-1 and leukocyte infiltration in the aorta in Western diet-fed Il17rd null versus wild-type mice. Our results showed that although Il17rd null mice do not have significant alteration in aortic expression of VCAM-1 and ICAM-1 in endothelial cells, they exhibit decreased accumulation of proinflammatory monocytes and neutrophils, suggesting that endothelial IL17RD induced in vivo myeloid cell accumulation is not dependent on upregulation of VCAM-1 and ICAM-1 expression. We further performed proteomics analysis to identify potential molecular mediators of the IL17A/IL17RD signaling axis. Collectively, our results underscore a critical role for Il17rd in the regulation of aortic myeloid cell infiltration in the context of Western diet feeding.


Subject(s)
Endothelial Cells , Intercellular Adhesion Molecule-1 , Humans , Animals , Mice , Intercellular Adhesion Molecule-1/metabolism , Endothelial Cells/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Receptors, Interleukin-17/genetics , Receptors, Interleukin-17/metabolism , Diet, Western , Aorta/metabolism , Myeloid Cells/metabolism , Monocytes/metabolism , Cell Adhesion , Receptors, Interleukin/metabolism
17.
N Engl J Med ; 390(6): 510-521, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38324484

ABSTRACT

BACKGROUND: The use of monoclonal antibodies has changed the treatment of several immune-mediated inflammatory diseases, including psoriasis. However, these large proteins must be administered by injection. JNJ-77242113 is a novel, orally administered interleukin-23-receptor antagonist peptide that selectively blocks interleukin-23 signaling and downstream cytokine production. METHODS: In this phase 2 dose-finding trial, we randomly assigned patients with moderate-to-severe plaque psoriasis to receive JNJ-77242113 at a dose of 25 mg once daily, 25 mg twice daily, 50 mg once daily, 100 mg once daily, or 100 mg twice daily or placebo for 16 weeks. The primary end point was a reduction from baseline of at least 75% in the Psoriasis Area and Severity Index (PASI) score (PASI 75 response; PASI scores range from 0 to 72, with higher scores indicating greater extent or severity of psoriasis) at week 16. RESULTS: A total of 255 patients underwent randomization. The mean PASI score at baseline was 19.1. The mean duration of psoriasis was 18.2 years, and 78% of the patients across all the trial groups had previously received systemic treatments. At week 16, the percentages of patients with a PASI 75 response were higher among those in the JNJ-77242113 groups (37%, 51%, 58%, 65%, and 79% in the 25-mg once-daily, 25-mg twice-daily, 50-mg once-daily, 100-mg once-daily, and 100-mg twice-daily groups, respectively) than among those in the placebo group (9%), a finding that showed a significant dose-response relationship (P<0.001). The most common adverse events included coronavirus disease 2019 (in 12% of the patients in the placebo group and in 11% of those across the JNJ-77242113 dose groups) and nasopharyngitis (in 5% and 7%, respectively). The percentages of patients who had at least one adverse event were similar in the combined JNJ-77242113 dose group (52%) and the placebo group (51%). There was no evidence of a dose-related increase in adverse events across the JNJ-77242113 dose groups. CONCLUSIONS: After 16 weeks of once- or twice-daily oral administration, treatment with the interleukin-23-receptor antagonist peptide JNJ-77242113 showed greater efficacy than placebo in patients with moderate-to-severe plaque psoriasis. (Funded by Janssen Research and Development; FRONTIER 1 ClinicalTrials.gov number, NCT05223868.).


Subject(s)
Antibodies, Monoclonal , Psoriasis , Receptors, Interleukin , Humans , Double-Blind Method , Interleukin-23/immunology , Peptides/administration & dosage , Peptides/adverse effects , Peptides/therapeutic use , Psoriasis/drug therapy , Psoriasis/immunology , Severity of Illness Index , Treatment Outcome , Receptors, Interleukin/antagonists & inhibitors , Administration, Oral , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/therapeutic use , Dose-Response Relationship, Drug
18.
Phytomedicine ; 124: 155280, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183697

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine condition in premenopausal women. Troxerutin, a common clinical anti-coagulant agent, was shown to work as a strong IL-22 boosting agent counteracting the hyperactivated gonadotrophin releasing hormone (GnRH) neurons and heightened GnRH release, the neuroendocrine origin of PCOS with unknown mechanism in rats. Exploring the off-label use of troxerutin medication for PCOS is thus sorely needed. METHODS: Serum IL-22 content and hypothalamic IL-22 protein were detected. Inflammatory factor levels in hypothalamo-pituitary were evaluated. Immunofluorescence staining was employed to determine the activation and M1/M2-prone polarization of microglia in arcuate hypothalamus and median eminence. RNA-sequencing and transcriptome analysis were applied to explore the potential driver of microglia M2-polarization in response to IL-22 bolstering effect. The function of microglial IL-22/IL-22R1/IRF3 system was further verified using in vivo knockdown of IL-22R1 and a potent IRF3 inhibitor in BV2 microglial cell lines in vitro. RESULTS: Troxerutin augmented serum IL-22 content, and its consequent spillover into the hypothalamus led to the direct activation of IL-22R1/IRF3 system on microglia, thereby promoted microglia M2 polarization in arcuate hypothalamus and median eminence, dampened hypothalamic neuroinflammation, inhibited hyperactive GnRH and rescued a breadth of PCOS-like traits in dihydrotestosterone (DHT) rats. The salutary effects of troxerutin treatment on hypothalamic neuroinflammation, microglial M1/2 polarization, GnRH secretion and numerous PCOS-like features were blocked by in vivo knockdown of IL-22R1. Moreover, evidence in vitro illustrated that IL-22 supplement to BV-2 microglia cell lines promoted M2 polarization, overproduction of anti-inflammatory marker and limitation of pro-inflammatory factors, whereas these IL-22 effects were blunted by geldanamycin, a potent IRF3 inhibitor. CONCLUSION: Here, the present study reported the potential off-label use of troxerutin medication, a common clinical anti-coagulant agent and an endogenous IL-22 enhancer, for multiple purposes in PCOS. The rational underlying the application of troxerutin as a therapeutic choice in PCOS derived from its activity as an IL-22 memetic agent targeting the neuro-endocrine origin of PCOS, and its promotive impact on microglia M2 polarization via activating microglial IL-22R1/IRF3 system in the arcuate hypothalamus and median eminence of DHT female rats.


Subject(s)
Hydroxyethylrutoside/analogs & derivatives , Polycystic Ovary Syndrome , Receptors, Interleukin , Humans , Rats , Female , Animals , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy , Dihydrotestosterone/adverse effects , Dihydrotestosterone/metabolism , Microglia , Neuroinflammatory Diseases , Interleukin-22 , Hypothalamus/metabolism , Gonadotropin-Releasing Hormone/adverse effects , Gonadotropin-Releasing Hormone/metabolism , Interferon Regulatory Factor-3/metabolism
19.
Eur J Immunol ; 54(1): e2250348, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37837262

ABSTRACT

The importance of IL-23 and its specific receptor, IL-23R, in the pathogenesis of several chronic inflammatory diseases has been established, but the underlying pathological mechanisms are not fully understood. This review focuses on IL-23R expression and regulation in immune cells.


Subject(s)
Receptors, Interleukin , Signal Transduction , Receptors, Interleukin/genetics , Interleukin-23/metabolism
20.
Inflammation ; 47(2): 807-821, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38117410

ABSTRACT

Interleukin-27 receptor (IL-27R) is expressed in a variety of immune cells and structural cells, including dendritic cells. The mechanism of IL-27 in asthma has not been fully elucidated. This study aimed to examine whether IL-27 regulated the CD39/ATP axis of dendritic cells in asthma. Our results showed that in ovalbumin (OVA)-induced asthma mouse model, IL-27Rα-/- asthmatic mice showed increased airway resistance, increased infiltration of inflammatory cells in lung tissue, proliferation of goblet cells, enhanced expression of Muc5 AC around airway epithelium, increased total number of cells and eosinophils, increased levels of total IgE, OVA-IgE, IL-4, IL-5, IL-13 and IL-17 A, and increased expression of transcription factors GATA-3 and RORγt in lung tissue. The expression of CD39 mRNA and protein in the lung tissue of IL-27Rα-/- asthmatic mice decreased, and the expression of NLRP3, ASC and Caspase-1 in NLRP3 inflammasome components increased. The concentration of ATP was significantly increased compared with WT asthmatic mice. In vitro experiments showed that the expression of CD39 in lung dendritic cells of IL-27Rα-/- asthmatic mice decreased, while the expression of NLRP3 inflammasome components NLRP3, ASC and Caspase-1 increased. These findings indicate that IL-27 directly and indirectly regulates immunoinflammatory responses in asthma by acting on dendritic cells CD39/ATP Axis.


Subject(s)
Adenosine Triphosphate , Antigens, CD , Apyrase , Asthma , Dendritic Cells , Animals , Mice , Adenosine Triphosphate/metabolism , Antigens, CD/metabolism , Apyrase/metabolism , Asthma/immunology , Asthma/metabolism , Asthma/chemically induced , Dendritic Cells/metabolism , Dendritic Cells/immunology , Inflammation/metabolism , Inflammation/immunology , Interleukins/metabolism , Lung/pathology , Lung/metabolism , Lung/immunology , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Ovalbumin/toxicity , Receptors, Interleukin/metabolism , Respiratory Hypersensitivity/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...