Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 2173, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846289

ABSTRACT

The closely related inhibitory killer-cell immunoglobulin-like receptors (KIR), KIR2DL2 and KIR2DL3, regulate the activation of natural killer cells (NK) by interacting with the human leukocyte antigen-C1 (HLA-C1) group of molecules. KIR2DL2, KIR2DL3 and HLA-C1 are highly polymorphic, with this variation being associated with differences in the onset and progression of some human diseases. However, the molecular bases underlying these associations remain unresolved. Here, we determined the crystal structures of KIR2DL2 and KIR2DL3 in complex with HLA-C*07:02 presenting a self-epitope. KIR2DL2 differed from KIR2DL3 in docking modality over HLA-C*07:02 that correlates with variabilty of recognition of HLA-C1 allotypes. Mutagenesis assays indicated differences in the mechanism of HLA-C1 allotype recognition by KIR2DL2 and KIR2DL3. Similarly, HLA-C1 allotypes differed markedly in their capacity to inhibit activation of primary NK cells. These functional differences derive, in part, from KIR2DS2 suggesting KIR2DL2 and KIR2DL3 binding geometries combine with other factors to distinguish HLA-C1 functional recognition.


Subject(s)
HLA-C Antigens/metabolism , Molecular Docking Simulation , Receptors, KIR2DL2/chemistry , Receptors, KIR2DL2/metabolism , Receptors, KIR2DL3/chemistry , Receptors, KIR2DL3/metabolism , HEK293 Cells , Humans , Killer Cells, Natural/immunology , Ligands , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Peptides/chemistry , Protein Binding , Protein Interaction Mapping
2.
Sci Rep ; 6: 23689, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27030405

ABSTRACT

KIR2DL2 and KIR2DL3 segregate as alleles of a single locus in the centromeric motif of the killer cell immunoglobulin-like receptor (KIR) gene family. Although KIR2DL2/L3 polymorphism is known to be associated with many human diseases and is an important factor for donor selection in allogeneic hematopoietic stem cell transplantation, the molecular determinant of functional diversity among various alleles is unclear. In this study we found that KIR2DL2/L3 with glutamic acid at position 35 (E(35)) are functionally stronger than those with glutamine at the same position (Q(35)). Cytotoxicity assay showed that NK cells from HLA-C1 positive donors with KIR2DL2/L3-E(35) could kill more target cells lacking their ligands than NK cells with the weaker -Q(35) alleles, indicating better licensing of KIR2DL2/L3(+) NK cells with the stronger alleles. Molecular modeling analysis reveals that the glutamic acid, which is negatively charged, interacts with positively charged histidine located at position 55, thereby stabilizing KIR2DL2/L3 dimer and reducing entropy loss when KIR2DL2/3 binds to HLA-C ligand. The results of this study will be important for future studies of KIR2DL2/L3-associated diseases as well as for donor selection in allogeneic stem cell transplantation.


Subject(s)
Glutamic Acid/genetics , Glutamine/genetics , HLA-C Antigens/genetics , Killer Cells, Natural/immunology , Polymorphism, Single Nucleotide , Receptors, KIR2DL2/genetics , Receptors, KIR2DL3/genetics , Alleles , Animals , Cell Line , Cytotoxicity, Immunologic , Gene Expression Regulation , Genotype , Glutamic Acid/chemistry , Glutamic Acid/immunology , Glutamine/chemistry , Glutamine/immunology , HLA-C Antigens/chemistry , HLA-C Antigens/immunology , Humans , Killer Cells, Natural/cytology , Mice , Mice, Inbred NOD , Mice, SCID , Models, Molecular , Primary Cell Culture , Protein Binding , Protein Domains , Protein Structure, Secondary , Receptors, KIR2DL2/chemistry , Receptors, KIR2DL2/immunology , Receptors, KIR2DL3/chemistry , Receptors, KIR2DL3/immunology , Signal Transduction
3.
J Immunol ; 190(12): 6198-208, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23686481

ABSTRACT

Although extensive homology exists between their extracellular domains, NK cell inhibitory receptors killer Ig-like receptor (KIR) 2DL2*001 and KIR2DL3*001 have previously been shown to differ substantially in their HLA-C binding avidity. To explore the largely uncharacterized impact of allelic diversity, the most common KIR2DL2/3 allelic products in European American and African American populations were evaluated for surface expression and binding affinity to their HLA-C group 1 and 2 ligands. Although no significant differences in the degree of cell membrane localization were detected in a transfected human NKL cell line by flow cytometry, surface plasmon resonance and KIR binding to a panel of HLA allotypes demonstrated that KIR2DL3*005 differed significantly from other KIR2DL3 allelic products in its ability to bind HLA-C. The increased affinity and avidity of KIR2DL3*005 for its ligand was also demonstrated to have a larger impact on the inhibition of IFN-γ production by the human KHYG-1 NK cell line compared with KIR2DL3*001, a low-affinity allelic product. Site-directed mutagenesis established that the combination of arginine at residue 11 and glutamic acid at residue 35 in KIR2DL3*005 were critical to the observed phenotype. Although these residues are distal to the KIR/HLA-C interface, molecular modeling suggests that alteration in the interdomain hinge angle of KIR2DL3*005 toward that found in KIR2DL2*001, another strong receptor of the KIR2DL2/3 family, may be the cause of this increased affinity. The regain of inhibitory capacity by KIR2DL3*005 suggests that the rapidly evolving KIR locus may be responding to relatively recent selective pressures placed upon certain human populations.


Subject(s)
Genetic Variation , HLA-C Antigens/metabolism , Receptors, KIR2DL2/genetics , Receptors, KIR2DL3/genetics , Black or African American/genetics , Alleles , Amino Acid Sequence , Cluster Analysis , Flow Cytometry , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Ligands , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Polymerase Chain Reaction , Protein Binding/genetics , Receptors, KIR2DL2/chemistry , Receptors, KIR2DL2/metabolism , Receptors, KIR2DL3/chemistry , Receptors, KIR2DL3/metabolism , White People/genetics
4.
Nature ; 476(7358): 96-100, 2011 Aug 03.
Article in English | MEDLINE | ID: mdl-21814282

ABSTRACT

Natural killer (NK) cells have an important role in the control of viral infections, recognizing virally infected cells through a variety of activating and inhibitory receptors. Epidemiological and functional studies have recently suggested that NK cells can also contribute to the control of HIV-1 infection through recognition of virally infected cells by both activating and inhibitory killer immunoglobulin-like receptors (KIRs). However, it remains unknown whether NK cells can directly mediate antiviral immune pressure in vivo in humans. Here we describe KIR-associated amino-acid polymorphisms in the HIV-1 sequence of chronically infected individuals, on a population level. We show that these KIR-associated HIV-1 sequence polymorphisms can enhance the binding of inhibitory KIRs to HIV-1-infected CD4(+) T cells, and reduce the antiviral activity of KIR-positive NK cells. These data demonstrate that KIR-positive NK cells can place immunological pressure on HIV-1, and that the virus can evade such NK-cell-mediated immune pressure by selecting for sequence polymorphisms, as was previously described for virus-specific T cells and neutralizing antibodies. NK cells might therefore have a previously underappreciated role in contributing to viral evolution.


Subject(s)
Adaptation, Physiological/immunology , Evolution, Molecular , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , Immune Evasion/immunology , Killer Cells, Natural/immunology , Adaptation, Physiological/genetics , Antibodies, Neutralizing/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Decision Trees , Genotype , HIV-1/genetics , HIV-1/physiology , Host-Pathogen Interactions/immunology , Human Immunodeficiency Virus Proteins/genetics , Human Immunodeficiency Virus Proteins/immunology , Human Immunodeficiency Virus Proteins/metabolism , Humans , Polymorphism, Genetic , Receptors, KIR/deficiency , Receptors, KIR/genetics , Receptors, KIR/immunology , Receptors, KIR/metabolism , Receptors, KIR2DL2/chemistry , Receptors, KIR2DL2/deficiency , Receptors, KIR2DL2/genetics , Receptors, KIR2DL2/immunology , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/immunology , Viral Regulatory and Accessory Proteins/metabolism , Virus Replication , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism
5.
Blood ; 114(13): 2667-77, 2009 Sep 24.
Article in English | MEDLINE | ID: mdl-19553639

ABSTRACT

Inhibitory-cell killer immunoglobulin-like receptors (KIR) negatively regulate natural killer (NK) cell-mediated killing of HLA class I-expressing tumors. Lack of KIR-HLA class I interactions has been associated with potent NK-mediated antitumor efficacy and increased survival in acute myeloid leukemia (AML) patients upon haploidentical stem cell transplantation from KIR-mismatched donors. To exploit this pathway pharmacologically, we generated a fully human monoclonal antibody, 1-7F9, which cross-reacts with KIR2DL1, -2, and -3 receptors, and prevents their inhibitory signaling. The 1-7F9 monoclonal antibody augmented NK cell-mediated lysis of HLA-C-expressing tumor cells, including autologous AML blasts, but did not induce killing of normal peripheral blood mononuclear cells, suggesting a therapeutic window for preferential enhancement of NK-cell cytotoxicity against malignant target cells. Administration of 1-7F9 to KIR2DL3-transgenic mice resulted in dose-dependent rejection of HLA-Cw3-positive target cells. In an immunodeficient mouse model in which inoculation of human NK cells alone was unable to protect against lethal, autologous AML, preadministration of 1-7F9 resulted in long-term survival. These data show that 1-7F9 confers specific, stable blockade of KIR, boosting NK-mediated killing of HLA-matched AML blasts in vitro and in vivo, providing a preclinical basis for initiating phase 1 clinical trials with this candidate therapeutic antibody.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Killer Cells, Natural/drug effects , Neoplasms/therapy , Receptors, KIR/immunology , Animals , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cells, Cultured , Cytotoxicity, Immunologic/drug effects , Humans , Immunotherapy/methods , Killer Cells, Natural/immunology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Neoplasms/immunology , Neoplasms/pathology , Receptors, KIR/antagonists & inhibitors , Receptors, KIR2DL1/chemistry , Receptors, KIR2DL1/genetics , Receptors, KIR2DL1/immunology , Receptors, KIR2DL2/chemistry , Receptors, KIR2DL2/genetics , Receptors, KIR2DL2/immunology , Receptors, KIR2DL3/genetics , Receptors, KIR2DL3/immunology , Up-Regulation/drug effects , Up-Regulation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...