Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Med ; 5(4): 335-347.e3, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38521068

ABSTRACT

BACKGROUND: Vaccine-related acute myocarditis is recognized as a rare and specific vaccine complication following mRNA-based COVID-19 vaccinations. The precise mechanisms remain unclear. We hypothesized that natural killer (NK) cells play a central role in its pathogenesis. METHODS: Samples from 60 adolescents with vaccine-related myocarditis were analyzed, including pro-inflammatory cytokines, cardiac troponin T, genotyping, and immunophenotyping of the corresponding activation subsets of NK cells, monocytes, and T cells. Results were compared with samples from 10 vaccinated individuals without myocarditis and 10 healthy controls. FINDINGS: Phenotypically, high levels of serum cytokines pivotal for NK cells, including interleukin-1ß (IL-1ß), interferon α2 (IFN-α2), IL-12, and IFN-γ, were observed in post-vaccination patients with myocarditis, who also had high percentage of CD57+ NK cells in blood, which in turn correlated positively with elevated levels of cardiac troponin T. Abundance of the CD57+ NK subset was particularly prominent in males and in those after the second dose of vaccination. Genotypically, killer cell immunoglobulin-like receptor (KIR) KIR2DL5B(-)/KIR2DS3(+)/KIR2DS5(-)/KIR2DS4del(+) was a risk haplotype, in addition to single-nucleotide polymorphisms related to the NK cell-specific expression quantitative trait loci DNAM-1 and FuT11, which also correlated with cardiac troponin T levels in post-vaccination patients with myocarditis. CONCLUSION: Collectively, these data suggest that NK cell activation by mRNA COVID-19 vaccine contributed to the pathogenesis of acute myocarditis in genetically and epidemiologically vulnerable subjects. FUNDING: This work was funded by the Hong Kong Collaborative Research Fund (CRF) 2020/21 and the CRF Coronavirus and Novel Infectious Diseases Research Exercises (reference no. C7149-20G).


Subject(s)
COVID-19 , Myocarditis , Male , Adolescent , Humans , Myocarditis/etiology , Myocarditis/metabolism , COVID-19 Vaccines/adverse effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Troponin T/metabolism , Interferon-gamma/metabolism , COVID-19/prevention & control , Killer Cells, Natural/metabolism , Cytokines/metabolism , Vaccination/adverse effects , Receptors, KIR2DL5/metabolism
2.
Mol Cell Proteomics ; 18(11): 2310-2323, 2019 11.
Article in English | MEDLINE | ID: mdl-31308249

ABSTRACT

Receptors expressed on the plasma membrane and their interacting partners critically regulate cellular communication during homeostasis and disease, and as such represent main therapeutic targets. Despite its importance for drug development, receptor-ligand proteomics has remained a daunting field, in part because of the challenges associated to the study of membrane-expressed proteins. Here, to enable sensitive detection of receptor-ligand interactions in high throughput, we implement a new platform, the Conditioned Media AlphaScreen, for interrogation of a library consisting of most single transmembrane human proteins. Using this method to study key immune receptors, we identify and further validate the interleukin receptor IL20RA as the first binding partner for the checkpoint inhibitor B7-H3. Further, KIR2DL5, a natural killer cell protein that had remained orphan, is uncovered as a functional binding partner for the poliovirus receptor (PVR). This interaction is characterized using orthogonal assays, which demonstrate that PVR specifically engages KIR2DL5 on natural killer cells leading to inhibition of cytotoxicity. Altogether, these results reveal unappreciated links between protein families that may importantly influence receptor-driven functions during disease. Applicable to any target of interest, this technology represents a versatile and powerful approach for elucidation of receptor-ligand interactomes, which is essential to understand basic aspects of the biology of the plasma membrane proteins and ultimately inform the development of novel therapeutic strategies.


Subject(s)
B7 Antigens/metabolism , Extracellular Matrix/metabolism , Killer Cells, Natural/metabolism , Receptors, Interleukin/metabolism , Receptors, KIR2DL5/metabolism , Receptors, Virus/metabolism , Cell Communication , HEK293 Cells , Humans , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Ligands , Protein Binding , Protein Interaction Maps
3.
PLoS One ; 12(9): e0185160, 2017.
Article in English | MEDLINE | ID: mdl-28938026

ABSTRACT

Previously, we showed that Killer Immunoglobulin-like Receptor (KIR)3DS1 homozygotes (hmz) are more frequent in HIV exposed seronegative (HESN) than in recently HIV infected (HIV+) individuals. KIR3DS1 encodes an activating Natural Killer (NK) cell receptor (NKR). The link between KIR genotype and HIV outcomes likely arises from the function that NK cells acquire through expression of particular NKRs. An initial screen of 97 HESN and 123 HIV+ subjects for the frequency of KIR region gene carriage observed between-group differences for several telomeric KIR region loci. In a larger set of up to 106 HESN and 439 HIV+ individuals, more HESN than HIV+ subjects were KIR3DS1 homozygotes, lacked a full length KIR2DS4 gene and carried the telomeric group B KIR haplotype motif, TB01. TB01 is characterized by the presence of KIR3DS1, KIR2DL5A, KIR2DS3/5 and KIR2DS1, in linkage disequilibrium with each other. We assessed which of the TB01 encoded KIR gene products contributed to NK cell responsiveness by stimulating NK cells from 8 HIV seronegative KIR3DS1 and TB01 motif homozygotes with 721.221 HLA null cells and evaluating the frequency of KIR3DS1+/-KIR2DL5+/-, KIR3DS1+/-KIR2DS1+/-, KIR3DS1+/-KIR2DS5+/- NK cells secreting IFN-γ and/or expressing CD107a. A higher frequency of NK cells expressing, versus not, KIR3DS1 responded to 721.221 stimulation. KIR2DL5A+, KIR2DS1+ and KIR2DS5+ NK cells did not contribute to 721.221 responses or modulate those by KIR3DS1+ NK cells. Thus, of the TB01 KIR gene products, only KIR3DS1 conferred responsiveness to HLA-null stimulation, demonstrating its ligation can activate ex vivo NK cells.


Subject(s)
HIV Infections/immunology , HIV Seronegativity , Killer Cells, Natural/immunology , Lymphocyte Activation , Receptors, KIR3DS1/genetics , Receptors, KIR3DS1/metabolism , Cells, Cultured , Coculture Techniques , Gene Frequency , Genetic Load , HIV Infections/genetics , HLA Antigens/immunology , Haplotypes , Humans , Linkage Disequilibrium , Prospective Studies , Receptors, KIR/genetics , Receptors, KIR/metabolism , Receptors, KIR2DL5/genetics , Receptors, KIR2DL5/metabolism , Receptors, KIR3DS1/chemistry , Telomere
4.
BMC Immunol ; 16: 35, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-26032326

ABSTRACT

BACKGROUND: Abnormal immune function is often an underlying component of illness pathophysiology and symptom presentation. Functional and phenotypic immune-related alterations may play a role in the obscure pathomechanism of Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). The objective of this study was to investigate the functional ability of innate and adaptive immune cells in moderate and severe CFS/ME patients. The 1994 Fukuda criteria for CFS/ME were used to define CFS/ME patients. CFS/ME participants were grouped based on illness severity with 15 moderately affected (moderate) and 12 severely affected (severe) CFS/ME patients who were age and sex matched with 18 healthy controls. Flow cytometric protocols were used for immunological analysis of dendritic cells, monocytes and neutrophil function as well as measures of lytic proteins and T, natural killer (NK) and B cell receptors. RESULTS: CFS/ME patients exhibited alterations in NK receptors and adhesion markers and receptors on CD4(+)T and CD8(+)T cells. Moderate CFS/ME patients had increased CD8(+) CD45RA effector memory T cells, SLAM expression on NK cells, KIR2DL5(+) on CD4(+)T cells and BTLA4(+) on CD4(+)T central memory cells. Moderate CFS/ME patients also had reduced CD8(+)T central memory LFA-1, total CD8(+)T KLRG1, naïve CD4(+)T KLRG1 and CD56(dim)CD16(-) NK cell CD2(+) and CD18(+)CD2(+). Severe CFS/ME patients had increased CD18(+)CD11c(-) in the CD56(dim)CD16(-) NK cell phenotype and reduced NKp46 in CD56(bright)CD16(dim) NK cells. CONCLUSIONS: This research accentuated the presence of immunological abnormalities in CFS/ME and highlighted the importance of assessing functional parameters of both innate and adaptive immune systems in the illness.


Subject(s)
Fatigue Syndrome, Chronic/immunology , Fatigue Syndrome, Chronic/pathology , Receptors, Immunologic/metabolism , Adult , B-Lymphocytes, Regulatory/immunology , Blood Cell Count , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Adhesion , Cell Separation , Cytotoxicity, Immunologic , Dendritic Cells/immunology , Fatigue Syndrome, Chronic/blood , Female , Flow Cytometry , Humans , Killer Cells, Natural/immunology , Male , Middle Aged , Monocytes/immunology , Neutrophils/immunology , Phenotype , Receptors, Antigen, B-Cell/metabolism , Receptors, KIR2DL5/metabolism
5.
J Immunol ; 182(6): 3628-37, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19265141

ABSTRACT

Humans and chimpanzees have orthologous MHC class I, but few orthologous killer cell Ig-like receptors (KIR). Most divergent are lineage III KIR, which in humans include the inhibitory KIR2DL1 and 2DL2/3 specific for HLA-C. Six lineage III chimpanzee KIR were identified as candidate inhibitory MHC-C receptors and studied using cytolytic assays, to assess the capacity of a defined KIR to function with a defined MHC class I allotype, and direct binding assays with KIR-Fc fusion proteins. Pt-KIR2DL6 and 2DL8 were demonstrated to be inhibitory C1 receptors with a specificity and specificity-determining residue (lysine 44) like KIR2DL3. Analogously, Pt-KIR2DL7 is like KIR2DL1, an inhibitory C2 receptor having methionine 44. Pt-KIR3DL4 and 3DL5 are unusual lineage III KIR with D0 domains, which are also inhibitory C2 receptors with methionine 44. Removal of D0 from KIR3DL, or its addition to KIR2DL, had no effect on KIR function. Pt-KIR2DL9, a fourth inhibitory C2 receptor, has glutamate 44, a previously uncharacterized specificity-determining residue that is absent from human KIR. Reconstruction of the ancestral hominoid KIR sequence shows it encoded lysine 44, indicating that KIR having methionine 44 and glutamate 44 subsequently evolved by independent point substitutions. Thus, MHC-C2-specific KIR have evolved independently on at least two occasions. None of the six chimpanzee KIR studied resembles KIR2DL2, which interacts strongly with C1 and cross-reacts with C2. Whereas human HLA-B allotypes that have functional C1 epitopes are either rare (HLA-B*73) or geographically localized (HLA-B*46), some 25% of Patr-B allotypes have the C1 epitope and are functional KIR ligands.


Subject(s)
Epitopes/classification , Epitopes/metabolism , HLA Antigens/metabolism , Histocompatibility Antigens/metabolism , Pan troglodytes/immunology , Receptors, KIR/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , Cytotoxicity Tests, Immunologic , Epitopes/genetics , HLA Antigens/genetics , Histocompatibility Antigens/genetics , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Ligands , Lysine/chemistry , Lysine/metabolism , Molecular Sequence Data , Pan troglodytes/genetics , Receptors, KIR/genetics , Receptors, KIR2DL4/genetics , Receptors, KIR2DL4/metabolism , Receptors, KIR2DL5/genetics , Receptors, KIR2DL5/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...