Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 361
Filter
1.
Front Immunol ; 15: 1389358, 2024.
Article in English | MEDLINE | ID: mdl-38736873

ABSTRACT

Introduction: Polymorphisms in the KIR and HLA genes contribute to the diversity of the NK cell repertoire. Extrinsic factors also play a role in modifying this repertoire. The best example is cytomegalovirus, which promotes the expansion of memory-like NK cells. However, the mechanisms governing this phenotypic structure are poorly understood. Furthermore, the influence of age and sex has been understudied. Methods: In this study, we examined these parameters in a cohort of 200 healthy volunteer blood donors, focusing on the major inhibitory KIR receptors and CD94/NKG2A, as well as the differentiation marker CD57 and the memory-like population marker NKG2C. Flow cytometry and two joint analyses, unsupervised and semi-supervised, helped define the impact of various intrinsic and extrinsic markers on the phenotypic structure of the NK cell repertoire. Results: In the KIR NK cell compartment, the KIR3DL1 gene is crucial, as unexpressed alleles lead to a repertoire dominated by KIR2D interacting only with HLA-C ligands, whereas an expressed KIR3DL1 gene allows for a greater diversity of NK cell subpopulations interacting with all HLA class I ligands. KIR2DL2 subsequently favors the KIR2D NK cell repertoire specific to C1/C2 ligands, whereas its absence promotes the expression of KIR2DL1 specific to the C2 ligand. The C2C2Bw4+ environment, marked by strong -21T motifs, favors the expansion of the NK cell population expressing only CD57, whereas the absence of HLA-A3/A11 ligands favors the population expressing only NKG2A, a population highly represented within the repertoire. The AA KIR genotype favors NK cell populations without KIR and NKG2A receptors, whereas the KIR B+ genotypes favor populations expressing KIR and NKG2A. Interestingly, we showed that women have a repertoire enriched in CD57- NK cell populations, while men have more CD57+ NK cell subpopulations. Discussion: Overall, our data demonstrate that the phenotypic structure of the NK cell repertoire follows well-defined genetic rules and that immunological history, sex, and age contribute to shaping this NK cell diversity. These elements can contribute to the better selection of hematopoietic stem cell donors and the definition of allogeneic NK cells for cell engineering in NK cell-based immunotherapy approaches.cters are displayed correctly.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Genotype , Killer Cells, Natural , Receptors, KIR , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Female , Male , Adult , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/genetics , Cytomegalovirus/immunology , Receptors, KIR/genetics , Middle Aged , Sex Factors , Age Factors , CD57 Antigens , Histocompatibility Testing , Young Adult , NK Cell Lectin-Like Receptor Subfamily C/genetics , HLA Antigens/genetics , HLA Antigens/immunology , Aged , Receptors, KIR3DL1/genetics
2.
PLoS One ; 18(8): e0275046, 2023.
Article in English | MEDLINE | ID: mdl-37647275

ABSTRACT

Endemic Burkitt lymphoma (eBL) is a fast-growing germinal center B cell lymphoma, affecting 5-10 per 100,000 children annually, in the equatorial belt of Africa. We hypothesize that co-infections with Plasmodium falciparum (Pf) malaria and Epstein-Barr virus (EBV) impair host natural killer (NK) and T cell responses to tumor cells, and thus increase the risk of eBL pathogenesis. NK cell education is partially controlled by killer immunoglobulin-like receptors and variable expression of KIR3DL1 has been associated with other malignancies. Here, we investigated whether KIR3D-mediated mechanisms contribute to eBL, by testing for an association of KIR3DL1/KIR3DS1 genotypes with the disease in 108 eBL patients and 99 healthy Kenyan children. KIR3DL1 allelic typing and EBV loads were assessed by PCR. We inferred previously observed phenotypes from the genotypes. The frequencies of KIR3DL1/KIR3DL1 and KIR3DL1/KIR3DS1 did not differ significantly between cases and controls. Additionally, none of the study participants was homozygous for KIR3DS1 alleles. EBV loads did not differ by the KIR3DL1 genotypes nor were they different between eBL survivors and non-survivors. Our results suggest that eBL pathogenesis may not simply involve variations in KIR3DL1 and KIR3DS1 genotypes. However, considering the complexity of the KIR3DL1 locus, this study could not exclude a role for copy number variation in eBL pathogenesis.


Subject(s)
Burkitt Lymphoma , Epstein-Barr Virus Infections , Malaria, Falciparum , Humans , Alleles , Burkitt Lymphoma/genetics , DNA Copy Number Variations , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/genetics , Kenya/epidemiology , Receptors, KIR3DL1/genetics
3.
Microb Pathog ; 180: 106145, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37169313

ABSTRACT

Several studies investigated KIR3DS1 and KIR3DL1 in the context of various infections. However, none of the studies were performed on KIR3DS1/L1 in association with IFN-É£/IL-10 in TB, HIV-1, and their confections. We aimed to evaluate KIR3DS1/KIR3DL1 expression in association with IFNÉ£/IL-10 in HIV-1 and TB mono-infections and HIV-1/TB confection and compared with uninfected controls using RTq PCR. We also performed correlation analysis between KIR3DS1, KIR3DL1, IFN-É£ and IL-10 in the respective cohorts. The overall expression of KIR3DS1 was found to be downregulated in all groups, whereas in HIV-1 and HIV-1/TB, the frequency of KIR3DS1(+) expression was significantly (p < 0.05) associated with undetected HIV-1 viral load. However, expression of KIR3DL1 was found to be significantly (p < 0.05) upregulated in HIV-1 only. In addition, IFNÉ£ expression was significantly (p < 0.05) decreased in TB, whereas in HIV-1/TB, IFNÉ£ expression was significantly (p < 0.05) increased. In contrast, IL-10 expression was significantly (p < 0.05) increased in HIV-1 and HIV-1/TB but not in TB. Also, we found significant positive correlation (p < 0.05, r = 0.61) between KIR3DL1 and IFNÉ£ expression in TB and negative correlation (p < 0.05, r = - 0.62) between KIR3DS1 and IL-10 in HIV-1/TB. In conclusion, we suggest that expression of KIR3DS1/L1 is associated with IFNÉ£/IL-10 responses and it is involved in modulating disease severity in HIV-1 and TB infections.


Subject(s)
HIV Infections , HIV-1 , Tuberculosis , Humans , HIV Infections/genetics , HIV-1/genetics , Interleukin-10/genetics , Interleukin-10/metabolism , Killer Cells, Natural , Receptors, KIR3DL1/genetics , Receptors, KIR3DL1/metabolism , Receptors, KIR3DS1/genetics , Receptors, KIR3DS1/metabolism , Tuberculosis/genetics
4.
Emerg Microbes Infect ; 12(1): 2185467, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36849422

ABSTRACT

Replicating SARS-CoV-2 has been shown to degrade HLA class I on target cells to evade the cytotoxic T-cell (CTL) response. HLA-I downregulation can be sensed by NK cells to unleash killer cell immunoglobulin-like receptor (KIR)-mediated self-inhibition by the cognate HLA-I ligands. Here, we investigated the impact of HLA and KIR genotypes and HLA-KIR combinations on COVID-19 outcome. We found that the peptide affinities of HLA alleles were not correlated with COVID-19 severity. The predicted poor binders for SARS-CoV-2 peptides belong to HLA-B subtypes that encode KIR ligands, including Bw4 and C1 (introduced by B*46:01), which have a small F pocket and cannot accommodate SARS-CoV-2 CTL epitopes. However, HLA-Bw4 weak binders were beneficial for COVID-19 outcome, and individuals lacking the HLA-Bw4 motif were at higher risk for serious illness from COVID-19. The presence of the HLA-Bw4 and KIR3DL1 combination had a 58.8% lower risk of developing severe COVID-19 (OR = 0.412, 95% CI = 0.187-0.904, p = 0.02). This suggests that HLA-Bw4 alleles that impair their ability to load SARS-CoV-2 peptides will become targets for NK-mediated destruction. Thus, we proposed that the synergistic responsiveness of CTLs and NK cells can efficiently control SARS-CoV-2 infection and replication, and NK-cell-mediated anti-SARS-CoV-2 immune responses being mostly involved in severe infection when the level of ORF8 is high enough to degrade HLA-I. The HLA-Bw4/KIR3DL1 genotype may be particularly important for East Asians undergoing COVID-19 who are enriched in HLA-Bw4-inhibitory KIR interactions and carry a high frequency of HLA-Bw4 alleles that bind poorly to coronavirus peptides.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , HLA-B Antigens/genetics , Killer Cells, Natural , Receptors, KIR3DL1/genetics
5.
HLA ; 101(3): 316-318, 2023 03.
Article in English | MEDLINE | ID: mdl-36258300

ABSTRACT

The novel KIR3DL1*00703 allele differs from the closest allele KIR3DL1*00701 by a single silent mutation.


Subject(s)
Receptors, KIR3DL1 , Humans , Alleles , Base Sequence , East Asian People , Receptors, KIR3DL1/genetics , Silent Mutation
6.
HLA ; 101(3): 318-320, 2023 03.
Article in English | MEDLINE | ID: mdl-36254745

ABSTRACT

The novel KIR3DL1*01507 allele differs from the closest allele KIR3DL1*01502 by a single synonymous mutation.


Subject(s)
Receptors, KIR3DL1 , Humans , Alleles , Base Sequence , East Asian People , Histocompatibility Testing , Receptors, KIR3DL1/genetics
7.
PLoS Comput Biol ; 18(2): e1009059, 2022 02.
Article in English | MEDLINE | ID: mdl-35192601

ABSTRACT

Highly polymorphic interaction of KIR3DL1 and KIR3DS1 with HLA class I ligands modulates the effector functions of natural killer (NK) cells and some T cells. This genetically determined diversity affects severity of infections, immune-mediated diseases, and some cancers, and impacts the course of immunotherapies, including transplantation. KIR3DL1 is an inhibitory receptor, and KIR3DS1 is an activating receptor encoded by the KIR3DL1/S1 gene that has more than 200 diverse and divergent alleles. Determination of KIR3DL1/S1 genotypes for medical application is hampered by complex sequence and structural variation, requiring targeted approaches to generate and analyze high-resolution allele data. To overcome these obstacles, we developed and optimized a model for imputing KIR3DL1/S1 alleles at high-resolution from whole-genome SNP data. We designed the model to represent a substantial component of human genetic diversity. Our Global imputation model is effective at genotyping KIR3DL1/S1 alleles with an accuracy ranging from 88% in Africans to 97% in East Asians, with mean specificity of 99% and sensitivity of 95% for alleles >1% frequency. We used the established algorithm of the HIBAG program, in a modification named Pulling Out Natural killer cell Genomics (PONG). Because HIBAG was designed to impute HLA alleles also from whole-genome SNP data, PONG allows combinatorial diversity of KIR3DL1/S1 with HLA-A and -B to be analyzed using complementary techniques on a single data source. The use of PONG thus negates the need for targeted sequencing data in very large-scale association studies where such methods might not be tractable.


Subject(s)
Receptors, KIR3DL1 , Receptors, KIR3DS1 , Alleles , Genotype , HLA-B Antigens/genetics , Humans , Receptors, KIR/genetics , Receptors, KIR3DL1/genetics , Receptors, KIR3DS1/genetics
8.
J Immunol Res ; 2022: 1119611, 2022.
Article in English | MEDLINE | ID: mdl-35071606

ABSTRACT

Combined antiretroviral therapy (cART) increased the life expectancy of people living with HIV (PLHIV) and remarkably reduced the morbidity and mortality associated with HIV infection. However, non-AIDS associated comorbidities including diabetes, hypertension, hyperlipidemia, and cardiovascular diseases (CVD) are increasingly reported among PLHIV receiving cART. Killer cell immunoglobulin receptors (KIRs) expressed on the surface of natural killer (NK) cells have been previously implicated in controlling HIV disease progression. The aim of this study is to investigate the role of KIRs in developing non-AIDS associated comorbidities among PLHIV. Demographic and behavioral data were collected from voluntary participants using a standardized questionnaire. Whole blood samples were collected for KIR genotyping. Hypertension (29.5%) and hyperlipidemia (29.5%) followed by diabetes (23.7%) and CVD (9.7%) were mainly reported among our study participants with higher rate of comorbid conditions observed among participants > 40 years old. The observed KIR frequency (OF) was ≥90% for inhibitory KIR2DL1 and KIR3DL1, activating KIR2DS4 and the pseudogene KIR2DP1 among study participants. We detected significant differences in the expression of KIR3DS4 and KIR3DL1 (p = 0.038) between diabetic and nondiabetic and in the expression of KIR2DL3 between hypertensive and normotensive HIV-infected individuals (p = 0.047). Moreover, KIR2DL1 and KIR2DP1 were associated with significantly reduced odds of having CVD (OR 0.08; 95% CI: 0.01-0.69; p = 0.022). Our study suggests the potential role of KIR in predisposition to non-AIDS comorbidities among PLHIV and underscores the need for more studies to further elucidate the role of KIRs in this population.


Subject(s)
Genotype , HIV Infections/immunology , HIV-1/physiology , Killer Cells, Natural/immunology , Receptors, KIR2DL1/genetics , Receptors, KIR3DL1/genetics , Adult , Aged , Comorbidity , Female , Gene Frequency , Haplotypes , Humans , Male , Middle Aged , Young Adult
9.
Front Immunol ; 12: 778103, 2021.
Article in English | MEDLINE | ID: mdl-34917091

ABSTRACT

The endoplasmic reticulum aminopeptidase ERAP1 regulates innate and adaptive immune responses by trimming peptides for presentation by major histocompatibility complex (MHC) class I molecules. Previously, we have shown that genetic or pharmacological inhibition of ERAP1 on murine and human tumor cell lines perturbs the engagement of NK cell inhibitory receptors Ly49C/I and Killer-cell Immunoglobulin-like receptors (KIRs), respectively, by their specific ligands (MHC class I molecules), thus leading to NK cell killing. However, the effect of ERAP1 inhibition in tumor cells was highly variable, suggesting that its efficacy may depend on several factors, including MHC class I typing. To identify MHC class I alleles and KIRs that are more sensitive to ERAP1 depletion, we stably silenced ERAP1 expression in human HLA class I-negative B lymphoblastoid cell line 721.221 (referred to as 221) transfected with a panel of KIR ligands (i.e. HLA-B*51:01, -Cw3, -Cw4 and -Cw7), or HLA-A2 which does not bind any KIR, and tested their ability to induce NK cell degranulation and cytotoxicity. No change in HLA class I surface expression was detected in all 221 transfectant cells after ERAP1 depletion. In contrast, CD107a expression levels were significantly increased on NK cells stimulated with 221-B*51:01 cells lacking ERAP1, particularly in the KIR3DL1-positive NK cell subset. Consistently, genetic or pharmacological inhibition of ERAP1 impaired the recognition of HLA-B*51:01 by the YTS NK cell overexpressing KIR3DL1*001, suggesting that ERAP1 inhibition renders HLA-B*51:01 molecules less eligible for binding to KIR3DL1. Overall, these results identify HLA-B*51:01/KIR3DL1 as one of the most susceptible combinations for ERAP1 inhibition, suggesting that individuals carrying HLA-B*51:01-like antigens may be candidates for immunotherapy based on pharmacological inhibition of ERAP1.


Subject(s)
Aminopeptidases/metabolism , HLA-B51 Antigen/metabolism , Killer Cells, Natural/enzymology , Minor Histocompatibility Antigens/metabolism , Neoplasms/enzymology , Receptors, KIR3DL1/metabolism , Aminopeptidases/antagonists & inhibitors , Aminopeptidases/genetics , Antineoplastic Agents/pharmacology , Cell Degranulation , Cell Line , Coculture Techniques , Cytotoxicity, Immunologic , Enzyme Inhibitors/pharmacology , HLA-B51 Antigen/genetics , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Minor Histocompatibility Antigens/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/immunology , Receptors, KIR3DL1/genetics , Signal Transduction
10.
Front Immunol ; 12: 778885, 2021.
Article in English | MEDLINE | ID: mdl-34966390

ABSTRACT

Introduction: For end-stage lung diseases, double lung transplantation (DLTx) is the ultimate curative treatment option. However, acute and chronic rejection and chronic dysfunction are major limitations in thoracic transplantation medicine. Thus, a better understanding of the contribution of immune responses early after DLTx is urgently needed. Passenger cells, derived from donor lungs and migrating into the recipient periphery, are comprised primarily by NK and T cells. Here, we aimed at characterizing the expression of killer cell immunoglobulin-like receptors (KIR) on donor and recipient NK and T cells in recipient blood after DLTx. Furthermore, we investigated the functional status and capacity of donor vs. recipient NK cells. Methods: Peripheral blood samples of 51 DLTx recipients were analyzed pre Tx and at T0, T24 and 3wk post Tx for the presence of HLA-mismatched donor NK and T cells, their KIR repertoire as well as activation status using flow cytometry. Results: Within the first 3 weeks after DLTx, donor NK and T cells were detected in all patients with a peak at T0. An increase of the KIR2DL/S1-positive subset was found within the donor NK cell repertoire. Moreover, donor NK cells showed significantly higher frequencies of KIR2DL/S1-positive cells (p<0.01) 3wk post DLTx compared to recipient NK cells. This effect was also observed in donor KIR+ T cells 3wk after DLTx with higher proportions of KIR2DL/S1 (p<0.05) and KIR3DL/S1 (p<0.01) positive T cells. Higher activation levels of donor NK and T cells (p<0.001) were detected compared to recipient cells via CD25 expression as well as a higher degranulation capacity upon activation by K562 target cells. Conclusion: Higher frequencies of donor NK and T cells expressing KIR compared to recipient NK and T cells argue for their origin in the lung as a part of a highly specialized immunocompetent compartment. Despite KIR expression, higher activation levels of donor NK and T cells in the periphery of recipients suggest their pre-activation during the ex situ phase. Taken together, donor NK and T cells are likely to have a regulatory effect in the balance between tolerance and rejection and, hence, graft survival after DLTx.


Subject(s)
Killer Cells, Natural/immunology , Lung Transplantation , Lung/immunology , Receptors, KIR/blood , T-Lymphocytes/immunology , Adult , Cell Degranulation , Coculture Techniques , Cytotoxicity, Immunologic , Female , Flow Cytometry , Humans , Immunophenotyping , Interleukin-2 Receptor alpha Subunit/blood , K562 Cells , Killer Cells, Natural/metabolism , Lung/metabolism , Lung Transplantation/adverse effects , Male , Middle Aged , Phenotype , Receptors, KIR2DL3/blood , Receptors, KIR3DL1/blood , T-Lymphocytes/metabolism , Time Factors , Treatment Outcome
11.
PLoS Pathog ; 17(11): e1010090, 2021 11.
Article in English | MEDLINE | ID: mdl-34793581

ABSTRACT

Natural Killer (NK) cells contribute to HIV control in adults, but HLA-B-mediated T-cell activity has a more substantial impact on disease outcome. However, the HLA-B molecules influencing immune control in adults have less impact on paediatric infection. To investigate the contribution NK cells make to immune control, we studied >300 children living with HIV followed over two decades in South Africa. In children, HLA-B alleles associated with adult protection or disease-susceptibility did not have significant effects, whereas Bw4 (p = 0.003) and low HLA-A expression (p = 0.002) alleles were strongly associated with immunological and viral control. In a comparator adult cohort, Bw4 and HLA-A expression contributions to HIV disease outcome were dwarfed by those of protective and disease-susceptible HLA-B molecules. We next investigated the immunophenotype and effector functions of NK cells in a subset of these children using flow cytometry. Slow progression and better plasma viraemic control were also associated with high frequencies of less terminally differentiated NKG2A+NKp46+CD56dim NK cells strongly responsive to cytokine stimulation and linked with the immunogenetic signature identified. Future studies are indicated to determine whether this signature associated with immune control in early life directly facilitates functional cure in children.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV-1/immunology , HLA-B Antigens/immunology , Histocompatibility Antigens Class I/immunology , Killer Cells, Natural/immunology , Receptors, KIR3DL1/metabolism , Adolescent , Child , Child, Preschool , Cohort Studies , HIV Infections/metabolism , HIV Infections/virology , Humans , Lymphocyte Activation
12.
Sci Rep ; 11(1): 21424, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34728722

ABSTRACT

Natural killer cells are modulated through the binding of killer cell immunoglobulin-like receptors (KIRs) with human leukocyte antigen (HLA) class I ligands. This study investigated the association of KIR/HLA pairs with progression to liver cirrhosis, hepatocellular carcinoma (HCC) development, and nucleot(s)ide (NUC) treatment freedom in hepatitis B virus (HBV) infection. KIR, HLA-Bw, and HLA-C were genotyped in 280 Japanese HBV patients for clinical comparisons. No significant associations of KIR/HLA pairs were detected in terms of liver cirrhosis development. The KIR2DS3 positive rate was significantly higher in patients with HCC (n = 39) than in those without (n = 241) [30.8% vs. 14.9%, odds ratio (OR) 2.53, P = 0.015]. The KIR3DL1/HLA-Bw4 pair rate was significantly lower in the NUC freedom group (n = 20) than in the NUC continue group (n = 114) (25.0% vs. 52.6%, OR 0.30, P = 0.042). In conclusion, this study indicated remarkable associations of KIR/HLA with HCC development (KIR2DS3) and freedom from NUC therapy (KIR3DL1/HLA-Bw4) in HBV patients, although the number of cases was insufficient for statistical purposes. Additional multi-center analyses of larger groups are needed to clarify whether KIR/HLA pairs play a role in HBV patient status.


Subject(s)
Carcinoma, Hepatocellular/pathology , HLA-B Antigens/genetics , Hepatitis B, Chronic/complications , Liver Cirrhosis/pathology , Liver Neoplasms/pathology , Nucleosides/therapeutic use , Receptors, KIR3DL1/genetics , Receptors, KIR/genetics , Aged , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Female , Follow-Up Studies , Genotype , Hepatitis B virus/isolation & purification , Hepatitis B, Chronic/virology , Humans , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Liver Cirrhosis/virology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/virology , Male , Middle Aged , Prognosis , Retrospective Studies
13.
Immunohorizons ; 5(8): 687-702, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34433624

ABSTRACT

Tyrosine kinase inhibitor (TKI)-treated chronic myeloid leukemia (CML) patients with increased NK cell number have a better prognosis, and thus, NK cells may suppress CML. However, the efficacy of TKIs varies for reasons yet to be fully elucidated. As NK cell activity is modulated by interactions between their killer cell Ig-like receptors (KIRs) and HLAs of target cells, the combination of their polymorphisms may have functional significance. We previously showed that allelic polymorphisms of KIR3DL1 and HLAs were associated with the prognosis of TKI-treated CML patients. In this study, we focus on differential NK cell activity modulation through KIR3DL1 allotypes. KIR3DL1 expression levels varied according to their alleles. The combination of KIR3DL1 expression level and HLA-Bw4 motifs defined NK cell activity in response to the CML-derived K562 cell line, and Ab-mediated KIR3DL1 blocking reversed this activity. The TKI dasatinib enhanced NK cell activation and cytotoxicity in a KIR3DL1 allotype-dependent manner but did not significantly decrease effector regulatory T cells, suggesting that it directly activated NK cells. Dasatinib also enhanced NK cell cytotoxicity against K562 bearing the BCR-ABL1 T315I TKI resistance-conferring mutation, depending on KIR3DL1/HLA-Bw4 allotypes. Transduction of KIR3DL1*01502 into the NK cell line NK-92 resulted in KIR3DL1 expression and suppression of NK-92 activity by HLA-B ligation, which was reversed by anti-KIR3DL1 Ab. Finally, KIR3DL1 expression levels also defined activation patterns in CML patient-derived NK cells. Our findings raise the possibility of a novel strategy to enhance antitumor NK cell immunity against CML in a KIR3DL1 allotype-dependent manner.


Subject(s)
Gene Expression Regulation, Leukemic/immunology , Killer Cells, Natural/immunology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology , Receptors, KIR3DL1/immunology , Alleles , Cell Line, Tumor , Cytotoxicity, Immunologic/drug effects , Cytotoxicity, Immunologic/genetics , Cytotoxicity, Immunologic/immunology , Dasatinib/pharmacology , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/immunology , Gene Expression Regulation, Leukemic/drug effects , Gene Expression Regulation, Leukemic/genetics , HLA-B Antigens/genetics , HLA-B Antigens/immunology , HLA-B Antigens/metabolism , Humans , K562 Cells , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Lymphocyte Activation/drug effects , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mutation , Protein Kinase Inhibitors/pharmacology , Receptors, KIR3DL1/genetics , Receptors, KIR3DL1/metabolism
14.
J Immunol ; 207(5): 1333-1343, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34408012

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne flavivirus that has emerged as a global concern because of its impact on human health. ZIKV infection during pregnancy can cause microcephaly and other severe brain defects in the developing fetus and there have been reports of the occurrence of Guillain-Barré syndrome in areas affected by ZIKV. NK cells are activated during acute viral infections and their activity contributes to a first line of defense because of their ability to rapidly recognize and kill virus-infected cells. To provide insight into NK cell function during ZIKV infection, we have profiled, using mass cytometry, the NK cell receptor-ligand repertoire in a cohort of acute ZIKV-infected female patients. Freshly isolated NK cells from these patients contained distinct, activated, and terminally differentiated, subsets expressing higher levels of CD57, NKG2C, and KIR3DL1 as compared with those from healthy donors. Moreover, KIR3DL1+ NK cells from these patients produced high levels of IFN-γ and TNF-α, in the absence of direct cytotoxicity, in response to in vitro stimulation with autologous, ZIKV-infected, monocyte-derived dendritic cells. In ZIKV-infected patients, overproduction of IFN-γ correlated with STAT-5 activation (r = 0.6643; p = 0.0085) and was mediated following the recognition of MHC class 1-related chain A and chain B molecules expressed by ZIKV-infected monocyte-derived dendritic cells, in synergy with IL-12 production by the latter cells. Together, these findings suggest that NK cells contribute to the generation of an efficacious adaptive anti-ZIKV immune response that could potentially affect the outcome of the disease and/or the development of persistent symptoms.


Subject(s)
Killer Cells, Natural/immunology , Zika Virus Infection/immunology , Zika Virus/physiology , Acute Disease , Cells, Cultured , Cohort Studies , Female , Humans , Interferon-gamma/metabolism , Interleukin-12/metabolism , Lymphocyte Activation , Pregnancy , Receptors, KIR3DL1/metabolism , STAT5 Transcription Factor/metabolism , Tumor Necrosis Factor-alpha/metabolism
15.
HLA ; 98(5): 504-505, 2021 11.
Article in English | MEDLINE | ID: mdl-34219402

ABSTRACT

The novel KIR3DL1*00702 allele differs from the closest allele KIR3DL1*00701 by a single silent mutation.


Subject(s)
Asian People , Receptors, KIR3DL1 , Alleles , Asian People/genetics , Base Sequence , China , Humans , Receptors, KIR3DL1/genetics
16.
Front Immunol ; 12: 640672, 2021.
Article in English | MEDLINE | ID: mdl-34017328

ABSTRACT

The differentiation of human induced pluripotent stem cells (hiPSCs) into T and natural killer (NK) lymphocytes opens novel possibilities for developmental studies of immune cells and in-vitro generation of cell therapy products. In particular, iPSC-derived NK cells gained interest in adoptive anti-cancer immunotherapies, since they enable generation of homogenous populations of NK cells with and without genetic engineering that can be grown at clinical scale. However, the phenotype of in-vitro generated NK cells is not well characterized. NK cells derive in the bone marrow and mature in secondary lymphoid tissues through distinct stages from CD56brightCD16- to CD56dimCD16+ NK cells that represents the most abandoned population in peripheral blood. In this study, we efficiently generated CD56+CD16+CD3- NK lymphocytes from hiPSC and characterized NK-cell development by surface expression of NK-lineage markers. Hematopoietic priming of hiPSC resulted in 31.9% to 57.4% CD34+CD45+ hematopoietic progenitor cells (HPC) that did not require enrichment for NK lymphocyte propagation. HPC were further differentiated into NK cells on OP9-DL1 feeder cells resulting in high purity of CD56brightCD16- and CD56brightCD16+ NK cells. The output of generated NK cells increased up to 40% when OP9-DL1 feeder cells were inactivated with mitomycine C. CD7 expression could be detected from the first week of differentiation indicating priming towards the lymphoid lineage. CD56brightCD16-/+ NK cells expressed high levels of DNAM-1, CD69, natural killer cell receptors NKG2A and NKG2D, and natural cytotoxicity receptors NKp46, NKp44, NKp30. Expression of NKp80 on 40% of NK cells, and a perforin+ and granzyme B+ phenotype confirmed differentiation up to stage 4b. Killer cell immunoglobulin-like receptor KIR2DL2/DL3 and KIR3DL1 were found on up to 3 and 10% of mature NK cells, respectively. NK cells were functional in terms of cytotoxicity, degranulation and antibody-dependent cell-mediated cytotoxicity.


Subject(s)
Cell Differentiation/immunology , Killer Cells, Natural/immunology , Lymphocyte Subsets/metabolism , CD56 Antigen/immunology , Cell Culture Techniques/methods , Cell Degranulation/immunology , GPI-Linked Proteins/immunology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/immunology , Killer Cells, Natural/cytology , Lymphocyte Activation/immunology , Lymphocyte Subsets/cytology , Receptors, IgG/immunology , Receptors, KIR2DL2/immunology , Receptors, KIR2DL3/immunology , Receptors, KIR3DL1/immunology
17.
J Immunol ; 206(4): 849-860, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33441440

ABSTRACT

HLA class I molecules that represent ligands for the inhibitory killer cell Ig-like receptor (KIR) 3DL1 found on NK cells are categorically defined as those HLA-A and HLA-B allotypes containing the Bw4 motif, yet KIR3DL1 demonstrates hierarchical recognition of these HLA-Bw4 ligands. To better understand the molecular basis underpinning differential KIR3DL1 recognition, the HLA-ABw4 family of allotypes were investigated. Transfected human 721.221 cells expressing HLA-A*32:01 strongly inhibited primary human KIR3DL1+ NK cells, whereas HLA-A*24:02 and HLA-A*23:01 displayed intermediate potency and HLA-A*25:01 failed to inhibit activation of KIR3DL1+ NK cells. Structural studies demonstrated that recognition of HLA-A*24:02 by KIR3DL1 used identical contacts as the potent HLA-B*57:01 ligand. Namely, the D1-D2 domains of KIR3DL1 were placed over the α1 helix and α2 helix of the HLA-A*24:02 binding cleft, respectively, whereas the D0 domain contacted the side of the HLA-A*24:02 molecule. Nevertheless, functional analyses showed KIR3DL1 recognition of HLA-A*24:02 was more sensitive to substitutions within the α2 helix of HLA-A*24:02, including residues Ile142 and Lys144 Furthermore, the presence of Thr149 in the α2 helix of HLA-A*25:01 abrogated KIR3DL1+ NK inhibition. Together, these data demonstrate a role for the HLA class I α2 helix in determining the hierarchy of KIR3DL1 ligands. Thus, recognition of HLA class I is dependent on a complex interplay between the peptide repertoire, polymorphisms within and proximal to the Bw4 motif, and the α2 helix. Collectively, the data furthers our understanding of KIR3DL1 ligands and will inform genetic association and immunogenetics studies examining the role of KIR3DL1 in disease settings.


Subject(s)
HLA-A Antigens , Killer Cells, Natural , Receptors, KIR3DL1 , HLA-A Antigens/chemistry , HLA-A Antigens/immunology , Humans , Killer Cells, Natural/chemistry , Killer Cells, Natural/immunology , Protein Conformation, alpha-Helical , Protein Domains , Receptors, KIR3DL1/chemistry , Receptors, KIR3DL1/immunology
18.
Cytometry B Clin Cytom ; 100(4): 467-475, 2021 07.
Article in English | MEDLINE | ID: mdl-32830898

ABSTRACT

BACKGROUND: KIR+NKG2A + Eomes+ CD8+ T cells, which are preferentially found with a TEMRA (CD45RA + CCR7-) phenotype while having the capacity to rapidly produce IFN-γ in response to innate stimulation (IL-12 and IL-18), have been demonstrated to exist in human cord blood and the adult blood circulation. This highly responsive T-cell type was termed NK-like CD8+ T cells due to their capability to act in an innate immune fashion in mice similar to NK cells. However, KIR+NKG2A + CD8+ T cells that are Eomes- represent a small proportion of unconventional T cells that have not been described until now. METHODS: We compare the distribution of the memory phenotypes and senescence-associated markers of two T-cell subsets by multicolor flow cytometry in 10 cord blood samples and 105 healthy individuals (HIs) ranging from 6 to 84 years of age. RESULTS: We found that the Eomes+ population has a higher differentiation degree than the Eomes- population. T cells in the Eomes- subset show proportionally less TEMRA phenotypes while instead preferentially displaying a more naïve and TCM phenotype. Furthermore, the Eomes- population was shown to linearly decrease with age, while the Eomes+ population exhibited more senescence-associated characteristics, such as CD57 expression and loss of CD28. CONCLUSION: Overall, the KIR+NKG2A + Eomes- CD8+ T-cell population shares similar characteristics with the Eomes+ population, although with a lower degree of differentiation, lower senescence marker expression, and a proportional decrease with age. Thus, we suspect that KIR+NKG2A + Eomes-CD8+ T cells may represent a less differentiated stage of the NK-like CD8+ T-cell subset.


Subject(s)
Aging/blood , Interferon-gamma/blood , NK Cell Lectin-Like Receptor Subfamily C/blood , Receptors, KIR3DL1/genetics , T-Box Domain Proteins/blood , Adolescent , Adult , Aged , Aged, 80 and over , Aging/pathology , CD8-Positive T-Lymphocytes/metabolism , Child , Female , Fetal Blood/metabolism , Flow Cytometry/methods , Gene Expression Regulation , Humans , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Male , Middle Aged , T-Lymphocyte Subsets/metabolism , Young Adult
19.
Lupus ; 29(14): 1831-1844, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32998620

ABSTRACT

Systemic Lupus Erythematosus is an autoimmune disease with symptoms pervasive to all organ systems. It affects more females as compared to males (in the ratio 9:1). Oxidative stress plays a major role in the pathogenesis of SLE and other autoimmune diseases. In order to understand the relationship between cell specific oxidative stress and the severity of SLE, this research study involving the estimation of intracellular ROS accumulation in T and NK cell was conducted on SLE patients of North Indian Population. At the same time, to estimate anti-oxidant defense, Keap1 and Nrf2 levels were estimated in these cell types. The relationship between the expression of Killer immunoglobulin receptors i.e., KIR2DL4 & KIR3DL1 and oxidative stress was also evaluated as these receptors are imperative for the function and self-tolerance of NK cells.Oxidative stress was raised along with Keap1 and Nrf2 in T and NK cell subsets in SLE patients. The expression of KIR2DL4 was raised and that of KIR3DL1 was reduced in the NK cells of patients. The intensity of change in expression and its significance varied among the subsets. Nrf2 expression was raised in these species against oxidative stress as the antioxidant defense mechanism pertaining to Keap1-Nrf2 pathway, but the adequacy of response needs to be understood in further studies. The expression of KIR2DL4 and KIR3DL1 varied among the patient and healthy controls and the expression of the latter was found to have a significant positive relationship with plasma Glutathione(reduced) concentration.


Subject(s)
Killer Cells, Natural/metabolism , Lupus Erythematosus, Systemic/genetics , Oxidative Stress , Receptors, KIR2DL4/metabolism , Receptors, KIR3DL1/metabolism , Biomarkers/metabolism , Case-Control Studies , Female , Glutathione/isolation & purification , Humans , India , Kelch-Like ECH-Associated Protein 1/metabolism , Lupus Erythematosus, Systemic/metabolism , Male , Real-Time Polymerase Chain Reaction , Serine Endopeptidases/metabolism , T-Lymphocytes/metabolism
20.
Int J Immunogenet ; 47(6): 512-521, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32767509

ABSTRACT

Killer-cell immunoglobulin-like receptors (KIRs) are important because of their key roles in NK cell development and function. Some KIR genes have been associated with the incidence of haematological malignancies. This study was designed to determine whether the inheritance of specific KIR genes is associated with susceptibility to acute myelogenous leukaemia (AML) in Persians living in south-western Iran. KIR genes and KIR2DS4 variants were typed by polymerase chain reaction-sequence-specific primer (PCR-SSP) in 167 patients with AML and 169 healthy controls. Our results showed 10% of patients-mostly females-were classified as M3. Flt3 mutations were detected in 26% of patients, most of whom had internal tandem duplication (ITD). The frequency of activating KIRs (aKIRs)-mainly KIR3DS1-was higher in patients, whereas inhibitory KIRs (iKIRs)-particularly KIR3DL1 and KIR2DL1-were more common among controls. The incidence of the KIR2DS4fl allele was higher among patients with non-M3 AML than controls. We also found a higher frequency of 4 or more iKIR genes in the controls and a higher frequency of 4 or more aKIR genes in the patients. Individuals with more iKIR than aKIR belonged predominantly to the control group. Individuals with the telomeric AA genotype who had inherited the KIR2DS4fl allele were more frequent in the patient group. According to our results, increased frequency of aKIRs in patients with AML may lead to the hyperactivation of NK cells against malignant cells with reduced or lack of HLA class I molecules followed by NK cell exhaustion which allow malignant cells to progress.


Subject(s)
Gene Expression Profiling , Leukemia, Myeloid, Acute/genetics , Mutation , Receptors, KIR/genetics , Adult , Alleles , Female , Genotype , Haplotypes , Homozygote , Humans , Incidence , Iran/epidemiology , Male , Middle Aged , Odds Ratio , Polymerase Chain Reaction , Receptors, KIR2DL1/genetics , Receptors, KIR3DL1/genetics , Receptors, KIR3DS1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...