Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Psychiatry ; 181(5): 403-411, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38706338

ABSTRACT

OBJECTIVE: There have been no well-controlled and well-powered comparative trials of topiramate with other pharmacotherapies for alcohol use disorder (AUD), such as naltrexone. Moreover, the literature is mixed on the effects of two polymorphisms-rs2832407 (in GRIK1) and rs1799971 (in OPRM1)-on response to topiramate and naltrexone, respectively. The authors sought to examine the comparative effectiveness of topiramate and naltrexone in improving outcomes in AUD and to examine the role of the rs2832407 and rs1799971 polymorphisms, respectively, on response to these medications. METHODS: In a 12-week, double-blind, placebo-controlled, randomized, multisite, genotype-stratified (rs2832407 and rs1799971) clinical trial comparing topiramate and naltrexone in treating AUD, 147 patients with AUD were randomly assigned to treatment with topiramate or naltrexone, stratified by genotype (rs2832407*CC and *AC/AA genotypes and rs1799971*AA and *AG/GG genotypes). The predefined primary outcome was number of heavy drinking days per week. Predefined secondary outcomes included standard drinks per drinking day per week, body mass index (BMI), craving, markers of liver injury, mood, and adverse events. RESULTS: For the number of heavy drinking days per week, there was a near-significant time-by-treatment interaction. For the number of standard drinks per drinking day per week, there was a significant time-by-treatment interaction, which favored topiramate. There were significant time-by-treatment effects, with greater reductions observed with topiramate than naltrexone for BMI, craving, and gamma-glutamyltransferase level. Withdrawal due to side effects occurred in 8% and 5% of the topiramate and naltrexone groups, respectively. Neither polymorphism showed an effect on treatment response. CONCLUSIONS: Topiramate is at least as effective and safe as the first-line medication, naltrexone, in reducing heavy alcohol consumption, and superior in reducing some clinical outcomes. Neither rs2832407 nor rs1799971 had effects on topiramate and naltrexone treatments, respectively.


Subject(s)
Alcoholism , Genotype , Naltrexone , Receptors, Kainic Acid , Topiramate , Humans , Topiramate/therapeutic use , Naltrexone/therapeutic use , Double-Blind Method , Male , Female , Alcoholism/drug therapy , Alcoholism/genetics , Adult , Middle Aged , Receptors, Kainic Acid/genetics , Receptors, Opioid, mu/genetics , Treatment Outcome , Narcotic Antagonists/therapeutic use , Polymorphism, Single Nucleotide , Craving/drug effects , Fructose/analogs & derivatives , Fructose/therapeutic use
2.
Hum Mol Genet ; 33(17): 1524-1539, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-38776957

ABSTRACT

Huntington's disease (HD) is a neurodegenerative genetic disorder caused by an expansion in the CAG repeat tract of the huntingtin (HTT) gene resulting in behavioural, cognitive, and motor defects. Current knowledge of disease pathogenesis remains incomplete, and no disease course-modifying interventions are in clinical use. We have previously reported the development and characterisation of the OVT73 transgenic sheep model of HD. The 73 polyglutamine repeat is somatically stable and therefore likely captures a prodromal phase of the disease with an absence of motor symptomatology even at 5-years of age and no detectable striatal cell loss. To better understand the disease-initiating events we have undertaken a single nuclei transcriptome study of the striatum of an extensively studied cohort of 5-year-old OVT73 HD sheep and age matched wild-type controls. We have identified transcriptional upregulation of genes encoding N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors in medium spiny neurons, the cell type preferentially lost early in HD. Further, we observed an upregulation of astrocytic glutamate uptake transporters and medium spiny neuron GABAA receptors, which may maintain glutamate homeostasis. Taken together, these observations support the glutamate excitotoxicity hypothesis as an early neurodegeneration cascade-initiating process but the threshold of toxicity may be regulated by several protective mechanisms. Addressing this biochemical defect early may prevent neuronal loss and avoid the more complex secondary consequences precipitated by cell death.


Subject(s)
Disease Models, Animal , Glutamic Acid , Huntington Disease , Neurons , Receptors, N-Methyl-D-Aspartate , Animals , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/pathology , Sheep , Neurons/metabolism , Neurons/pathology , Glutamic Acid/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , RNA-Seq , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Cell Death/genetics , Corpus Striatum/metabolism , Corpus Striatum/pathology , Animals, Genetically Modified , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Humans , Transcriptome/genetics , Receptors, Kainic Acid/genetics , Receptors, Kainic Acid/metabolism , Cell Nucleus/metabolism , Cell Nucleus/genetics , Medium Spiny Neurons
3.
J Biol Chem ; 300(5): 107263, 2024 May.
Article in English | MEDLINE | ID: mdl-38582451

ABSTRACT

Synapse formation depends on the coordinated expression and regulation of scaffold proteins. The JNK family kinases play a role in scaffold protein regulation, but the nature of this functional interaction in dendritic spines requires further investigation. Here, using a combination of biochemical methods and live-cell imaging strategies, we show that the dynamics of the synaptic scaffold molecule SAP102 are negatively regulated by JNK inhibition, that SAP102 is a direct phosphorylation target of JNK3, and that SAP102 regulation by JNK is restricted to neurons that harbor mature synapses. We further demonstrate that SAP102 and JNK3 cooperate in the regulated trafficking of kainate receptors to the cell membrane. Specifically, we observe that SAP102, JNK3, and the kainate receptor subunit GluK2 exhibit overlapping expression at synaptic sites and that modulating JNK activity influences the surface expression of the kainate receptor subunit GluK2 in a neuronal context. We also show that SAP102 participates in this process in a JNK-dependent fashion. In summary, our data support a model in which JNK-mediated regulation of SAP102 influences the dynamic trafficking of kainate receptors to postsynaptic sites, and thus shed light on common pathophysiological mechanisms underlying the cognitive developmental defects associated with diverse mutations.


Subject(s)
Dendritic Spines , GluK2 Kainate Receptor , Receptors, Kainic Acid , Animals , Humans , Rats , Cell Membrane/metabolism , Dendritic Spines/metabolism , Hippocampus/metabolism , Hippocampus/cytology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mitogen-Activated Protein Kinase 10/metabolism , Mitogen-Activated Protein Kinase 10/genetics , Neurons/metabolism , Neuropeptides , Phosphorylation , Protein Transport , Receptors, Kainic Acid/metabolism , Receptors, Kainic Acid/genetics , Synapses/metabolism , Cells, Cultured
4.
Nat Neurosci ; 27(4): 679-688, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467901

ABSTRACT

Thermosensors expressed in peripheral somatosensory neurons sense a wide range of environmental temperatures. While thermosensors detecting cool, warm and hot temperatures have all been extensively characterized, little is known about those sensing cold temperatures. Though several candidate cold sensors have been proposed, none has been demonstrated to mediate cold sensing in somatosensory neurons in vivo, leaving a knowledge gap in thermosensation. Here we characterized mice lacking the kainate-type glutamate receptor GluK2, a mammalian homolog of the Caenorhabditis elegans cold sensor GLR-3. While GluK2 knockout mice respond normally to heat and mechanical stimuli, they exhibit a specific deficit in sensing cold but not cool temperatures. Further analysis supports a key role for GluK2 in sensing cold temperatures in somatosensory DRG neurons in the periphery. Our results reveal that GluK2-a glutamate-sensing chemoreceptor mediating synaptic transmission in the central nervous system-is co-opted as a cold-sensing thermoreceptor in the periphery.


Subject(s)
GluK2 Kainate Receptor , Receptors, Kainic Acid , Animals , Mice , Caenorhabditis elegans/metabolism , Cold Temperature , GluK2 Kainate Receptor/metabolism , Glutamic Acid , Mammals/metabolism , Neurons/metabolism , Receptors, Kainic Acid/genetics , Receptors, Kainic Acid/metabolism , Synaptic Transmission
5.
Sci Rep ; 14(1): 4521, 2024 02 24.
Article in English | MEDLINE | ID: mdl-38402313

ABSTRACT

Kainate receptors (KARs) are one of the ionotropic glutamate receptors in the central nervous system (CNS) comprised of five subunits, GluK1-GluK5. There is a growing interest in the association between KARs and psychiatric disorders, and there have been several studies investigating the behavioral phenotypes of KAR deficient mice, however, the difference in the genetic background has been found to affect phenotype in multiple mouse models of human diseases. Here, we examined GluK1-5 single KO mice in a pure C57BL/6N background and identified that GluK3 KO mice specifically express anxiolytic-like behavior with an alteration in dopamine D2 receptor (D2R)-induced anxiety, and reduced D2R expression in the striatum. Biochemical studies in the mouse cortex confirmed that GluK3 subunits do not assemble with GluK4 and GluK5 subunits, that can be activated by lower concentration of agonists. Overall, we found that GluK3-containing KARs function to express anxiety, which may represent promising anti-anxiety medication targets.


Subject(s)
GluK3 Kainate Receptor , Receptors, Kainic Acid , Mice , Animals , Humans , Receptors, Kainic Acid/genetics , Receptors, Kainic Acid/metabolism , Mice, Inbred C57BL , Receptors, Ionotropic Glutamate , Anxiety/genetics
6.
FEBS Lett ; 598(7): 743-757, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369668

ABSTRACT

Kainate receptors belong to the family of ionotropic glutamate receptors and contribute to the majority of fast excitatory neurotransmission. Consequently, they also play a role in brain diseases. Therefore, understanding how these receptors can be modulated is of importance. Our study provides a crystal structure of the dimeric ligand-binding domain of the kainate receptor GluK2 in complex with L-glutamate and the small-molecule positive allosteric modulator, BPAM344, in an active-like conformation. The role of Thr535 and Gln786 in modulating GluK2 by BPAM344 was investigated using a calcium-sensitive fluorescence-based assay on transiently transfected cells expressing GluK2 and mutants hereof. This study may aid in the design of compounds targeting kainate receptors, expanding their potential as targets for the treatment of brain diseases.


Subject(s)
Brain Diseases , Cyclic S-Oxides , Glutamic Acid , Thiazines , Humans , Binding Sites , Ligands , Receptors, Kainic Acid/genetics , Receptors, Kainic Acid/chemistry , Receptors, Kainic Acid/metabolism
7.
FEBS J ; 291(7): 1506-1529, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38145505

ABSTRACT

The kainate receptors GluK1-3 (glutamate receptor ionotropic, kainate receptors 1-3) belong to the family of ionotropic glutamate receptors and are essential for fast excitatory neurotransmission in the brain, and are associated with neurological and psychiatric diseases. How these receptors can be modulated by small-molecule agents is not well understood, especially for GluK3. We show that the positive allosteric modulator BPAM344 can be used to establish robust calcium-sensitive fluorescence-based assays to test agonists, antagonists, and positive allosteric modulators of GluK1-3. The half-maximal effective concentration (EC50) of BPAM344 for potentiating the response of 100 µm kainate was determined to be 26.3 µm for GluK1, 75.4 µm for GluK2, and 639 µm for GluK3. Domoate was found to be a potent agonist for GluK1 and GluK2, with an EC50 of 0.77 and 1.33 µm, respectively, upon co-application of 150 µm BPAM344. At GluK3, domoate acts as a very weak agonist or antagonist with a half-maximal inhibitory concentration (IC50) of 14.5 µm, in presence of 500 µm BPAM344 and 100 µm kainate for competition binding. Using H523A-mutated GluK3, we determined the first dimeric structure of the ligand-binding domain by X-ray crystallography, allowing location of BPAM344, as well as zinc-, sodium-, and chloride-ion binding sites at the dimer interface. Molecular dynamics simulations support the stability of the ion sites as well as the involvement of Asp761, Asp790, and Glu797 in the binding of zinc ions. Using electron microscopy, we show that, in presence of glutamate and BPAM344, full-length GluK3 adopts a dimer-of-dimers arrangement.


Subject(s)
Kainic Acid , Receptors, Kainic Acid , Thiazines , Receptors, Kainic Acid/genetics , Receptors, Kainic Acid/agonists , Kainic Acid/pharmacology , Cyclic S-Oxides , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL