Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.060
Filter
1.
Brain Res ; 1825: 148713, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38097126

ABSTRACT

The presence of the cholinergic system in the brain areas implicated in the precipitation of obsessive-compulsive behavior (OCB) has been reported but the exact role of the central cholinergic system therein is still unexplored. Therefore, the current study assessed the effect of cholinergic analogs on central administration on the marble-burying behavior (MBB) of mice, a behavior correlated with OCB. The result reveals that the enhancement of central cholinergic transmission in mice achieved by intracerebroventricular (i.c.v.) injection of acetylcholine (0.01 µg) (Subeffective: 0.1 and 0.5 µg), cholinesterase inhibitor, neostigmine (0.1, 0.3, 0.5 µg/mouse) and neuronal nicotinic acetylcholine receptor agonist, nicotine (0.1, 2 µg/mouse) significantly attenuated the number of marbles buried by mice in MBB test without affecting basal locomotor activity. Similarly, central injection of mAChR antagonist, atropine (0.1, 0.5, 5 µg/mouse), nAChR antagonist, mecamylamine (0.1, 0.5, 3 µg/mouse) per se also reduced the MBB in mice, indicative of anti-OCB like effect of all the tested cholinergic mAChR or nAChR agonist and antagonist. Surprisingly, i.c.v. injection of acetylcholine (0.01 µg), and neostigmine (0.1 µg) failed to elicit an anti-OCB-like effect in mice pre-treated (i.c.v.) with atropine (0.1 µg), or mecamylamine (0.1 µg). Thus, the findings of the present investigationdelineate the role of central cholinergic transmission in the compulsive-like behavior of mice probably via mAChR or nAChR stimulation.


Subject(s)
Acetylcholine , Receptors, Nicotinic , Mice , Animals , Mecamylamine/pharmacology , Acetylcholine/pharmacology , Neostigmine/pharmacology , Cholinesterase Inhibitors/pharmacology , Nicotinic Agonists/pharmacology , Atropine/pharmacology , Receptors, Nicotinic/physiology , Behavior, Animal
2.
Sci Total Environ ; 912: 169604, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38157907

ABSTRACT

Nicotine enters the environment mainly through human activity, as well as natural sources. This review article examines the increasing evidence implicating nicotine in the initiation and progression of lung cancer. Moreover, it primarily focuses on elucidating the activation mechanism of phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as AKT) signaling pathway, regulated by α7 subtype nicotinic acetylcholine receptor (α7-nAChR), in relation to the proliferation, invasion, and metastasis of lung cancer cells induced by nicotine, as well as nicotine-mediated anti-apoptotic effects. This process involves PI3K/AKT phosphorylated-B-cell lymphoma-2 (Bcl-2) family proteins, PI3K/AKT/mammalian target of rapamycin (mTOR), PI3K/AKT/nuclear factor-κB (NF-κB), hepatocyte growth factor (HGF)/cellular-mesenchymal epithelial transition factor (c-Met)-induced PI3K/AKT and PI3K/AKT activated-hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathways. In addition, we also deliberated on the related challenges and upcoming prospects within this field. These lay the foundation for further study on nicotine, lung tumorigenesis, and PI3K/AKT related molecular mechanisms. This work has the potential to significantly contribute to the treatment and prognosis of gastric cancer in smokers. Besides, the crucial significance of PI3K/AKT signaling pathway in multiple molecular pathways also suggests that its target antagonists may inhibit the development and progression of lung cancer, providing a possible new perspective for solving the problem of nicotine-promoted lung cancer. The emerging knowledge about the carcinogenic mechanisms of nicotine action should be considered during the environmental assessment of tobacco and other nicotine-containing products.


Subject(s)
Lung Neoplasms , Receptors, Nicotinic , Humans , Lung Neoplasms/pathology , Nicotine/toxicity , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Vascular Endothelial Growth Factor A/metabolism , Receptors, Nicotinic/physiology , alpha7 Nicotinic Acetylcholine Receptor/metabolism
3.
J Cardiovasc Pharmacol ; 82(4): 241-265, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37539950

ABSTRACT

ABSTRACT: Inflammation is a major player in many cardiovascular diseases including hypertension, atherosclerosis, myocardial infarction, and heart failure. In many individuals, these conditions coexist and mutually exacerbate each other's progression. The pathophysiology of these diseases entails the active involvement of both innate and adaptive immune cells. Immune cells that possess the α7 subunit of the nicotinic acetylcholine receptor on their surface have the potential to be targeted through both pharmacological and electrical stimulation of the cholinergic system. The cholinergic system regulates the inflammatory response to various stressors in different organ systems by systematically suppressing spleen-derived monocytes and chemokines and locally improving immune cell function. Research on the cardiovascular system has demonstrated the potential for atheroma plaque stabilization and regression as favorable outcomes. Smaller infarct size and reduced fibrosis have been associated with improved cardiac function and a decrease in adverse cardiac remodeling. Furthermore, enhanced electrical stability of the myocardium can lead to a reduction in the incidence of ventricular tachyarrhythmia. In addition, improving mitochondrial dysfunction and decreasing oxidative stress can result in less myocardial tissue damage caused by reperfusion injury. Restoring baroreflex activity and reduction in renal damage can promote blood pressure regulation and help counteract hypertension. Thus, the present review highlights the potential of nicotinic acetylcholine receptor activation as a natural approach to alleviate the adverse consequences of inflammation in the cardiovascular system.


Subject(s)
Hypertension , Myocardial Infarction , Receptors, Nicotinic , Humans , Receptors, Nicotinic/physiology , alpha7 Nicotinic Acetylcholine Receptor/physiology , Inflammation , Heart , Cholinergic Agents
4.
Neurosci Lett ; 807: 137279, 2023 06 11.
Article in English | MEDLINE | ID: mdl-37105354

ABSTRACT

BACKGROUND: L-theanine, 2-amino-4-(ethylcarbamoyl) butyric acid, an amino acid detected in green tea leaves, is used as a dietary supplement to attenuate stress and enhance mood and cognition. Furthermore, L-theanine induces anxiolytic effects in humans. Recently, L-theanine was reported to reduce morphine physical dependence in primates, suggesting the potential usefulness of L-theanine for drug dependence intervention. OBJECTIVE: The aim of this study is to determine whether L-theanine attenuates nicotine-withdrawal (somatic and affective signs) and nicotine reward in mice. We also investigated the effects of L-theanine on nicotinic receptors binding and function. METHODS: ICR male mice rendered dependent to nicotine through implanted subcutaneous osmotic minipumps for 14 days undertook precipitated nicotine withdrawal by mecamylamine on day 15. Anxiety-like behaviors using LDB, somatic signs observation and hot plate latency were assessed consecutively after treatment with L-theanine. Furthermore, we examined the effect of L-theanine on acute nicotine responses and nicotine conditioned reward in mice and on expressed nicotinic receptors in oocytes. KEY FINDINGS: L-theanine reduced in a dose-dependent manner anxiety-like behavior, hyperalgesia and somatic signs during nicotine withdrawal. Also, L-theanine decreased the nicotine CPP, but it did not affect the acute responses of nicotine. Finally, L-theanine did not alter the binding or the function of expressed α4ß2 and α7 nAChRs. CONCLUSION: Our results support the potential of L-theanine as a promising candidate for treating nicotine dependence.


Subject(s)
Receptors, Nicotinic , Substance Withdrawal Syndrome , Humans , Male , Mice , Animals , Nicotine/pharmacology , Nicotine/therapeutic use , Mice, Inbred ICR , Substance Withdrawal Syndrome/psychology , Receptors, Nicotinic/physiology , Mecamylamine/pharmacology , Reward , Nicotinic Antagonists/pharmacology
5.
Nature ; 616(7956): 373-377, 2023 04.
Article in English | MEDLINE | ID: mdl-37045920

ABSTRACT

Chemotactile receptors (CRs) are a cephalopod-specific innovation that allow octopuses to explore the seafloor via 'taste by touch'1. CRs diverged from nicotinic acetylcholine receptors to mediate contact-dependent chemosensation of insoluble molecules that do not readily diffuse in marine environments. Here we exploit octopus CRs to probe the structural basis of sensory receptor evolution. We present the cryo-electron microscopy structure of an octopus CR and compare it with nicotinic receptors to determine features that enable environmental sensation versus neurotransmission. Evolutionary, structural and biophysical analyses show that the channel architecture involved in cation permeation and signal transduction is conserved. By contrast, the orthosteric ligand-binding site is subject to diversifying selection, thereby mediating the detection of new molecules. Serendipitous findings in the cryo-electron microscopy structure reveal that the octopus CR ligand-binding pocket is exceptionally hydrophobic, enabling sensation of greasy compounds versus the small polar molecules detected by canonical neurotransmitter receptors. These discoveries provide a structural framework for understanding connections between evolutionary adaptations at the atomic level and the emergence of new organismal behaviour.


Subject(s)
Evolution, Molecular , Octopodiformes , Sensory Receptor Cells , Animals , Cryoelectron Microscopy , Ligands , Octopodiformes/chemistry , Octopodiformes/physiology , Octopodiformes/ultrastructure , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/physiology , Receptors, Nicotinic/ultrastructure , Sensory Receptor Cells/chemistry , Sensory Receptor Cells/physiology , Sensory Receptor Cells/ultrastructure , Touch/physiology , Synaptic Transmission , Binding Sites , Hydrophobic and Hydrophilic Interactions
6.
Mol Brain ; 15(1): 77, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36068635

ABSTRACT

Nicotinic acetylcholine receptors are thought to be associated with a wide range of phenomena, such as movement, learning, memory, attention, and addiction. However, the causal relationship between nicotinic receptor activity and behavior remains unclear. Contrary to the studies that examined the functions of muscarinic acetylcholine receptors, the role of the nicotinic acetylcholine receptors on behavior has not been examined as extensively. Here, we examined the effects of intraperitoneal injection of mecamylamine, a nicotinic acetylcholine receptor antagonist, on the performance of male mice in a head-fixed temporal conditioning task and a free-moving open-field task. The head-fixed experimental setup allowed us to record and precisely quantify the licking response while the mice performed the behavioral task with no external cues. In addition, by combining the utility of the head-fixed experimental design with computer vision analysis based on deep learning algorithms, we succeeded in quantifying the eyelid size of awake mice. In the temporal conditioning task, we delivered a 10% sucrose solution every 10 s using a blunt-tipped needle placed within the licking distance of the mice. After the training, the mice showed increased anticipatory licking toward the timing of sucrose delivery, suggesting that the mice could predict the timing of the reward. Systemic injection of mecamylamine decreased licking behavior and caused eye closure but had no effect on learned conditioned predictive behavior in the head-fixed temporal conditioning task. In addition, the injection of mecamylamine decreased spontaneous locomotor activity in a dose-dependent manner in the free-moving open-field task. The results in the open-field experiments further revealed that the effect of mecamylamine on fecal output and urination, suggesting the effects on autonomic activities. Our achievement of successful eyelid size recording has potential as a useful approach in initial screening for drug discovery. Our study paves a way forward to understanding the role of nicotinic acetylcholine receptors on learning and behavior.


Subject(s)
Nicotinic Antagonists , Receptors, Nicotinic , Animals , Dose-Response Relationship, Drug , Eyelids , Male , Mecamylamine/pharmacology , Mice , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/physiology , Sucrose
7.
J Toxicol Environ Health A ; 85(18): 767-782, 2022 09 17.
Article in English | MEDLINE | ID: mdl-35650526

ABSTRACT

Thiamethoxam (TM) is a neonicotinoid insecticide that acts as a nicotinic acetylcholine receptor (nAChR) agonist. While designed to specifically target invertebrate nAChRs, recent studies have reported adverse effects of neonicotinoid exposure in early life-stage fish. This study examined the health and neurobehavioral impacts of chronic exposure to various concentrations of TM or nicotine (NIC) in early life zebrafish (Danio rerio) in conjunction with in-silico molecular docking to compare their ligand-receptor interactions with vertebrate nAChR. Chronic exposure to both reduced survival by approximately 20% (163 µg TM/l) and 25-100% (≥0.49 µg NIC/l). Hatching and growth were impaired following exposure to ≥0.21 µg TM/l or 4.9 µg NIC/l. Both TM and NIC produced morphological and behavioral indicators of neurotoxicity, with more potent effects following NIC exposure. NIC impaired embryonic motor activity by 40% (49 µg NIC/l), while both TM and NIC significantly altered predator escape response in larvae, specifically the latency and the initial burst movement of the response were impacted. Molecular docking predicted variations in the type and strength of interactions that occur between NIC or TM and vertebrate nAChR. These findings demonstrate that chronic exposure to TM might impact general health and neurobehavior of early-stage zebrafish. Our data support hypotheses that TM presents low affinity for vertebrate nAChR but may still pose an adverse risk to larval fish growth and neurobehavior.


Subject(s)
Nicotine , Receptors, Nicotinic , Animals , Larva , Molecular Docking Simulation , Neonicotinoids/toxicity , Nicotine/toxicity , Nicotinic Agonists , Receptors, Nicotinic/physiology , Thiamethoxam , Zebrafish/physiology
8.
Science ; 375(6587): 1378-1385, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35324301

ABSTRACT

Information flow in neurons proceeds by integrating inputs in dendrites, generating action potentials near the soma, and releasing neurotransmitters from nerve terminals in the axon. We found that in the striatum, acetylcholine-releasing neurons induce action potential firing in distal dopamine axons. Spontaneous activity of cholinergic neurons produced dopamine release that extended beyond acetylcholine-signaling domains, and traveling action potentials were readily recorded from dopamine axons in response to cholinergic activation. In freely moving mice, dopamine and acetylcholine covaried with movement direction. Local inhibition of nicotinic acetylcholine receptors impaired dopamine dynamics and affected movement. Our findings uncover an endogenous mechanism for action potential initiation independent of somatodendritic integration and establish that this mechanism segregates the control of dopamine signaling between axons and somata.


Subject(s)
Action Potentials , Axons , Cholinergic Neurons , Corpus Striatum , Dopamine , Synaptic Transmission , Acetylcholine/metabolism , Animals , Axons/physiology , Cholinergic Neurons/metabolism , Corpus Striatum/physiology , Dopamine/metabolism , Mice , Receptors, Nicotinic/physiology
9.
Nicotine Tob Res ; 24(3): 306-315, 2022 02 14.
Article in English | MEDLINE | ID: mdl-33955474

ABSTRACT

INTRODUCTION: Ingestion of nicotine by smoking, vaping, or other means elicits various effects including reward, antinociception, and aversion due to irritation, bitter taste, and unpleasant side effects such as nausea and dizziness. AIMS AND METHODS: Here we review the sensory effects of nicotine and the underlying neurobiological processes. RESULTS AND CONCLUSIONS: Nicotine elicits oral irritation and pain via the activation of neuronal nicotinic acetylcholine receptors (nAChRs) expressed by trigeminal nociceptors. These nociceptors excite neurons in the trigeminal subnucleus caudalis (Vc) and other brainstem regions in a manner that is significantly reduced by the nAChR antagonist mecamylamine. Vc neurons are excited by lingual application of nicotine and exhibit a progressive decline in firing to subsequent applications, consistent with desensitization of peripheral sensory neurons and progressively declining ratings of oral irritation in human psychophysical experiments. Nicotine also elicits a nAChR-mediated bitter taste via excitation of gustatory afferents. Nicotine solutions are avoided even when sweeteners are added. Studies employing oral self-administration have yielded mixed results: Some studies show avoidance of nicotine while others report increased nicotine intake over time, particularly in adolescents and females. Nicotine is consistently reported to increase human pain threshold and tolerance levels. In animal studies, nicotine is antinociceptive when delivered by inhalation of tobacco smoke or systemic infusion, intrathecally, and by intracranial microinjection in the pedunculopontine tegmentum, ventrolateral periaqueductal gray, and rostral ventromedial medulla. The antinociception is thought to be mediated by descending inhibition of spinal nociceptive transmission. Menthol cross-desensitizes nicotine-evoked oral irritation, reducing harshness that may account for its popularity as a flavor additive to tobacco products. IMPLICATIONS: Nicotine activates brain systems underlying reward and antinociception, but at the same time elicits aversive sensory effects including oral irritation and pain, bitter taste, and other unpleasant side effects mediated largely by nicotinic acetylcholine receptors (nAChRs). This review discusses the competing aversive and antinociceptive effects of nicotine and exposure to tobacco smoke, and the underlying neurobiology. An improved understanding of the interacting effects of nicotine will hopefully inform novel approaches to mitigate nicotine and tobacco use.


Subject(s)
Receptors, Nicotinic , Tobacco Products , Adolescent , Animals , Female , Humans , Mecamylamine , Nicotine/adverse effects , Receptors, Nicotinic/physiology , Nicotiana , Tobacco Use
10.
Nat Commun ; 12(1): 7252, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34903750

ABSTRACT

G-protein coupled receptors (GPCRs) play a paramount role in diverse brain functions. Almost 20 years ago, GPCR activity was shown to be regulated by membrane potential in vitro, but whether the voltage dependence of GPCRs contributes to neuronal coding and behavioral output under physiological conditions in vivo has never been demonstrated. Here we show that muscarinic GPCR mediated neuronal potentiation in vivo is voltage dependent. This voltage dependent potentiation is abolished in mutant animals expressing a voltage independent receptor. Depolarization alone, without a muscarinic agonist, results in a nicotinic ionotropic receptor potentiation that is mediated by muscarinic receptor voltage dependency. Finally, muscarinic receptor voltage independence causes a strong behavioral effect of increased odor habituation. Together, this study identifies a physiological role for the voltage dependency of GPCRs by demonstrating crucial involvement of GPCR voltage dependence in neuronal plasticity and behavior. Thus, this study suggests that GPCR voltage dependency plays a role in many diverse neuronal functions including learning and memory.


Subject(s)
Behavior, Animal/physiology , Neuronal Plasticity/physiology , Receptors, G-Protein-Coupled/physiology , Animals , Drosophila melanogaster , Habituation, Psychophysiologic/physiology , Membrane Potentials/physiology , Olfactory Pathways , Olfactory Receptor Neurons/physiology , Receptors, G-Protein-Coupled/genetics , Receptors, Muscarinic/genetics , Receptors, Muscarinic/physiology , Receptors, Nicotinic/physiology , Smell/physiology
11.
Molecules ; 26(20)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34684676

ABSTRACT

Nicotinic acetylcholine receptors (nAChR) are widely distributed in neuronal and non-neuronal tissues, where they play diverse physiological roles. In this review, we highlight the recent findings regarding the role of nAChR in the respiratory tract with a special focus on the involvement of nAChR in the regulation of multiple processes in health and disease. We discuss the role of nAChR in mucociliary clearance, inflammation, and infection and in airway diseases such as asthma, chronic obstructive pulmonary disease, and cancer. The subtype diversity of nAChR enables differential regulation, making them a suitable pharmaceutical target in many diseases. The stimulation of the α3ß4 nAChR could be beneficial in diseases accompanied by impaired mucociliary clearance, and the anti-inflammatory effect due to an α7 nAChR stimulation could alleviate symptoms in diseases with chronic inflammation such as chronic obstructive pulmonary disease and asthma, while the inhibition of the α5 nAChR could potentially be applied in non-small cell lung cancer treatment. However, while clinical studies targeting nAChR in the airways are still lacking, we suggest that more detailed research into this topic and possible pharmaceutical applications could represent a valuable tool to alleviate the symptoms of diverse airway diseases.


Subject(s)
Receptors, Nicotinic , Respiratory System , Acetylcholine/metabolism , Animals , Asthma/drug therapy , Asthma/pathology , Cholinergic Antagonists/pharmacology , Drug Delivery Systems , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/pathology , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/physiology , Respiratory System/metabolism , Respiratory System/pathology
12.
Biomolecules ; 11(6)2021 06 18.
Article in English | MEDLINE | ID: mdl-34207317

ABSTRACT

One of the treatment strategies for Alzheimer's disease (AD) is based on the use of pharmacological agents capable of binding to beta-amyloid (Aß) and blocking its aggregation in the brain. Previously, we found that intravenous administration of the synthetic tetrapeptide Acetyl-His-Ala-Glu-Glu-Amide (HAEE), which is an analogue of the 35-38 region of the α4 subunit of α4ß2 nicotinic acetylcholine receptor and specifically binds to the 11-14 site of Aß, reduced the development of cerebral amyloidogenesis in a mouse model of AD. In the current study on three types of laboratory animals, we determined the biodistribution and tissue localization patterns of HAEE peptide after single intravenous bolus administration. The pharmacokinetic parameters of HAEE were established using uniformly tritium-labeled HAEE. Pharmacokinetic data provided evidence that HAEE goes through the blood-brain barrier. Based on molecular modeling, a role of LRP1 in receptor-mediated transcytosis of HAEE was proposed. Altogether, the results obtained indicate that the anti-amyloid effect of HAEE, previously found in a mouse model of AD, most likely occurs due to its interaction with Aß species directly in the brain.


Subject(s)
Peptides/pharmacology , Peptides/pharmacokinetics , Receptors, Nicotinic/genetics , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/drug effects , Amyloid beta-Peptides/metabolism , Animals , Biological Transport , Blood-Brain Barrier/drug effects , Brain/metabolism , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Peptides/genetics , Rabbits , Rats , Rats, Wistar , Receptors, Nicotinic/physiology
13.
Biol Pharm Bull ; 44(7): 1007-1013, 2021.
Article in English | MEDLINE | ID: mdl-34193682

ABSTRACT

Nicotine has been known to enhance recognition memory in various species. However, the brain region where nicotine acts and exerts its effect remains unclear. Since the medial prefrontal cortex (mPFC) is associated with memory, we examined the role of the mPFC in nicotine-induced enhancement of recognition memory using the novel object recognition test in male C57BL/6J mice. Systemic nicotine administration 10 min before training session significantly enhanced object recognition memory in test session that was performed 24 h after the training. Intra-mPFC infusion of mecamylamine, a non-selective nicotinic acetylcholine receptor (nAChR) antagonist, 5 min before nicotine administration blocked the effect of nicotine. Additionally, intra-mPFC infusion of dihydro-ß-erythroidine, a selective α4ß2 nAChR antagonist, or methyllycaconitine, a selective α7 nAChR antagonist, significantly suppressed the nicotine-induced object recognition memory enhancement. Finally, intra-mPFC infusion of nicotine 1 min before the training session augmented object recognition memory in a dose-dependent manner. These findings suggest that mPFC α4ß2 and α7 nAChRs mediate the nicotine-induced object recognition memory enhancement.


Subject(s)
Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Prefrontal Cortex/drug effects , Receptors, Nicotinic/physiology , Recognition, Psychology/drug effects , alpha7 Nicotinic Acetylcholine Receptor/physiology , Aconitine/analogs & derivatives , Aconitine/pharmacology , Animals , Dihydro-beta-Erythroidine/pharmacology , Male , Mecamylamine/pharmacology , Mice, Inbred C57BL , Nicotinic Antagonists/pharmacology , Prefrontal Cortex/physiology , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors
14.
Int J Mol Sci ; 22(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206324

ABSTRACT

The gene cluster region, CHRNA3/CHRNA5/CHRNB4, encoding for nicotinic acetylcholine receptor (nAChR) subunits, contains several genetic variants linked to nicotine addiction and brain disorders. The CHRNA5 single-nucleotide polymorphism (SNP) rs16969968 is strongly associated with nicotine dependence and lung diseases. Using immunostaining studies on tissue sections and air-liquid interface airway epithelial cell cultures, in situ hybridisation, transcriptomic and cytokines detection, we analysed rs16969968 contribution to respiratory airway epithelial remodelling and modulation of inflammation. We provide cellular and molecular analyses which support the genetic association of this polymorphism with impaired ciliogenesis and the altered production of inflammatory mediators. This suggests its role in lung disease development.


Subject(s)
Cell Differentiation , Gene Expression Regulation , Inflammation , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Receptors, Nicotinic/genetics , Respiratory Mucosa/metabolism , Cells, Cultured , Chromosomes, Human, Pair 15 , Gene Expression Profiling , Genetic Predisposition to Disease , Humans , Lung Diseases/genetics , Lung Diseases/metabolism , Multigene Family , Nerve Tissue Proteins/physiology , Receptors, Nicotinic/physiology , Respiratory Mucosa/physiopathology , Tobacco Use Disorder/genetics , Tobacco Use Disorder/metabolism
15.
Mol Biol Rep ; 48(6): 5045-5055, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34143396

ABSTRACT

The results we obtained from this study gave information about the determination of alpha 7 nicotinic acetylcholine receptor (α7-nACh) expression in human erythroleukemia cells, as well as whether it has a role in calcium release and cell proliferation in the presence of nicotinic agonist, antagonists. Determining the roles of α7 nicotinic receptors in erythroleukemia cells will also contribute to leukemia-related signal transduction studies. This study is primarily to determine the role of nicotinic agonists and antagonists in cell proliferation, α7 nicotinic acetylcholine receptor expression, and calcium release. The aim of this study, which is a continuation and an important part of our previous studies on the cholinergic system, has contributed to the literature on the human erythroleukemia cell signaling mechanism. Cell viability was evaluated by the trypan blue exclusion test and Bromodeoxyuridine/5-Bromo-2'-deoxyuridine (BrdU) labeling. Acetylcholine, nicotinic alpha 7 receptor antagonist methyllycaconitine citrate, and cholinergic antagonist atropine were used to determine the role of α7-nACh in K562 cell proliferation. In our experiments, the fluorescence spectrophotometer was used in Ca2+ measurements. The expression of nicotinic alpha 7 receptor was evaluated by western blot. The stimulating effect of acetylcholine in K562 cell proliferation was reversed by both the α7 nicotinic antagonist methyllycaconitine citrate and the cholinergic antagonist, atropine. Methyllycaconitine citrate inhibited K562 cell proliferation partially explained the roles of nicotinic receptors in signal transduction. While ACh caused an increase in intracellular Ca2+, methyllycaconitine citrate decreased intracellular Ca2+ level in K562 cell. The effects of nicotinic agonists and/or antagonists on erythroleukemic cells on proliferation, calcium level contributed to the interaction of nicotinic receptors with different signaling pathways. Proliferation mechanisms in erythroleukemic cells are under the control of the α7 nicotinic acetylcholine receptor via calcium influx and different signalling pathway.


Subject(s)
alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Aconitine/analogs & derivatives , Aconitine/pharmacology , Calcium/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/genetics , Gene Expression/genetics , Humans , K562 Cells/metabolism , Leukemia/metabolism , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/physiology , Signal Transduction/drug effects , Signal Transduction/genetics , alpha7 Nicotinic Acetylcholine Receptor/physiology
16.
Sci Rep ; 11(1): 13187, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162968

ABSTRACT

Electrophysiological studies show that nicotine enhances neural responses to characteristic frequency stimuli. Previous behavioral studies partially corroborate these findings in young adults, showing that nicotine selectively enhances auditory processing in difficult listening conditions. The present work extended previous work to include both young and older adults and assessed the nicotine effect on sound frequency and intensity discrimination. Hypotheses were that nicotine improves auditory performance and that the degree of improvement is inversely proportional to baseline performance. Young (19-23 years old) normal-hearing nonsmokers and elderly (61-80) nonsmokers with normal hearing between 500 and 2000 Hz received nicotine gum (6 mg) or placebo gum in a single-blind, randomized crossover design. Participants performed three experiments (frequency discrimination, frequency modulation identification, and intensity discrimination) before and after treatment. The perceptual differences were analyzed between pre- and post-treatment, as well as between post-treatment nicotine and placebo conditions as a function of pre-treatment baseline performance. Compared to pre-treatment performance, nicotine significantly improved frequency discrimination. Compared to placebo, nicotine significantly improved performance for intensity discrimination, and the improvement was more pronounced in the elderly with lower baseline performance. Nicotine had no effect on frequency modulation identification. Nicotine effects are task-dependent, reflecting possible interplays of subjects, tasks and neural mechanisms.


Subject(s)
Aging/physiology , Auditory Perception/drug effects , Nicotine/pharmacology , Non-Smokers , Affect/drug effects , Aged , Aged, 80 and over , Cross-Over Studies , Discrimination, Psychological/drug effects , Female , Humans , Male , Middle Aged , Nicotine/administration & dosage , Nicotine Chewing Gum , Non-Smokers/psychology , Oxygen/blood , Pitch Perception/drug effects , Psychomotor Performance , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/physiology , Research Design , Signal-To-Noise Ratio , Single-Blind Method , Young Adult
17.
Int J Mol Sci ; 22(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946979

ABSTRACT

Choline is essential for maintaining the structure and function of cells in humans. Choline plays an important role in eye health and disease. It is a precursor of acetylcholine, a neurotransmitter of the parasympathetic nervous system, and it is involved in the production and secretion of tears by the lacrimal glands. It also contributes to the stability of the cells and tears on the ocular surface and is involved in retinal development and differentiation. Choline deficiency is associated with retinal hemorrhage, glaucoma, and dry eye syndrome. Choline supplementation may be effective for treating these diseases.


Subject(s)
Choline/physiology , Eye Diseases/metabolism , Acetylcholine/biosynthesis , Acetylcholine/physiology , Animals , Choline Deficiency/complications , Choline Deficiency/physiopathology , Diabetic Retinopathy/physiopathology , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/metabolism , Dry Eye Syndromes/physiopathology , Eye Diseases/etiology , Eye Diseases/physiopathology , Eye Pain/physiopathology , Glaucoma/physiopathology , Glycerylphosphorylcholine/therapeutic use , Humans , Lacrimal Apparatus/innervation , Lacrimal Apparatus/metabolism , Lens, Crystalline/metabolism , Nociception/physiology , Optic Nerve/metabolism , Parasympathetic Nervous System/physiopathology , Phosphatidylcholines/biosynthesis , Phospholipids/metabolism , Receptors, Nicotinic/physiology , Retina/growth & development , Retina/metabolism , Retinal Vessels/metabolism , Tears/metabolism
18.
Microcirculation ; 28(4): e12686, 2021 05.
Article in English | MEDLINE | ID: mdl-33595915

ABSTRACT

Methyl palmitate (MP) is a fatty acid methyl ester. Our recent study indicated that adrenergic nerve-dependent functional sympathetic-sensory nerve interactions were abolished by MP in mesenteric arteries. However, the effect of MP on perivascular nerves and cerebral blood flow remains unclear. In this study, the increase in basilar arterial blood flow (BABF) after the topical application of nicotinic acetylcholine receptor agonists was measured using laser Doppler flowmetry in anesthetized rats. The choline (a selective α7-nicotinic acetylcholine receptor agonist)-induced increase in BABF was abolished by tetrodotoxin (a neurotoxin), NG -nitro-L-arginine (a nonselective NO synthase inhibitor), α-bungarotoxin (a selective α7-nicotinic acetylcholine receptor inhibitor), and chronic sympathetic denervation. In addition, the nicotine (a nicotinic acetylcholine receptor agonist)-induced increase in BABF was inhibited by MP in a concentration-dependent manner. The acetylcholine-induced increase in BABF was not affected by MP. The myography results revealed that nicotine-induced vasorelaxation was significantly inhibited by MP, but was reversed by chelerythrine (a protein kinase C inhibitor). MP-induced vasodilation was significantly greater in BA rings without endothelium compared to those with endothelium. Meanwhile, MP did not affect baseline BABF. Our results indicate that MP acts as a neuromodulator in the cerebral circulation where it activates the PKC pathway and causes a diminished nicotine-induced increase in blood flow in the brainstem, and that the vasorelaxation effect of MP may play a minor role.


Subject(s)
Basilar Artery , Brain Stem , Neurotransmitter Agents , Nicotine , Palmitates , Receptors, Nicotinic , Animals , Basilar Artery/diagnostic imaging , Basilar Artery/drug effects , Basilar Artery/physiology , Brain Stem/blood supply , Brain Stem/diagnostic imaging , Brain Stem/drug effects , Laser-Doppler Flowmetry , Male , Neurotransmitter Agents/pharmacology , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Palmitates/pharmacology , Rats , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/physiology , Vasodilation/drug effects
19.
Article in English | MEDLINE | ID: mdl-33572734

ABSTRACT

The gut-brain axis describes a complex interplay between the central nervous system and organs of the gastrointestinal tract. Sensory neurons of dorsal root and nodose ganglia, neurons of the autonomic nervous system, and immune cells collect and relay information about the status of the gut to the brain. A critical component in this bi-directional communication system is the vagus nerve which is essential for coordinating the immune system's response to the activities of commensal bacteria in the gut and to pathogenic strains and their toxins. Local control of gut function is provided by networks of neurons in the enteric nervous system also called the 'gut-brain'. One element common to all of these gut-brain systems is the expression of nicotinic acetylcholine receptors. These ligand-gated ion channels serve myriad roles in the gut-brain axis including mediating fast synaptic transmission between autonomic pre- and postganglionic neurons, modulation of neurotransmitter release from peripheral sensory and enteric neurons, and modulation of cytokine release from immune cells. Here we review the role of nicotinic receptors in the gut-brain axis with a focus on the interplay of these receptors with the gut microbiome and their involvement in dysregulation of gut function and inflammatory bowel diseases.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases/physiopathology , Receptors, Nicotinic/physiology , Brain/physiology , Humans , Inflammatory Bowel Diseases/microbiology , Vagus Nerve
20.
Neuron ; 109(5): 778-787.e3, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33472037

ABSTRACT

Fast synaptic transmission relies upon the activation of ionotropic receptors by neurotransmitter release to evoke postsynaptic potentials. Glutamate and GABA play dominant roles in driving highly dynamic activity in synaptically connected neuronal circuits, but ionotropic receptors for other neurotransmitters are also expressed in the neocortex, including nicotinic receptors, which are non-selective cation channels gated by acetylcholine. To study the function of non-glutamatergic excitation in neocortex, we used two-photon microscopy to target whole-cell membrane potential recordings to different types of genetically defined neurons in layer 2/3 of primary somatosensory barrel cortex in awake head-restrained mice combined with pharmacological and optogenetic manipulations. Here, we report a prominent nicotinic input, which selectively depolarizes a subtype of GABAergic neuron expressing vasoactive intestinal peptide leading to disinhibition during active sensorimotor processing. Nicotinic disinhibition of somatosensory cortex during active sensing might contribute importantly to integration of top-down and motor-related signals necessary for tactile perception and learning.


Subject(s)
GABAergic Neurons/physiology , Receptors, Nicotinic/physiology , Somatosensory Cortex/physiology , Touch Perception/physiology , Animals , Behavior, Animal , Female , Male , Membrane Potentials , Neurons/physiology , Optogenetics , Touch/physiology , Vasoactive Intestinal Peptide/analysis , Vibrissae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...