Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
J Biol Chem ; 300(5): 107251, 2024 May.
Article in English | MEDLINE | ID: mdl-38569939

ABSTRACT

Ciliary neurotrophic factor (CNTF) activates cells via the non-signaling α-receptor CNTF receptor (CNTFR) and the two signaling ß-receptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). The CNTF derivate, Axokine, was protective against obesity and insulin resistance, but clinical development was halted by the emergence of CNTF antibodies. The chimeric cytokine IC7 used the framework of interleukin (IL-)6 with the LIFR-binding site from CNTF to activate cells via IL-6R:gp130:LIFR complexes. Similar to CNTF/Axokine, IC7 protected mice from obesity and insulin resistance. Here, we developed CNTF-independent chimeras that specifically target the IL-6R:gp130:LIFR complex. In GIL-6 and GIO-6, we transferred the LIFR binding site from LIF or OSM to IL-6, respectively. While GIO-6 signals via gp130:IL-6R:LIFR and gp130:IL-6R:OSMR complexes, GIL-6 selectively activates the IL-6R:gp130:LIFR receptor complex. By re-evaluation of IC7 and CNTF, we discovered the Oncostatin M receptor (OSMR) as an alternative non-canonical high-affinity receptor leading to IL-6R:OSMR:gp130 and CNTFR:OSMR:gp130 receptor complexes, respectively. The discovery of OSMR as an alternative high-affinity receptor for IC7 and CNTF designates GIL-6 as the first truly selective IL-6R:gp130:LIFR cytokine, whereas GIO-6 is a CNTF-free alternative for IC7.


Subject(s)
Ciliary Neurotrophic Factor , Cytokine Receptor gp130 , Interleukin-6 , Signal Transduction , Animals , Humans , Mice , Ciliary Neurotrophic Factor/metabolism , Ciliary Neurotrophic Factor/genetics , Cytokine Receptor gp130/metabolism , Cytokine Receptor gp130/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism , Leukemia Inhibitory Factor Receptor alpha Subunit/genetics , Models, Molecular , Protein Engineering/methods , Protein Structure, Tertiary , Receptors, Interleukin-6/metabolism , Receptors, Interleukin-6/genetics , Receptors, OSM-LIF/metabolism , Receptors, OSM-LIF/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Mice, Inbred C57BL
2.
J Reprod Immunol ; 163: 104212, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38432052

ABSTRACT

Interferon-τ (IFN-τ) participates in the establishment of endometrial receptivity in ruminants. However, the precise mechanisms by which IFN-τ establishes bovine endometrial receptivity remain largely unknown. Interferon regulatory factor 1 (IRF1) is a classical interferon-stimulated gene (ISG) induced by type I interferon, including IFN-τ. Leukemia inhibitory factor receptor (LIFR) is a transmembrane receptor for leukemia inhibitory factor (LIF), which is a key factor in regulating embryo implantation in mammals. This study aimed to investigate the roles of IRF1 and LIFR in the regulation of bovine endometrial receptivity by IFN-τ. In vivo, we found IRF1 and LIFR were upregulated in the bovine endometrial luminal epithelium on Day 18 of pregnancy compared to Day 18 of the estrous cycle. In vitro, IFN-τ could upregulate IRF1, LIFR, and endometrial receptivity markers (LIF, HOXA10, ITGAV, and ITGB3) expression, downregulate E-cadherin expression and reduce the quantity of microvilli of bovine endometrial epithelial cells (bEECs). Overexpression of IRF1 had similar effects to IFN-τ on endometrial receptivity, and interference of LIFR could block these effects, suggesting the positive effects of IRF1 on endometrial receptivity were mediated by LIFR. Dual luciferase reporter assay verified that IRF1 could transactivate LIFR transcription by binding to its promoter. In conclusion, IFN-τ can induce IRF1 expression in bovine endometrial epithelial cells, and IRF1 upregulates LIFR expression by binding to LIFR promoter, contributing to the enhancement of bovine endometrial receptivity.


Subject(s)
Embryo Implantation , Endometrium , Interferon Regulatory Factor-1 , Interferon Type I , Animals , Female , Cattle , Endometrium/metabolism , Endometrium/immunology , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Embryo Implantation/immunology , Interferon Type I/metabolism , Pregnancy , Receptors, OSM-LIF/metabolism , Pregnancy Proteins/metabolism , Pregnancy Proteins/genetics , Transcriptional Activation , Cells, Cultured , Epithelial Cells/metabolism , Epithelial Cells/immunology
3.
Int J Mol Sci ; 24(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38139260

ABSTRACT

Endometrial cancer (ECa) is the most common female gynecologic cancer. When comparing the two histological subtypes of endometrial cancer, Type II tumors are biologically more aggressive and have a worse prognosis than Type I tumors. Current treatments for Type II tumors are ineffective, and new targeted therapies are urgently needed. LIFR and its ligand, LIF, have been shown to play a critical role in the progression of multiple solid cancers and therapy resistance. The role of LIF/LIFR in the progression of Type II ECa, on the other hand, is unknown. We investigated the role of LIF/LIFR signaling in Type II ECa and tested the efficacy of EC359, a novel small-molecule LIFR inhibitor, against Type II ECa. The analysis of tumor databases has uncovered a correlation between diminished survival rates and increased expression of leukemia inhibitory factor (LIF), suggesting a potential connection between altered LIF expression and unfavorable overall survival in Type II ECa. The results obtained from cell viability and colony formation assays demonstrated a significant decrease in the growth of Type II ECa LIFR knockdown cells in comparison to vector control cells. Furthermore, in both primary and established Type II ECa cells, pharmacological inhibition of the LIF/LIFR axis with EC359 markedly decreased cell viability, long-term cell survival, and invasion, and promoted apoptosis. Additionally, EC359 treatment reduced the activation of pathways driven by LIF/LIFR, such as AKT, mTOR, and STAT3. Tumor progression was markedly inhibited by EC359 treatment in two different patient-derived xenograft models in vivo and patient-derived organoids ex vivo. Collectively, these results suggest LIFR inhibitor EC359 as a possible new small-molecule therapeutics for the management of Type II ECa.


Subject(s)
Endometrial Neoplasms , Signal Transduction , Humans , Female , Receptors, OSM-LIF/metabolism , Leukemia Inhibitory Factor Receptor alpha Subunit/genetics , Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism , Endometrial Neoplasms/drug therapy
4.
Cancer Biol Ther ; 24(1): 2271638, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37927213

ABSTRACT

The poly(rC) binding protein 1 gene (PCBP1) encodes the heterogeneous nuclear ribonucleoprotein E1 (hnRNPE1), a nucleic acid-binding protein that plays a tumor-suppressive role in the mammary epithelium by regulating phenotypic plasticity and cell fate. Following the loss of PCBP1 function, the FAM3C gene (encoding the Interleukin-like EMT inducer, or "ILEI" protein) and the leukemia inhibitory factor receptor (LIFR) gene are upregulated. Interaction between FAM3C and LIFR in the extracellular space induces phosphorylation of signal transducer and activator of transcription 3 (pSTAT3). Overexpression and/or hyperactivity of STAT3 has been detected in 40% of breast cancer cases and is associated with a poor prognosis. Herein, we characterize feed-forward regulation of LIFR expression in response to FAM3C/LIFR/STAT3 signaling in mammary epithelial cells. We show that PCBP1 upregulates LIFR transcription through activity at the LIFR promoter, and that FAM3C participates in transcriptional regulation of LIFR. Additionally, our bioinformatic analysis reveals a signature of transcriptional regulation associated with FAM3C/LIFR interaction and identifies the TWIST1 transcription factor as a downstream effector that participates in the maintenance of LIFR expression. Finally, we characterize the effect of LIFR expression in cell-based experiments that demonstrate the promotion of invasion, migration, and self-renewal of breast cancer stem cells (BCSCs), consistent with previous studies linking LIFR expression to tumor initiation and metastasis in mammary epithelial cells.


Subject(s)
Breast Neoplasms , DNA-Binding Proteins , RNA-Binding Proteins , Female , Humans , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Self Renewal/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Leukemia Inhibitory Factor Receptor alpha Subunit/genetics , Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism , Neoplasm Proteins/genetics , Receptors, OSM-LIF/genetics , Receptors, OSM-LIF/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism , Neoplasm Invasiveness
5.
Clin Transl Med ; 12(2): e676, 2022 02.
Article in English | MEDLINE | ID: mdl-35172032

ABSTRACT

BACKGROUND: Prostate cancer (PCa), an inert tumour, has a long progression period, but valid biomarkers and methods for effectively and sensitively monitoring PCa progression are lacking, prompting us to identify new predictors for diagnosis and prognosis. Posttranslational modifications characterizing receptor activation are considered potentially strong indicators of disease progression. METHODS: The posttranscriptional regulation of leukaemia inhibitory factor receptor (LIFR) and its novel downstream signalling activity in PCa were studied using liquid mass spectrometry, genetically engineered mouse (GEM) models, organoid assays, lentivirus packaging, infection and stable cell line construction. RESULTS: In this study, the level of acetylated K620 on LIFR in its extracellular domain was shown to predict the progression and prognosis of PCa. In PCa cells, LIFR-K620 acetylation is reversibly mediated by GCN5 and SIRT2. GEM experiments and organoid assays confirmed that the loss of LIFR-K620 acetylation inhibits PCa progression. Mechanistically, K620 acetylation facilitates LIFR homodimerization and subsequently promotes LIFR-S1044 phosphorylation and activation, which further recruits PDPK1 to activate AKT signalling and sequentially enhances the GCN5 protein level to sustain the protumour level of LIFR-K620 acetylation by preventing GCN5 degradation via CRL4Cdt2 E3 ligase. CONCLUSIONS: Acetylation of extracellular K620 on LIFR reinforces its homodimerization and integrates the activities of PDPK1, AKT, GSK3ß and GCN5 to form a novel positive feedback loop in PCa; this modification is thus a promising biomarker for monitoring PCa progression.


Subject(s)
3-Phosphoinositide-Dependent Protein Kinases/metabolism , Disease Progression , Lysine/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Processing, Post-Translational , Proto-Oncogene Proteins c-akt/metabolism , Receptors, OSM-LIF/metabolism , Acetylation , Animals , Male , Mice
6.
Mol Cell Endocrinol ; 544: 111556, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35031431

ABSTRACT

Testicular Leydig cells (LCs) are the principal source of circulating testosterone in males. LC steroidogenesis maintains sexual function, fertility and general health, and is influenced by various paracrine factors. The leukemia inhibitory factor receptor (LIFR) is expressed in the testis and activated by different ligands, including leukemia inhibitory factor (LIF), produced by peritubular myoid cells. LIF can modulate LC testosterone production in vitro under certain circumstances, but the role of consolidated signalling through LIFR in adult LC function in vivo has not been established. We used a conditional Lifr allele in combination with adenoviral vectors expressing Cre-recombinase to generate an acute model of LC Lifr-KO in the adult mouse testis, and showed that LC Lifr is not required for short term LC survival or basal steroidogenesis. However, LIFR-signalling negatively regulates steroidogenic enzyme expression and maximal gonadotrophin-stimulated testosterone biosynthesis, expanding our understanding of the intricate regulation of LC steroidogenic function.


Subject(s)
Leydig Cells , Testosterone , Animals , Leukemia Inhibitory Factor/metabolism , Leydig Cells/metabolism , Male , Mice , Receptors, OSM-LIF/metabolism , Testis/metabolism , Testosterone/metabolism
7.
J Transl Med ; 20(1): 54, 2022 01 29.
Article in English | MEDLINE | ID: mdl-35093095

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is characterized by high morbidity and mortality and is difficult to cure. Renal interstitial fibrosis (RIF) is a major determinant of, and commonly occurs within, CKD progression. Epithelial mesenchymal transition (EMT) has been identified as a crucial process in triggering renal interstitial fibrosis (RIF). Interleukin-like EMT inducer (ILEI) is an important promotor of EMT; this study aims to elucidate the mechanisms involved. METHODS: Male C57BL6/J mouse were randomly divided into 6 groups: sham (n = 10), sham with negative control (NC) shRNA (sham + NC, n = 10), sham with ILEI shRNA (sham + shILEI, n = 10), unilateral ureteral obstruction (UUO, n = 10), UUO with NC (UUO + NC, n = 10) and UUO with ILEI shRNA (UUO + shILEI, n = 10). Hematoxylin and eosin (H&E), Masson, and immunohistochemical (IHC) staining and western blotting (WB) were performed on murine kidney tissue to identify the function and mechanism of ILEI in RIF. In vitro, ILEI was overexpressed to induce EMT in HK2 cells and analyzed via transwell, WB, real-time PCR, and co-immunoprecipitation. Finally, tissue from 12 pediatric CKD patients (seven with RIF and five without RIF) were studied with H&E, Masson, and IHC staining. RESULTS: Our in vitro model revealed that ILEI facilitates RIF in the UUO model via the Akt and ERK pathways. Further experiments in vivo and in vitro revealed that ILEI promotes renal tubular EMT by binding and activating leukemia inhibitory factor receptor (LIFR), in which phosphorylation of Akt and ERK is involved. We further find markedly increased expression levels of ILEI and LIFR in kidneys from pediatric CKD patients with RIF. CONCLUSION: Our results indicate that ILEI may be a useful biomarker for renal fibrosis and a potential therapeutic target for modulating RIF.


Subject(s)
Kidney Diseases , Renal Insufficiency, Chronic , Animals , Child , Disease Models, Animal , Epithelial-Mesenchymal Transition , Fibrosis , Humans , Kidney Diseases/metabolism , Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism , MAP Kinase Signaling System , Male , Mice , Proto-Oncogene Proteins c-akt/metabolism , Receptors, OSM-LIF/metabolism , Transforming Growth Factor beta1/metabolism
8.
J Bone Miner Res ; 37(2): 185-201, 2022 02.
Article in English | MEDLINE | ID: mdl-34477239

ABSTRACT

Breast cancer cells frequently home to the bone marrow, where they encounter signals that promote survival and quiescence or stimulate their proliferation. The interleukin-6 (IL-6) cytokines signal through the co-receptor glycoprotein130 (gp130) and are abundantly secreted within the bone microenvironment. Breast cancer cell expression of leukemia inhibitory factor (LIF) receptor (LIFR)/STAT3 signaling promotes tumor dormancy in the bone, but it is unclear which, if any of the cytokines that signal through LIFR, including LIF, oncostatin M (OSM), and ciliary neurotrophic factor (CNTF), promote tumor dormancy and which signaling pathways are induced. We first confirmed that LIF, OSM, and CNTF and their receptor components were expressed across a panel of breast cancer cell lines, although expression was lower in estrogen receptor-negative (ER- ) bone metastatic clones compared with parental cell lines. In estrogen receptor-positive (ER+ ) cells, OSM robustly stimulated phosphorylation of known gp130 signaling targets STAT3, ERK, and AKT, while CNTF activated STAT3 signaling. In ER- breast cancer cells, OSM alone stimulated AKT and ERK signaling. Overexpression of OSM, but not CNTF, reduced dormancy gene expression and increased ER+ breast cancer bone dissemination. Reverse-phase protein array revealed distinct and overlapping pathways stimulated by OSM, LIF, and CNTF with known roles in breast cancer progression and metastasis. In breast cancer patients, downregulation of the cytokines or receptors was associated with reduced relapse-free survival, but OSM was significantly elevated in patients with invasive disease and distant metastasis. Together these data indicate that the gp130 cytokines induce multiple signaling cascades in breast cancer cells, with a potential pro-tumorigenic role for OSM and pro-dormancy role for CNTF. © 2021 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Breast Neoplasms , Cytokine Receptor gp130/metabolism , Cytokines , Breast Neoplasms/genetics , Cytokines/metabolism , Female , Humans , Interleukin-6/metabolism , Receptors, Cytokine/metabolism , Receptors, OSM-LIF/genetics , Receptors, OSM-LIF/metabolism , Signal Transduction , Tumor Microenvironment
9.
Dig Dis Sci ; 67(6): 2244-2256, 2022 06.
Article in English | MEDLINE | ID: mdl-34050852

ABSTRACT

BACKGROUND: Lidocaine has been manifested to exert anti-tumor role in gastric cancer (GC) progression. However, the action mechanism by which Lidocaine functions in GC has not been fully elucidated. AIM: The study aimed to reveal the molecular mechanism of Lidocaine in GC progression. METHODS: Cell clonogenicity and viability were assessed by colony formation and methyl thiazolyl tetrazolium assays, respectively. Transwell assay was employed to detect cell migration and invasion. Flow cytometry was implemented to monitor cell apoptosis. Relative expression of circular RNA ANO5 (circ_ANO5), microRNA (miR)-21-5p and Leukemia inhibitory factor receptor (LIFR) was examined by quantitative reverse transcription-polymerase chain reaction. Western blot assay was performed to analyze the levels of LIFR and cell metastasis-related proteins. The target relationship between miR-21-5p and circ_ANO5 or LIFR was confirmed by dual-luciferase reporter assay. In addition, xenograft model was established to explore the role of Lidocaine in vivo. RESULTS: Lidocaine inhibited cell proliferation, migration and invasion, while promoted apoptosis of GC cells. Lidocaine upregulated circ_ANO5 and LIFR expression, but downregulated miR-21-5p expression in GC cells. Additionally, expression of circ_ANO5 and LIFR was decreased, while miR-21-5p expression was increased in GC cells. Circ_ANO5 depletion or miR-21-5p overexpression attenuated Lidocaine-induced anti-proliferative and anti-metastatic effects on GC cells. Circ_ANO5 could sponge miR-21-5p, and miR-21-5p targeted LIFR. Moreover, Lidocaine suppressed the tumor growth in vivo. CONCLUSION: Lidocaine might GC cell malignancy by modulating circ_ANO5/miR-21-5p/LIFR axis, highlighting a novel insight for GC treatment.


Subject(s)
MicroRNAs , Stomach Neoplasms , Anoctamins , Cell Proliferation/genetics , Humans , Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism , Lidocaine/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , Receptors, OSM-LIF/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
10.
Endocrinology ; 162(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34402888

ABSTRACT

Recent studies have demonstrated that the formation of an implantation chamber composed of a uterine crypt, an implantation-competent blastocyst, and uterine glands is a critical step in blastocyst implantation in mice. Leukemia inhibitory factor (LIF) activates signal transducer and activator of transcription 3 (STAT3) precursors via uterine LIF receptors (LIFRs), allowing successful blastocyst implantation. Our recent study revealed that the role of epithelial STAT3 is different from that of stromal STAT3. However, both are essential for blastocyst attachment, suggesting the different roles of epithelial and stromal LIFR in blastocyst implantation. However, how epithelial and stromal LIFR regulate the blastocyst implantation process remains unclear. To investigate the roles of LIFR in the uterine epithelium and stroma, we generated Lifr-floxed/lactoferrin (Ltf)-iCre (Lifr eKO) and Lifr-floxed/antimüllerian hormone receptor type 2 (Amhr2)-Cre (Lifr sKO) mice with deleted epithelial and stromal LIFR, respectively. Surprisingly, fertility and blastocyst implantation in the Lifr sKO mice were normal despite stromal STAT3 inactivation. In contrast, blastocyst attachment failed, and no implantation chambers were formed in the Lifr eKO mice with epithelial inactivation of STAT3. In addition, normal responsiveness to ovarian hormones was observed in the peri-implantation uteri of the Lifr eKO mice. These results indicate that the epithelial LIFR-STAT3 pathway initiates the formation of implantation chambers, leading to complete blastocyst attachment, and that stromal STAT3 regulates blastocyst attachment without stromal LIFR control. Thus, uterine epithelial LIFR is critical to implantation chamber formation and blastocyst attachment.


Subject(s)
Embryo Implantation/genetics , Epithelium/metabolism , Receptors, OSM-LIF/physiology , Uterus/metabolism , Animals , Blastocyst/physiology , Decidua/physiology , Epithelial Cells/metabolism , Epithelial Cells/physiology , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Pregnancy , Receptors, OSM-LIF/genetics , Receptors, OSM-LIF/metabolism , Uterus/cytology
11.
Mol Med Rep ; 23(6)2021 06.
Article in English | MEDLINE | ID: mdl-33846773

ABSTRACT

Leukemia inhibitory factor (LIF) is a stem cell growth factor that maintains self­renewal of mouse embryonic stem cells (mESCs). LIF is a cytokine in the interleukin­6 family and signals via the common receptor subunit gp130 and ligand­specific LIF receptor. LIF causes heterodimerization of the LIF receptor and gp130, activating the Janus kinase/STAT and MAPK pathways, resulting in changes in protein phosphorylation. The present study profiled LIF­mediated protein phosphorylation changes in mESCs via proteomic analysis. mESCs treated in the presence or absence of LIF were analyzed via two­dimensional differential in­gel electrophoresis and protein and phosphoprotein staining. Protein identification was performed by matrix­assisted laser desorption/ionization­time of flight mass spectrophotometry. Increased phosphorylation of 16 proteins and decreased phosphorylation of 34 proteins in response to LIF treatment was detected. Gene Ontology terms enriched in these proteins included 'organonitrogen compound metabolic process', 'regulation of mRNA splicing via spliceosome' and 'nucleotide metabolic process'. The present results revealed that LIF modulated phosphorylation levels of nucleotide metabolism­associated proteins, thus providing insight into the mechanism underlying LIF action in mESCs.


Subject(s)
Leukemia Inhibitory Factor/metabolism , Mouse Embryonic Stem Cells/metabolism , Nucleotides/metabolism , Animals , Cell Line , Interleukin-6/metabolism , Janus Kinases/metabolism , Mice , Phosphorylation , Protein Binding , Proteomics , Receptors, OSM-LIF/metabolism
12.
Int J Mol Sci ; 23(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35008777

ABSTRACT

Oncostatin M (OSM) and leukemia inhibitory factor (LIF) signaling protects the heart after myocardial infarction (MI). In mice, oncostatin M receptor (OSMR) and leukemia inhibitory factor receptor (LIFR) are selectively activated by the respective cognate ligands while OSM activates both the OSMR and LIFR in humans, which prevents efficient translation of mouse data into potential clinical applications. We used an engineered human-like OSM (hlOSM) protein, capable to signal via both OSMR and LIFR, to evaluate beneficial effects on cardiomyocytes and hearts after MI in comparison to selective stimulation of either LIFR or OSMR. Cell viability assays, transcriptome and immunoblot analysis revealed increased survival of hypoxic cardiomyocytes by mLIF, mOSM and hlOSM stimulation, associated with increased activation of STAT3. Kinetic expression profiling of infarcted hearts further specified a transient increase of OSM and LIF during the early inflammatory phase of cardiac remodeling. A post-infarction delivery of hlOSM but not mOSM or mLIF within this time period combined with cardiac magnetic resonance imaging-based strain analysis uncovered a global cardioprotective effect on infarcted hearts. Our data conclusively suggest that a simultaneous and rapid activation of OSMR and LIFR after MI offers a therapeutic opportunity to preserve functional and structural integrity of the infarcted heart.


Subject(s)
Cardiotonic Agents/metabolism , Myocardial Infarction/prevention & control , Oncostatin M/metabolism , Receptors, OSM-LIF/metabolism , Animals , Cell Hypoxia/genetics , Cell Survival , Cells, Cultured , Humans , Kinetics , Leukemia Inhibitory Factor/metabolism , Mice , Myocardial Contraction , Myocardial Infarction/genetics , Myocytes, Cardiac/metabolism , Protein Engineering , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Oncostatin M/metabolism , STAT3 Transcription Factor/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction , Species Specificity , Transcriptome/genetics
13.
Cell Mol Life Sci ; 78(6): 2781-2795, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33034697

ABSTRACT

Autosomal-dominant leukodystrophy (ADLD) is a rare fatal neurodegenerative disorder with overexpression of the nuclear lamina component, Lamin B1 due to LMNB1 gene duplication or deletions upstream of the gene. The molecular mechanisms responsible for driving the onset and development of this pathology are not clear yet. Vacuolar demyelination seems to be one of the most significant histopathological observations of ADLD. Considering the role of oligodendrocytes, astrocytes, and leukemia inhibitory factor (LIF)-activated signaling pathways in the myelination processes, this work aims to analyze the specific alterations in different cell populations from patients with LMNB1 duplications and engineered cellular models overexpressing Lamin B1 protein. Our results point out, for the first time, that astrocytes may be pivotal in the evolution of the disease. Indeed, cells from ADLD patients and astrocytes overexpressing LMNB1 show severe ultrastructural nuclear alterations, not present in oligodendrocytes overexpressing LMNB1. Moreover, the accumulation of Lamin B1 in astrocytes induces a reduction in LIF and in LIF-Receptor (LIF-R) levels with a consequential decrease in LIF secretion. Therefore, in both our cellular models, Jak/Stat3 and PI3K/Akt axes, downstream of LIF/LIF-R, are downregulated. Significantly, the administration of exogenous LIF can partially reverse the toxic effects induced by Lamin B1 accumulation with differences between astrocytes and oligodendrocytes, highlighting that LMNB1 overexpression drastically affects astrocytic function reducing their fundamental support to oligodendrocytes in the myelination process. In addition, inflammation has also been investigated, showing an increased activation in ADLD patients' cells.


Subject(s)
Astrocytes/metabolism , Demyelinating Diseases/pathology , Lamin Type B/metabolism , Signal Transduction , Astrocytes/cytology , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Cells, Cultured , Demyelinating Diseases/metabolism , Down-Regulation/drug effects , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Hydrogen Peroxide/pharmacology , Inflammation Mediators/metabolism , Lamin Type B/genetics , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/pharmacology , Oligodendroglia/cytology , Oligodendroglia/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Reactive Oxygen Species/metabolism , Receptors, OSM-LIF/metabolism , Up-Regulation/drug effects
15.
Biomed Res Int ; 2019: 1613820, 2019.
Article in English | MEDLINE | ID: mdl-30937308

ABSTRACT

Leukemia inhibitory factor (LIF) and leukemia inhibitory factor receptor (Lifr) protect CNS cells, specifically neurons and myelin-sheath oligodendrocytes, in conditions of oxygen-glucose deprivation (OGD). In the case of astrocyte apoptosis resulting from reperfusion injury following hypoxia, the function of the Lifr remains to be fully elucidated. This study established models of in vivo ischemia/reperfusion (I/R) using an in vitro model of OGD to investigate the direct impact of silencing the Lifr on astrocyte apoptosis. Astrocytes harvested from newborn Wistar rats were exposed to OGD. Cell viability and apoptosis levels were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and annexin V/propidium iodide (PI) staining assays, respectively. Apoptosis was further investigated by the TdT-mediated dUTP nick-end labelling (TUNEL) assay. A standard western blotting protocol was applied to determine levels of the protein markers Bcl2, Bax, p-Akt/Akt, p-Stat3/Stat3, and p-Erk/Erk. The cell viability assay (MTT) showed that astrocyte viability decreased in response to OGD. Furthermore, blocking RNA to silence the Lifr further reduces astrocyte viability and increases levels of apoptosis as detected by annexin V/PI double staining. Likewise, western blotting after Lifr silencing demonstrated increased levels of the apoptosis-related proteins Bax and p-Erk/Erk and correspondingly lower levels of Bcl2, p-Akt/Akt, and p-Stat/Stat3. The data gathered in these analyses indicate that the Lifr plays a pivotal role in the astrocyte apoptosis induced by hypoxic/low-glucose environments. Further investigation of the relationship between apoptosis and the Lifr may provide a potential therapeutic target for the treatment of neurological injuries.


Subject(s)
Apoptosis , Astrocytes/metabolism , Glucose/deficiency , Oxygen/metabolism , Receptors, OSM-LIF/metabolism , Animals , Cell Survival , RNA, Small Interfering/metabolism , Rats, Wistar , Signal Transduction
16.
Nature ; 569(7754): 131-135, 2019 05.
Article in English | MEDLINE | ID: mdl-30996350

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis largely owing to inefficient diagnosis and tenacious drug resistance. Activation of pancreatic stellate cells (PSCs) and consequent development of dense stroma are prominent features accounting for this aggressive biology1,2. The reciprocal interplay between PSCs and pancreatic cancer cells (PCCs) not only enhances tumour progression and metastasis but also sustains their own activation, facilitating a vicious cycle to exacerbate tumorigenesis and drug resistance3-7. Furthermore, PSC activation occurs very early during PDAC tumorigenesis8-10, and activated PSCs comprise a substantial fraction of the tumour mass, providing a rich source of readily detectable factors. Therefore, we hypothesized that the communication between PSCs and PCCs could be an exploitable target to develop effective strategies for PDAC therapy and diagnosis. Here, starting with a systematic proteomic investigation of secreted disease mediators and underlying molecular mechanisms, we reveal that leukaemia inhibitory factor (LIF) is a key paracrine factor from activated PSCs acting on cancer cells. Both pharmacologic LIF blockade and genetic Lifr deletion markedly slow tumour progression and augment the efficacy of chemotherapy to prolong survival of PDAC mouse models, mainly by modulating cancer cell differentiation and epithelial-mesenchymal transition status. Moreover, in both mouse models and human PDAC, aberrant production of LIF in the pancreas is restricted to pathological conditions and correlates with PDAC pathogenesis, and changes in the levels of circulating LIF correlate well with tumour response to therapy. Collectively, these findings reveal a function of LIF in PDAC tumorigenesis, and suggest its translational potential as an attractive therapeutic target and circulating marker. Our studies underscore how a better understanding of cell-cell communication within the tumour microenvironment can suggest novel strategies for cancer therapy.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Leukemia Inhibitory Factor/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Paracrine Communication , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/diagnosis , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cell Line, Tumor , Disease Progression , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Female , Humans , Leukemia Inhibitory Factor/antagonists & inhibitors , Leukemia Inhibitory Factor/blood , Male , Mass Spectrometry , Mice , Pancreatic Neoplasms/diagnosis , Paracrine Communication/drug effects , Receptors, OSM-LIF/deficiency , Receptors, OSM-LIF/genetics , Receptors, OSM-LIF/metabolism , Tumor Microenvironment
17.
Brain Res ; 1707: 62-73, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30445025

ABSTRACT

Preclinical studies using rodent models of stroke have had difficulty in translating their results to human patients. One possible factor behind this inability is the lack of studies utilizing aged rodents of both sexes. Previously, this lab showed that leukemia inhibitory factor (LIF) promoted recovery after stroke through antioxidant enzyme upregulation. This study examined whether LIF promotes neuroprotection in aged rats of both sexes. LIF did not reduce tissue damage in aged animals, but LIF-treated female rats showed partial motor skill recovery. The LIF receptor (LIFR) showed membrane localization in young male and aged rats of both sexes after stroke. Although LIF increased neuronal LIFR expression in vitro, it did not increase LIFR in the aged brain. Levels of LIFR protein in brain tissue were significantly downregulated between young males and aged males/females at 72 h after stroke. These results demonstrated that low LIFR expression reduces the neuroprotective efficacy of LIF in aged rodents of both sexes. Furthermore, the ability of LIF to promote motor improvement is dependent upon sex in aged rodents.


Subject(s)
Leukemia Inhibitory Factor/pharmacology , Receptors, OSM-LIF/metabolism , Stroke/drug therapy , Age Factors , Animals , Brain/metabolism , Cytokines/metabolism , Female , Interleukin-6/metabolism , Leukemia Inhibitory Factor/metabolism , Male , Neurons/metabolism , Neuroprotection , Rats , Rats, Sprague-Dawley , Receptors, Cytokine/metabolism , Sex Factors , Stroke/metabolism , Treatment Outcome
18.
Nat Commun ; 9(1): 5105, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30504771

ABSTRACT

Metastasis remains a clinically unsolved issue in nasopharyngeal carcinoma. Here, we report that higher levels of cytoplasmic leukemia inhibitory factor (LIF) and LIF receptor are correlated with poorer metastasis/recurrence-free survival. Further, single nucleotide variations and signal peptide mutation of LIF are identified in NPC. Cytoplasmic LIF reprograms the invasive mode from collective to mesenchymal migration via acquisition of EMT and invadopodia-associated characteristics. Higher cytoplasmic LIF enhances cancer vascular dissemination and local invasion mechanistically through modulation of YAP1-FAK/PXN signaling. Immunohistochemical analyses of NPC biopsies reveal a positive correlation of cytoplasmic LIF expression with focal adhesion kinases. Pharmaceutical intervention with AZD0530 markedly reverses LIF-mediated cancer dissemination and local invasion through promotion of cytoplasmic accumulation of YAP1 and suppression of focal adhesion kinases. Given the significant role of LIF/YAP1-focal adhesion signaling in cancer dissemination, targeting of this pathway presents a promising opportunity to block metastasis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Focal Adhesion Kinase 1/metabolism , Leukemia Inhibitory Factor/metabolism , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Paxillin/metabolism , Phosphoproteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adult , Aged , Aged, 80 and over , Animals , Blotting, Western , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/physiology , Female , Focal Adhesion Kinase 1/genetics , Human Umbilical Vein Endothelial Cells , Humans , Immunohistochemistry , Leukemia Inhibitory Factor/genetics , Male , Mice , Mice, SCID , Middle Aged , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis , Paxillin/genetics , Phosphoproteins/genetics , Receptors, OSM-LIF/genetics , Receptors, OSM-LIF/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Transcription Factors , Xenograft Model Antitumor Assays , YAP-Signaling Proteins , Young Adult
19.
Biochem Biophys Res Commun ; 505(1): 274-281, 2018 10 20.
Article in English | MEDLINE | ID: mdl-30245131

ABSTRACT

Using Tandem Mass Tags (TMT) labeling and LC-MS/MS analysis of peptides from two cell lines (CNE2 and its radioresistant subclone CNE2-IR), we identified 754 proteins differentially expressed in CNE2-IR compared to CNE2. MAP2K6 was identified as a candidate radioresistance-related protein kinase. In vitro functional analysis revealed that over-expression of MAP2K6 significantly enhanced cell survival and colony formation following irradiation in NPC cells. Further, knockdown of MAP2K6 in radioresistant NPC cells led to decreased colony formation and increased apoptotic cells following irradiation. However, the effect of MAP2K6 in regulating the radioresistance in NPC cells did not seem to depend on p38/MAPK activity. Importantly, MAP2K6 might be required for leukemia inhibitory factor receptor (LIFR)-regulated radioresistance, as the expression levels of MAP2K6 affected LIFR/p70S6K signaling activation in NPC cells. Further, MAP2K6 kinase activity is required to activate LIFR/p70S6K signaling and to confer pro-survival effect on NPC cells. In conclusion, MAP2K6 might be an important regulator of LIFR-induced radioresistance in NPC.


Subject(s)
MAP Kinase Kinase 6/metabolism , Proteome/metabolism , Proteomics/methods , Receptors, OSM-LIF/metabolism , Apoptosis/genetics , Apoptosis/radiation effects , Cell Line, Tumor , Cell Survival/genetics , Cell Survival/radiation effects , Humans , MAP Kinase Kinase 6/genetics , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Proteome/genetics , RNA Interference , Radiation Tolerance/genetics , Radiation Tolerance/radiation effects , Radiation, Ionizing , Receptors, OSM-LIF/genetics , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction/genetics , Signal Transduction/radiation effects
20.
Cell Rep ; 24(7): 1765-1776, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30110634

ABSTRACT

Large-bodied organisms have more cells that can potentially turn cancerous than small-bodied organisms, imposing an increased risk of developing cancer. This expectation predicts a positive correlation between body size and cancer risk; however, there is no correlation between body size and cancer risk across species ("Peto's paradox"). Here, we show that elephants and their extinct relatives (proboscideans) may have resolved Peto's paradox in part through refunctionalizing a leukemia inhibitory factor pseudogene (LIF6) with pro-apoptotic functions. LIF6 is transcriptionally upregulated by TP53 in response to DNA damage and translocates to the mitochondria where it induces apoptosis. Phylogenetic analyses of living and extinct proboscidean LIF6 genes indicates that its TP53 response element evolved coincident with the evolution of large body sizes in the proboscidean stem lineage. These results suggest that refunctionalizing of a pro-apoptotic LIF pseudogene may have been permissive (although not sufficient) for the evolution of large body sizes in proboscideans.


Subject(s)
Elephants/genetics , Gene Dosage , Receptors, OSM-LIF/genetics , Tumor Suppressor Protein p53/genetics , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2-Associated X Protein/genetics , Animals , Apoptosis/genetics , Biological Evolution , Body Size , DNA Damage , Elephants/metabolism , Gene Duplication , Gene Expression Regulation , Humans , Mitochondria/genetics , Mitochondria/metabolism , Neoplasms/prevention & control , Phylogeny , Proboscidea Mammal/classification , Proboscidea Mammal/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pseudogenes , Receptors, OSM-LIF/metabolism , Response Elements , Transcription, Genetic , Tumor Suppressor Protein p53/metabolism , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL