Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 817
Filter
1.
Neoplasia ; 31: 100815, 2022 09.
Article in English | MEDLINE | ID: mdl-35728512

ABSTRACT

Extracellular adenosine in the tumor microenvironment plays a vital role in cancer development. Specifically, activation of adenosine receptors affects tumor cell growth and adenosine release. We examined the anti-tumor efficacy of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) in animal models, revealing the role of PLAG in inhibiting tumor progression by promoting the degradation of adenosine 2B receptors (A2BRs) in tumors. PLAG induced the expression of thioredoxin-interacting protein (TXNIP), a type of α-arrestin that accelerates A2BR internalization by interacting with A2BR complexes containing ß-arrestin. Engulfed receptors bound to TXNIP were rapidly degraded after E3 ligase recruitment and ubiquitination, resulting in early termination of intracellular signals that promote tumor overgrowth. However, in control cancer cells, A2BRs bound to protein phosphatase 2A and were returned to the cell membrane instead of being degraded, resulting in continuous receptor-mediated signaling by pathways including the Raf-Erk axis, which promotes tumor proliferation. A TXNIP-silenced cell-implanted mouse model and TXNIP knockout (KO) mice were used to verify that PLAG-mediated suppression of tumor progression is dependent on TXNIP expression. Increased tumor growth was observed in TXNIP-silenced cell-implanted mice, and the anti-tumor effects of PLAG, including delayed tumor overgrowth, were greatly reduced. However, the anti-tumor effects of PLAG were observed in cancer cell-implanted TXNIP-KO mice, which indicates that PLAG produces anti-tumor effects by enhancing TXNIP expression in tumor cells. These essential functions of PLAG, including delaying tumor growth via A2BR degradation, suggest innovative directions for anticancer drug development.


Subject(s)
Carcinoma, Lewis Lung , Carcinoma, Non-Small-Cell Lung , Carrier Proteins , Lung Neoplasms , Receptors, Purinergic P1 , Thioredoxins , Adenosine/pharmacology , Animals , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carrier Proteins/metabolism , Diglycerides/metabolism , Diglycerides/pharmacology , Mice , Receptors, Purinergic P1/drug effects , Receptors, Purinergic P1/metabolism , Thioredoxins/metabolism , Tumor Microenvironment
2.
Biomed Pharmacother ; 145: 112395, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34775239

ABSTRACT

Inosine is a dietary supplement that is widely used for managing numerous central neurological disorders. Interestingly, recent experimental investigation of inosine revealed its potential to promote peripheral neuroprotection after sciatic nerve injury. Such investigation has guided the focus of the current study to expose the potential of inosine in mitigating diabetic peripheral neuropathy (DPN) in rats and to study the possible underlying signaling pathways. Adult male Wistar rats were arbitrarily distributed into four groups. In the first group, animals received saline daily for 15 days whereas rats of the remaining groups received a single injection of both nicotinamide (50 mg/Kg/i.p.) and streptozotocin (52.5 mg/Kg/i.p.) for DPN induction. Afterward, inosine (10 mg/Kg/p.o.) was administered to two groups, either alone or in combination with caffeine (3.75 mg/Kg/p.o.), an adenosine receptor antagonist. As a result, inosine showed a hypoglycemic effect, restored the sciatic nerve histological structure, enhanced myelination, modulated conduction velocities and maintained behavioral responses. Furthermore, inosine increased GLO1, reduced AGE/RAGE axis and oxidative stress which in turn, downregulated NF-κB p65 and its phosphorylated form in the sciatic nerves. Inosine enhanced Nrf2 expression and its downstream molecule HO-1, resulting in increased CAT and SOD along with lowered MDA. Moreover, pain was relieved due to suppression of PKC and TRPV1 expression, which ultimately lead to reduced SP and TGF-ß. The potential effects of inosine were nearly blocked by caffeine administration; this emphasizes the role of adenosine receptors in inosine-mediated neuroprotective effects. In conclusion, inosine alleviated hyperglycemia-induced DPN via modulating GLO1/AGE/RAGE/NF-κB p65/Nrf2 and TGF-ß/PKC/TRPV1/SP pathways.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetic Neuropathies/drug therapy , Inosine/pharmacology , Neuroprotective Agents/pharmacology , Animals , Caffeine/pharmacology , Hyperglycemia/drug therapy , Hypoglycemic Agents/pharmacology , Male , Niacinamide , Oxidative Stress/drug effects , Rats , Rats, Wistar , Receptors, Purinergic P1/drug effects , Receptors, Purinergic P1/metabolism , Signal Transduction/drug effects , Streptozocin
3.
Purinergic Signal ; 18(1): 13-59, 2022 03.
Article in English | MEDLINE | ID: mdl-34757513

ABSTRACT

Hyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.


Subject(s)
Adenosine Triphosphate/metabolism , COVID-19/immunology , Cytokine Release Syndrome/etiology , Inflammation/etiology , Lidocaine/therapeutic use , Purinergic P2X Receptor Antagonists/therapeutic use , Receptors, Purinergic/physiology , Anti-Inflammatory Agents/therapeutic use , Critical Care , Cytokine Release Syndrome/drug therapy , Humans , Inflammation/drug therapy , Infusions, Subcutaneous , Lidocaine/administration & dosage , Lidocaine/pharmacology , Lymph Nodes/immunology , Lymphatic System/immunology , Male , Maximum Tolerated Dose , Middle Aged , Models, Immunological , Purinergic P2X Receptor Antagonists/administration & dosage , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic/drug effects , Receptors, Purinergic P1/drug effects , Receptors, Purinergic P1/physiology , Receptors, Purinergic P2X7/physiology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Signal Transduction , T-Lymphocytes, Regulatory/immunology
4.
Nutrients ; 13(11)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34836344

ABSTRACT

It has been previously demonstrated that KEKS food containing exogenous ketogenic supplement ketone salt (KS) and ketone ester (KE) decreased the lipopolysaccharide (LPS)-generated increase in SWD (spike-wave discharge) number in Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats, likely through ketosis. KEKS-supplemented food-generated ketosis may increase adenosine levels, and may thus modulate both neuroinflammatory processes and epileptic activity through adenosine receptors (such as A1Rs and A2ARs). To determine whether these adenosine receptors are able to modify the KEKS food-generated alleviating effect on LPS-evoked increases in SWD number, an antagonist of A1R DPCPX (1,3-dipropyl-8-cyclopentylxanthine; 0.2 mg/kg) with LPS (50 µg/kg) and an antagonist of A2AR SCH58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine; 0.5 mg/kg) with LPS were co-injected intraperitoneally (i.p.) on the ninth day of KEKS food administration, and their influence not only on the SWD number, but also on blood glucose, R-beta-hydroxybutyrate (R-ßHB) levels, and body weight were measured. We showed that inhibition of A1Rs abolished the alleviating effect of KEKS food on LPS-generated increases in the SWD number, whereas blocking A2ARs did not significantly modify the KEKS food-generated beneficial effect. Our results suggest that the neuromodulatory benefits of KEKS-supplemented food on absence epileptic activity are mediated primarily through A1R, not A2AR.


Subject(s)
Dietary Supplements , Epilepsy, Absence/prevention & control , Ketones/administration & dosage , Pyrimidines/pharmacology , Triazoles/pharmacology , Xanthines/pharmacology , 3-Hydroxybutyric Acid/blood , Animals , Blood Glucose/drug effects , Body Weight/drug effects , Disease Models, Animal , Injections, Intraperitoneal , Ketosis/blood , Ketosis/drug therapy , Lipopolysaccharides/pharmacology , Purinergic P1 Receptor Antagonists , Rats , Rats, Wistar , Receptors, Purinergic P1/drug effects
5.
Nutrients ; 13(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34578918

ABSTRACT

Neurodegenerative disorders are devastating diseases in which aging is a major risk factor. High-fat diet (HFD) seems to contribute to cognition deterioration, but the underlying mechanisms are poorly understood. Moreover, resveratrol (RSV) has been reported to counteract the loss of cognition associated with age. Our study aimed to investigate whether the adenosinergic system and plasma membrane cholesterol are modulated by HFD and RSV in the cerebral cortex of C57BL/6J and SAMP8 mice. Results show that HFD induced increased A1R and A2AR densities in C57BL/6J, whereas this remained unchanged in SAMP8. Higher activity of 5'-Nucleotidase was found as a common effect induced by HFD in both mice strains. Furthermore, the effect of HFD and RSV on A2BR density was different depending on the mouse strain. RSV did not clearly counteract the HFD-induced effects on the adenosinergic system. Besides, no changes in free-cholesterol levels were detected in the plasma membrane of cerebral cortex in both strains. Taken together, our data suggest a different modulation of adenosine receptors depending on the mouse strain, not related to changes in plasma membrane cholesterol content.


Subject(s)
Antioxidants/pharmacology , Cerebral Cortex/physiopathology , Diet, High-Fat/adverse effects , Neurodegenerative Diseases/physiopathology , Receptors, Purinergic P1/drug effects , Resveratrol/pharmacology , Animals , Cerebral Cortex/drug effects , Male , Mice , Mice, Inbred C57BL
6.
Purinergic Signal ; 17(2): 303-312, 2021 06.
Article in English | MEDLINE | ID: mdl-33860899

ABSTRACT

The role of peripheral adenosine receptors in pain is a controversial issue and seems to be quite different from the roles of spinal and central adenosine receptors. The present study is aimed at clarifying the role of these receptors in peripheral nociception. To clarify this, studies were done on Swiss mice with adenosine receptor agonists and antagonists. Nociceptive behavior was induced by subcutaneous injection of glutamate (10 µmol) into the ventral surface of the hind paw of mice. Statistical analyses were performed by one-way ANOVA followed by the Student-Newman-Keuls post hoc test. Results showed that intraplantar (i.pl.) administration of N6-cyclohexyl-adenosine (CHA), an adenosine A1 receptor agonist, at 1 or 10 µg/paw significantly reduced glutamate-induced nociception (p<0.01 and p<0.001 vs. vehicle, respectively, n=8-10). In contrast, i.pl. injection of hydrochloride hydrate (CGS21680, an adenosine A2A receptor agonist) (1 µg/paw) induced a significant increase in glutamate-induced nociception compared to the vehicle (p<0.05, n=8), while 4-(-2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a} {1,3,5}triazin-5-yl-amino]ethyl)phenol (ZM241385, an adenosine A2A receptor antagonist) (20 µg/paw) caused a significant reduction (p<0.05, n=7-8). There were no significant effects on i.pl. administration of four additional adenosine receptor drugs-8-cyclopentyl-1,3-dipropylxanthine (DPCPX, an A1 antagonist, 1-10 µg/paw), N(6)-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)-ethyl]adenosine (DPMA, an A2B agonist, 1-100 µg/paw), alloxazine (an A2B antagonist, 0.1-3 µg/paw), and 2-hexyn-1-yl-N(6)-methyladenosine (HEMADO) (an A3 agonist, 1-100 µg/paw) (p>0.05 vs. vehicle for all tests). We also found that prior administration of DPCPX (3 µg/paw) significantly blocked the anti-nociceptive effect of CHA (1 µg/paw) (p<0.05, n=7-9). Similarly, ZM241385 (20 µg/paw) administered prior to CGS21680 (1 µg/paw) significantly blocked CGS21680-induced exacerbation of nociception (p<0.05, n=8). Finally, inosine (10 and 100 µg/paw), a novel endogenous adenosine A1 receptor agonist recently reported by our research group, was also able to reduce glutamate-induced nociception (p<0.001 vs. vehicle, n=7-8). Interestingly, as an A1 adenosine receptor agonist, the inosine effect was significantly blocked by the A1 antagonist DPCPX (3 µg/paw) (p<0.05, n=7-9) but not by the A2A antagonist ZM241385 (10 µg/paw, p>0.05). In summary, these results demonstrate for the first time that i.pl administration of inosine induces an anti-nociceptive effect, similar to that elicited by CHA and possibly mediated by peripheral adenosine A1 receptor activation. Moreover, our results suggest that peripheral adenosine A2A receptor activation presents a pro-nociceptive effect, exacerbating glutamate-induced nociception independent of inosine-induced anti-nociceptive effects.


Subject(s)
Glutamates , Nociception/drug effects , Pain/chemically induced , Pain/psychology , Peripheral Nervous System/drug effects , Receptors, Purinergic P1/drug effects , Adenosine A1 Receptor Agonists/pharmacology , Adenosine A1 Receptor Antagonists/pharmacology , Adenosine A2 Receptor Agonists/pharmacology , Adenosine A2 Receptor Antagonists/pharmacology , Animals , Female , Foot , Glutamates/administration & dosage , Injections , Inosine/pharmacology , Male , Mice , Pain Measurement/drug effects , Receptor, Adenosine A2A/drug effects
7.
Am J Physiol Cell Physiol ; 320(5): C892-C901, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33689481

ABSTRACT

Adenosine receptors (ADORs) are G protein-coupled purinoceptors that have several functions including regulation of chloride secretion via cystic fibrosis transmembrane conductance regulator (CFTR) in human airway and kidney. We cloned an ADOR from Squalus acanthias (shark) that likely regulates CFTR in the rectal gland. Phylogenic and expression analyses indicate that elasmobranch ADORs are nonolfactory and appear to represent extant predecessors of mammalian ADORs. We therefore designate the shark ADOR as the A0 receptor. We coexpressed A0 with CFTR in Xenopus laevis oocytes and characterized the coupling of A0 to the chloride channel. Two-electrode voltage clamping was performed, and current-voltage (I-V) responses were recorded to monitor CFTR status. Only in A0- and CFTR-coinjected oocytes did adenosine analogs produce a significant concentration-dependent activation of CFTR consistent with its electrophysiological signature. A pharmacological profile for A0 was obtained for ADOR agonists and antagonists that differed markedly from all mammalian ADOR subtypes [agonists: R-phenyl-isopropyl adenosine (R-PIA) > S-phenyl-isopropyl adenosine (S-PIA) > CGS21680 > N6-cyclopentyladenosine (CPA) > 2-chloroadenosine (2ClAdo) > CV1808 = N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine (DPMA) > N-ethyl-carboxyl adenosine (NECA); and antagonists: 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) > PD115199 > 1,3-dimethyl-8-phenylxanthine (8PT) > CGS15943]. Structures of human ADORs permitted a high-confidence homology model of the shark A0 core that revealed unique structural features of ancestral receptors. We conclude that 1) A0 is a novel and unique adenosine receptor ancestor by functional and structural criteria; 2) A0 likely activates CFTR in vivo, and this receptor activates CFTR in oocytes, indicating an evolutionary coupling between ADORs and chloride secretion; and 3) A0 appears to be a nonolfactory evolutionary ancestor of all four mammalian ADOR subtypes.


Subject(s)
Chlorides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Fish Proteins/metabolism , Receptors, Purinergic P1/metabolism , Salt Gland/metabolism , Squalus acanthias/metabolism , Animals , Cloning, Molecular , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Evolution, Molecular , Female , Fish Proteins/genetics , Humans , Male , Membrane Potentials , Phylogeny , Protein Conformation , Purinergic P1 Receptor Agonists/pharmacology , Purinergic P1 Receptor Antagonists/pharmacology , Receptors, Purinergic P1/drug effects , Receptors, Purinergic P1/genetics , Squalus acanthias/genetics , Structure-Activity Relationship , Xenopus laevis
8.
Purinergic Signal ; 17(2): 179-200, 2021 06.
Article in English | MEDLINE | ID: mdl-33576905

ABSTRACT

Breast cancer (BC) is the most frequent cause of death among women, representing a global public health problem. Here, we aimed to discuss the correlation between the purinergic system and BC, recognizing therapeutic targets. For this, we analyzed the interaction of extracellular nucleotides and nucleosides with the purinergic receptors P1 and P2, as well as the influence of ectonucleotidase enzymes (CD39 and CD73) on tumor progression. A comprehensive bibliographic search was carried out. The relevant articles for this review were found in the PubMed, Scielo, Lilacs, and ScienceDirect databases. It was observed that among the P1 receptors, the A1, A2A, and A2B receptors are involved in the proliferation and invasion of BC, while the A3 receptor is related to the inhibition of tumor growth. Among the P2 receptors, the P2X7 has a dual function. When activated for a short time, it promotes metastasis, but when activated for long periods, it is related to BC cell death. P2Y2 and P2Y6 receptors are related to BC proliferation and invasiveness. Also, the high expression of CD39 and CD73 in BC is strongly related to a worse prognosis. The receptors and ectonucleotidases involved with BC become possible therapeutic targets. Several purinergic pathways have been found to be involved in BC cell survival and progression. In this review, in addition to analyzing the pathways involved, we reviewed the therapeutic interventions already studied for BC related to the purinergic system, as well as to other possible therapeutic targets.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Receptors, Purinergic/drug effects , Signal Transduction/drug effects , Female , Humans , Receptors, Purinergic P1/drug effects , Receptors, Purinergic P2/drug effects
9.
Parkinsonism Relat Disord ; 80 Suppl 1: S3-S6, 2020 11.
Article in English | MEDLINE | ID: mdl-33349578

ABSTRACT

The quest for a non-dopaminergic approach to treating Parkinson's disease (PD) has been quietly progressing over the past several decades, and is now finding its momentum. Here, in what is more a memoir than a comprehensive review, we discuss work carried out over the past 50 years to show that adenosine acts as a critical signaling molecule via actions against a specific family of receptors. Importantly for PD, adenosine A2A receptors have a selective localization to the basal ganglia and specifically to the indirect output pathway, offering a targeted, non-dopaminergic opportunity to modulate basal ganglia output.


Subject(s)
Basal Ganglia/metabolism , Brain/metabolism , Levodopa/metabolism , Parkinson Disease/metabolism , Receptors, Purinergic P1/metabolism , Animals , Brain/pathology , Humans , Parkinson Disease/therapy , Receptors, Purinergic P1/drug effects
10.
J Cardiovasc Pharmacol ; 76(3): 349-359, 2020 09.
Article in English | MEDLINE | ID: mdl-32569015

ABSTRACT

In the recent years, the awareness of the role purinergic signaling plays as a therapeutic target has increased considerably. The purinoceptor allows the action of extracellular nucleotides (P2 receptors) and intermediary products of their metabolism, such as adenosine (P1 receptors), regulating pivotal processes occurring in the cardiovascular system. This study focuses on a dual purinoreceptor-dependent approach, based on the activation of adenosine P1 receptors with the simultaneous inhibition of P2Y12 receptors that can be used as novel platelet inhibitors in antithrombotic therapy. Endothelial cells are directly exposed to the drugs circulating in the bloodstream. That is why effects of our concept on human microvascular endothelial cells (HMEC-1) were examined in in vitro studies, such as enzyme-linked immunosorbent assay and scratch assays. In response to adenosine receptor agonists, levels of secreted vascular endothelial growth factor varied. Two of them, 5'-N-ethylcarboxamidoadenosine and MRE0094 remarkably increased vascular endothelial growth factor release. The elevated levels were reduced when used together with the P2Y12 receptor antagonist. Also, rates of wound closure in a scratch assay were significantly reduced in these cases. The results suggest that the proposed treatment does not impair endothelial cell condition. In addition, it is suggested as a collateral benefit, namely solving the problem of excessive activation of endothelial cells during antiplatelet therapy.


Subject(s)
Endothelial Cells/drug effects , Microvessels/drug effects , Platelet Aggregation Inhibitors/pharmacology , Purinergic P1 Receptor Agonists/pharmacology , Purinergic P2Y Receptor Antagonists/pharmacology , Receptors, Purinergic P1/drug effects , Receptors, Purinergic P2Y12/drug effects , Vascular Endothelial Growth Factor A/metabolism , Cell Line , Cell Movement/drug effects , Cell Survival/drug effects , Dual Anti-Platelet Therapy , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Male , Microvessels/metabolism , Microvessels/pathology , Receptors, Purinergic P1/metabolism , Receptors, Purinergic P2Y12/metabolism , Secretory Pathway , Signal Transduction
11.
Purinergic Signal ; 15(4): 465-476, 2019 12.
Article in English | MEDLINE | ID: mdl-31520282

ABSTRACT

Glial cells are involved in multiple cerebral functions that profoundly influence brain tissue viability during ischemia, and astrocytes are the main source of extracellular purines as adenosine and guanosine. The endogenous guanine-based nucleoside guanosine is a neuromodulator implicated in important processes in the brain, such as modulation of glutamatergic transmission and protection against oxidative and inflammatory damage. We evaluated if the neuroprotective effect of guanosine is also observed in cultured cortical astrocytes subjected to oxygen/glucose deprivation (OGD) and reoxygenation. We also assessed the involvement of A1 and A2A adenosine receptors and phosphatidylinositol-3 kinase (PI3K), MAPK, and protein kinase C (PKC) signaling pathways on the guanosine effects. OGD/reoxygenation decreased cell viability and glutamate uptake and increased reactive oxygen species (ROS) production in cultured astrocytes. Guanosine treatment prevented these OGD-induced damaging effects. Dipropyl-cyclopentyl-xanthine (an adenosine A1 receptor antagonist) and 4-[2-[[6-amino-9-(N-ethyl-ß-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl] benzenepropanoic acid hydrochloride (an adenosine A2A receptor agonist) abolished guanosine-induced protective effects on ROS production, glutamate uptake, and cell viability. The PI3K pathway inhibitor 2-morpholin-4-yl-8-phenylchromen-4-one, the extracellular-signal regulated kinase kinase (MEK) inhibitor 2'-amino-3'-methoxyflavone, or the PKC inhibitor chelerythrine abolished the guanosine effect of preventing OGD-induced cells viability reduction. PI3K inhibition partially prevented the guanosine effect of reducing ROS production, whereas MEK and PKC inhibitions prevented the guanosine effect of restoring glutamate uptake. The total immunocontent of the main astrocytic glutamate transporter glutamate transporter-1 (GLT-1) was not altered by OGD and guanosine. However, MEK and PKC inhibitions also abolished the guanosine effect of increasing cell-surface expression of GLT-1 in astrocytes subjected to OGD. Then, guanosine prevents oxidative damage and stimulates astrocytic glutamate uptake during ischemic events via adenosine A1 and A2A receptors and modulation of survival signaling pathways, contributing to microenvironment homeostasis that culminates in neuroprotection.


Subject(s)
Astrocytes/drug effects , Glucose/metabolism , Glutamic Acid/metabolism , Guanosine/pharmacology , Oxygen/metabolism , Animals , Astrocytes/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hypoxia/metabolism , Neuroprotective Agents/pharmacology , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Purinergic P1/drug effects , Receptors, Purinergic P1/metabolism
12.
Med Sci Monit ; 25: 1729-1739, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30840612

ABSTRACT

BACKGROUND We aimed to explore the involvement of adenosine 1 adenosine receptor (A1AR) in hypoxia-induced poor differentiation of oligodendrocytes (OLs), and the underlying mechanism of caffeine treatment in hypoxic injuries. MATERIAL AND METHODS Real-time polymerase chain reaction (RT-PCR) was used to assess the alterations of AR expression in cultured hypoxic OLs with or without caffeine treatment. Then, intracellular alterations of Ca²âº concentrations ([Ca²âº) were detected by confocal Fluo-3 imaging. The subsequent changes of myelin related protein expression were determined by western blot and immunofluorescence. RESULTS Three hours after hypoxia, significantly upregulated expression of A1AR was observed, accompanied with significantly decreased expression of oligodendrocyte transcription factor (Olig2). In addition, either hypoxia stimulation or 100 µM adenosine induced apparent elevation of resting [Ca²âº] in cultured OLs. However, pretreatment with DPCPX (A1AR selective antagonist) or caffeine abolished the [Ca²âº] increase, and the subsequent adenosine of high dose induced Ca²âº activity in developing OLs. Furthermore, caffeine or DPCPX improved the expression MBP and CNPase proteins after hypoxia stimulation, which resulted in the morphological maturation of OLs. CONCLUSIONS Caffeine treatment exerted protective effects on neonatal hypoxia injuries. It prevented Ca²âº overload injury, kept Ca²âº homeostasis in hypoxic developing OLs, and facilitated optimal expression of myelin related proteins by inhibiting A1AR in vitro. This study also provided experimental evidence for clinical application of caffeine in early treatment of neonatal hypoxia, and highlighted the potential significance of A1AR in anti-hypoxic drug discovery.


Subject(s)
Caffeine/pharmacology , Oligodendroglia/drug effects , Receptor, Adenosine A1/drug effects , Adenosine/metabolism , Animals , Caffeine/metabolism , Calcium/metabolism , Cell Differentiation/drug effects , Cells, Cultured , China , Homeostasis/drug effects , Hypoxia/drug therapy , Hypoxia/physiopathology , Myelin Sheath/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Calcium-Sensing/metabolism , Receptors, Purinergic P1/drug effects , Receptors, Purinergic P1/metabolism
13.
Neurochem Res ; 44(5): 1037-1042, 2019 May.
Article in English | MEDLINE | ID: mdl-30756215

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal progressing neurodegenerative disease; to date, despite the intense research effort, only two therapeutic options, with very limited effects, are available. The purinergic system has been indicated as a possible new therapeutic target for ALS, but the results are often contradictory and generally confused. The present study was designed to determine whether P1 adenosine receptor ligands affected disease progression in a transgenic model of ALS. SOD1G93A mice were chronically treated, from presymptomatic stage, with a selective adenosine A2A receptor agonist (CGS21680), antagonist (KW6002) or the A1 receptor antagonist DPCPX. Body weight, motor performance and survival time were evaluated. The results showed that neither the stimulation nor the blockade of adenosine A2A receptors modified the progressive loss of motor skills or survival of mSOD1G93A mice. Conversely, blockade of adenosine A1 receptors from the presymptomatic stage significantly attenuated motor disease progression and induced a non-significant increase of median survival in ALS mice. Our data confirm that the modulation of adenosine receptors can elicit very different (and even opposite) effects during the progression of ALS course, thus strengthens the importance of further studies to elucidated their real therapeutic potential in this pathology.


Subject(s)
Adenosine/analogs & derivatives , Microglia/drug effects , Motor Neurons/drug effects , Phenethylamines/pharmacology , Spinal Cord/drug effects , Superoxide Dismutase-1/drug effects , Adenosine/pharmacology , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/pathology , Animals , Disease Models, Animal , Mice, Transgenic , Motor Neurons/pathology , Receptors, Purinergic P1/drug effects , Spinal Cord/pathology , Superoxide Dismutase-1/genetics
14.
World Neurosurg ; 125: e743-e753, 2019 05.
Article in English | MEDLINE | ID: mdl-30735877

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) results in both focal and diffuse brain pathological features that become severely exacerbated after the initial injury. Owing to this disease complexity, no effective therapeutic measure has yet been devised aimed directly at these pathological processes. We developed a clinically relevant model of TBI and tested the bidirectional neuroprotective role of adenosine 2A receptors (A2ARs) at different times. METHODS: Wistar rats were divided into 4 treatment groups (sham, TBI, A2AR agonist [CGS-21680], and A2AR antagonist [SCH-58261]) and 4 post-TBI intervals (15 minutes and 1, 12, and 24 hours). A2AR agonist and antagonist effects were tested by the neurological functional score (NFS) and levels of cyclic adenosine monophosphate, interleukin-1ß, oxidative stress antioxidant markers, and caspase-3. RESULTS: The A2AR agonist-treated group showed significant NFS improvement at 15 minutes and 1 hour after TBI compared with the TBI group. However, no improvement was observed at 12 and 24 hours. The A2AR antagonists resulted in no NFS improvement at 15 minutes and 1 hour, and significant improvement observed at 12 and 24 hours. Significant neuroprotective effect with an A2AR agonist were observed with cyclic adenosine monophosphate, interleukin-1ß, oxidative stress markers, catalase, and caspase-3 levels at 15 minutes and 1 hour after TBI. The A2AR antagonist showed no effect at these intervals but showed a protective effect at 12 and 24 hours after TBI. CONCLUSIONS: The A2AR agonist showed a beneficial neuroprotective effect at the early stages after TBI, and the A2AR antagonist showed a benefit at the later stages after TBI. These findings suggest that A2AR agonists and antagonists should be used in accordance with the point at which the TBI occurred.


Subject(s)
Adenosine/analogs & derivatives , Brain Injuries, Traumatic/drug therapy , Neuroprotection/drug effects , Phenethylamines/pharmacology , Receptors, Purinergic P1/drug effects , Time Factors , Adenosine/metabolism , Adenosine/pharmacology , Animals , Brain Injuries/drug therapy , Brain Injuries/pathology , Disease Models, Animal , Male , Neuroprotective Agents/therapeutic use , Pyrimidines/pharmacology , Rats, Wistar , Signal Transduction/drug effects , Triazoles/pharmacology
15.
J Cell Physiol ; 234(5): 5863-5879, 2019 05.
Article in English | MEDLINE | ID: mdl-29271489

ABSTRACT

Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular permeability. While the mechanisms that govern increased EC permeability have been under intense investigation over the past several decades, the processes regulating the preservation/restoration of the EC barrier remain poorly understood. Herein we show that the extracellular purines, adenosine (Ado) and adenosine 5'-[γ-thio]-triphosphate (ATPγS) can strengthen the barrier function of human lung microvascular EC (HLMVEC). This ability involves protein kinase A (PKA) activation and decreases in myosin light chain 20 (MLC20) phosphorylation secondary to the involvement of MLC phosphatase (MLCP). In contrast to Ado, ATPγS-induced PKA activation is accompanied by a modest, but significant decrease in cyclic adenosine monophosphate (cAMP) levels supporting the existence of an unconventional cAMP-independent pathway of PKA activation. Furthermore, ATPγS-induced EC barrier strengthening does not involve the Rap guanine nucleotide exchange factor 3 (EPAC1) which is directly activated by cAMP but is instead dependent upon PKA-anchor protein 2 (AKAP2) expression. We also found that AKAP2 can directly interact with the myosin phosphatase-targeting protein MYPT1 and that depletion of AKAP2 abolished ATPγS-induced increases in transendothelial electrical resistance. Ado-induced strengthening of the HLMVEC barrier required the coordinated activation of PKA and EPAC1 in a cAMP-dependent manner. In summary, ATPγS-induced enhancement of the EC barrier is EPAC1-independent and is instead mediated by activation of PKA which is then guided by AKAP2, in a cAMP-independent mechanism, to activate MLCP which dephosphorylates MLC20 resulting in reduced EC contraction and preservation.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Capillary Permeability/drug effects , Microvessels/drug effects , Purinergic P1 Receptor Agonists/pharmacology , Receptors, Purinergic P1/drug effects , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism , Adenosine Triphosphate/pharmacology , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Electric Impedance , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microvessels/metabolism , Myosin Light Chains/metabolism , Myosin-Light-Chain Phosphatase/genetics , Myosin-Light-Chain Phosphatase/metabolism , Phosphorylation , Receptors, Purinergic P1/genetics , Receptors, Purinergic P1/metabolism , Signal Transduction
16.
Eur J Neurosci ; 48(11): 3354-3366, 2018 12.
Article in English | MEDLINE | ID: mdl-30339313

ABSTRACT

In the nervous system, adenosine 5'-trisphosphate (ATP) functions as a neurotransmitter and binds to ionotropic P2X receptors and metabotropic P2Y receptors. Although ATP receptors are expressed in the prepositus hypoglossi nucleus (PHN), which is a brainstem structure involved in controlling horizontal gaze, it is unclear whether ATP indeed affects the activity of PHN neurons. In this study, we investigated the effects of ATP on spontaneous firing of PHN neurons using whole-cell recordings in rat brainstem slices. Bath application of ATP increased or decreased the spontaneous firing rate of the neurons in a dose-dependent manner, indicating that ATP indeed affects PHN neuronal activity. To clarify the mechanisms of the ATP effects, we investigated the current responses of PHN neurons to a local application of ATP. The ATP application induced a fast inward (FI) current, a slow inward (SI) current, and/or a slow outward (SO) current in the neurons. The agonists of P2X and P2Y receptors induced FI and SI currents, respectively. The SO currents were not induced by the ATP agonists but were induced by adenosine, which may be extracellularly converted from ATP by ectonucleotidases. An antagonist of adenosine P1 (A1 ) receptors abolished the adenosine-induced SO currents and bath application of adenosine decreased the spontaneous firing rate of all PHN neurons tested. These results indicate that PHN neurons express functional purinoceptors and show that the FI, SI, and SO currents were mediated via P2X, P2Y, and A1 receptors, respectively.


Subject(s)
Action Potentials/physiology , Adenosine/metabolism , Brain Stem/physiology , Neurons/physiology , Animals , Animals, Newborn , Electric Stimulation/methods , Female , Male , Patch-Clamp Techniques/methods , Rats, Long-Evans , Rats, Wistar , Receptors, Purinergic P1/drug effects , Receptors, Purinergic P1/metabolism
17.
J Sex Med ; 15(7): 947-957, 2018 07.
Article in English | MEDLINE | ID: mdl-29891411

ABSTRACT

BACKGROUND: Peyronie's disease (PD) is a chronic fibrotic disease of the penis affecting a significant number of men worldwide without effective medical treatments. Myofibroblasts are pivotal in the pathogenesis of PD. Adenosine and adenosine receptors have been suggested to be involved in the pathophysiology of fibrosis. AIM: To understand the role of adenosine receptors in myofibroblast transformation in PD. METHODS: Fibroblasts were isolated from the non-PD tunica albuginea (TA) tissue and PD plaque tissue and were transformed into myofibroblasts using transforming growth factor (TGF)-ß1. Quantification of α-smooth muscle actin and adenosine receptors (adenosine receptor A1 [ADORA1], adenosine receptor A2A, adenosine receptor A2B [ADORA2B], and adenosine receptor A3) was performed using immuno-cytochemistry, in-cell enzyme-linked immuno-sorbent assay (ICE), and real-time reverse transcription quantitative polymerase chain reaction. The effect of various adenosine receptor agonists or antagonists on TGF-ß1-induced myofibroblast transformation was measured using ICE. OUTCOMES: Expression of adenosine receptors in myofibroblasts obtained from human TA and the effect of adenosine receptor ligands on myofibroblast transformation were investigated. RESULTS: The experiments showed that the protein and messenger RNA levels of α-smooth muscle actin in non-PD TA cells and PD plaque-derived cells were significantly higher in cells exposed to TGF-ß1 than those not treated with TGF-ß1. 2 of 4 adenosine receptors (ADORA1 and ADORA2B) were found to be expressed in both cell populations. Among various adenosine receptor agonists/antagonist investigated, only ADORA2B agonist, BAY 60-6583, significantly inhibited myofibroblast transformation in a concentration-dependent manner when applied simultaneously with TGF-ß1 (IC50 = 30 µmol/L). CLINICAL TRANSLATION: ADORA2B agonists may be clinically efficacious in early-stage PD. STRENGTHS & LIMITATIONS: The strength of this study is the use of primary fibroblasts from human TA. Limitation of the study is the high concentrations of the ligands used. CONCLUSION: The effect of an ADORA2B agonist on TGF-ß1-induced myofibroblast transformation shows a novel potential therapeutic target for PD if applied during early, non-stable phase of PD. Mateus M, Ilg MM, Stebbeds WJ, et al. Understanding the Role of Adenosine Receptors in the Myofibroblast Transformation in Peyronie's Disease. J Sex Med 2018;15:947-957.


Subject(s)
Myofibroblasts/metabolism , Penile Induration/physiopathology , Receptors, Purinergic P1/metabolism , Actins/metabolism , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Humans , Male , Penis/drug effects , Purinergic P1 Receptor Agonists/pharmacology , Purinergic P1 Receptor Antagonists/pharmacology , RNA, Messenger/metabolism , Receptors, Purinergic P1/drug effects , Transforming Growth Factor beta1/pharmacology
18.
J Pharm Pharmacol ; 70(2): 191-196, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29057476

ABSTRACT

OBJECTIVES: Adenosine concentration significantly increases in tumour microenvironment contributing to tumorigenic processes including cell proliferation, survival, invasion and of special interest in this review angiogenesis. KEY FINDINGS: This review summarizes the role of pharmacological adenosine receptor agonist and antagonist in regulating angiogenesis for a better understanding and hence a better management of angiogenesis-associated disorders. SUMMARY: Depending upon the pharmacological characteristics of adenosine receptor subtypes, adenosine elicits anti- or pro-angiogenic responses in stimulated cells. Inhibition of the stimulatory effect of adenosine signalling on angiogenesis using specific pharmacological adenosine receptor agonist, and antagonist is a potentially novel strategy to suppress angiogenesis in tumours.


Subject(s)
Angiogenesis Inducing Agents/therapeutic use , Angiogenesis Inhibitors/therapeutic use , Neoplasms/drug therapy , Neovascularization, Pathologic , Purinergic P1 Receptor Agonists/therapeutic use , Purinergic P1 Receptor Antagonists/therapeutic use , Receptors, Purinergic P1/drug effects , Angiogenesis Inducing Agents/adverse effects , Angiogenesis Inhibitors/adverse effects , Animals , Humans , Neoplasms/metabolism , Neoplasms/pathology , Purinergic P1 Receptor Agonists/adverse effects , Purinergic P1 Receptor Antagonists/adverse effects , Receptors, Purinergic P1/metabolism , Signal Transduction/drug effects
19.
Purinergic Signal ; 13(3): 305-318, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28536931

ABSTRACT

Gliomas are a malignant tumor group whose patients have survival rates around 12 months. Among the treatments are the alkylating agents as temozolomide (TMZ), although gliomas have shown multiple resistance mechanisms for chemotherapy. Guanosine (GUO) is an endogenous nucleoside involved in extracellular signaling that presents neuroprotective effects and also shows the effect of inducing differentiation in cancer cells. The chemotherapy allied to adjuvant drugs are being suggested as a novel approach in gliomas treatment. In this way, this study evaluated whether GUO presented cytotoxic effects on human glioma cells as well as GUO effects in association with a classical chemotherapeutic compound, TMZ. Classical parameters of tumor aggressiveness, as alterations on cell viability, type of cell death, migration, and parameters of glutamatergic transmission, were evaluated. GUO (500 and 1000 µM) decreases the A172 glioma cell viability after 24, 48, or 72 h of treatment. TMZ alone or GUO plus TMZ also reduced glioma cell viability similarly. GUO combined with TMZ showed a potentiation effect of increasing apoptosis in A172 glioma cells, and a similar pattern was observed in reducing mitochondrial membrane potential. GUO per se did not elevate the acidic vesicular organelles occurrence, but TMZ or GUO plus TMZ increased this autophagy hallmark. GUO did not alter glutamate transport per se, but it prevented TMZ-induced glutamate release. GUO or TMZ did not alter glutamine synthetase activity. Pharmacological blockade of glutamate receptors did not change GUO effect on glioma viability. GUO cytotoxicity was partially prevented by adenosine receptor (A1R and A2AR) ligands. These results point to a cytotoxic effect of GUO on A172 glioma cells and suggest an anticancer effect of GUO as a putative adjuvant treatment, whose mechanism needs to be unraveled.


Subject(s)
Apoptosis/drug effects , Dacarbazine/analogs & derivatives , Glioma/drug therapy , Guanosine/pharmacology , Receptors, Purinergic P1/drug effects , Antineoplastic Agents, Alkylating/pharmacology , Autophagy/drug effects , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Dacarbazine/pharmacology , Glioma/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Receptors, Purinergic P1/metabolism , Temozolomide
20.
Biol Pharm Bull ; 40(5): 658-664, 2017.
Article in English | MEDLINE | ID: mdl-28458351

ABSTRACT

During liver injury, hepatic stellate cells (HSCs) are activated by various cytokines and transdifferentiated into myofibroblast-like activated HSCs, which produce collagen, a major source of liver fibrosis. Therefore, the suppression of HSC activation is regarded as a therapeutic target for liver fibrosis. Several epidemiological reports have revealed that caffeine intake decreases the risk of liver disease. In this study, therefore, we investigated the effect of caffeine on the activation of primary HSCs isolated from mice. Caffeine suppressed the activation of HSC in a concentration-dependent manner. BAPTA-AM, an intracellular Ca2+ chelator, had no effect on the caffeine-induced suppression of HSC activation. None of the isoform-selective inhibitors of phosphodiesterase1 to 5 affected changes in the morphology of HSC during activation, whereas CGS-15943, an adenosine receptor antagonist, inhibited them. Caffeine had no effect on intracellular cAMP level or on the phosphorylation of extracellular signal-regulated kinase (ERK)1/2. In contrast, caffeine significantly decreased the phosphorylation of Akt1. These results suggest that caffeine inhibits HSC activation by antagonizing adenosine receptors, leading to Akt1 signaling activation.


Subject(s)
Caffeine/pharmacology , Cyclic AMP/metabolism , Hepatic Stellate Cells/drug effects , Phosphodiesterase Inhibitors/pharmacology , Receptors, Purinergic P1/drug effects , Animals , Cells, Cultured , Chelating Agents/pharmacology , Dose-Response Relationship, Drug , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Liver Cirrhosis/drug therapy , MAP Kinase Signaling System/drug effects , Male , Mice , Phosphorylation , Quinazolines/pharmacology , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...