ABSTRACT
The retinotectal topography of rats develops within the first three postnatal weeks during the critical period. Previous studies have shown that monocular enucleation results in plasticity of the intact retinotectal pathway in a time-dependent manner. Glial fibrillary acidic protein (GFAP), an astrocyte marker, is up-regulated after central nervous system injury. Adenosine is a neuromodulator involved in the development and plasticity of the visual system acting through the inhibitory A1 and excitatory A2a receptor activities. Herein, we examined whether adenosine receptors and astrocytes are crucial for monocular enucleation (ME)-induced plasticity. We also investigate whether A2a blockade alters retinotectal plasticity in an astrocyte-dependent manner. Lister Hooded rats were submitted to monocular enucleation at postnatal day 10 (PND10) or PND21 and, after different survival times, were processed for immunohistochemistry or western blotting assays. Another group underwent subpial implantation of ELVAX containing vehicle (DMSO) or SCH58261 (1 µM - an A2a receptor antagonist), simultaneously with ME at PND10. After a 72 h survival, GFAP content and the retinotectal plasticity were evaluated. Our data show that monocular enucleation leads to an upregulation in GFAP expression in the contralateral superior colliculus. At PND10, a slight increase in GFAP labeling was observed at 72 h post-enucleation, while at PND21 GFAP increase was detected in the deafferented superior colliculus after 1 to 3 weeks of survival. The content of adenosine receptors also varies in the contralateral target after ME. A transient increase in A1 receptors is observed in the early periods of plasticity, while A2a receptors are upregulated later. Interestingly, the local blockade of A2a receptors abolished the increase in GFAP and the retinotectal reorganization induced by monocular enucleation during the critical period. Taken together these results suggest a correlation between astrocytes and A2a adenosine receptors in the subcortical visual plasticity.
Subject(s)
Astrocytes , Superior Colliculi , Animals , Rats , Astrocytes/metabolism , Eye Enucleation , Superior Colliculi/metabolism , Receptors, Purinergic P1/metabolism , Immunohistochemistry , Receptor, Adenosine A2A/metabolismABSTRACT
Anabolic-androgenic steroids (AAS) and caffeine can induce several behavioral alterations in humans and rodents. Administration of nandrolone decanoate is known to affect defensive responses to aversive stimuli, generally decreasing inhibitory control and increasing aggressivity but whether caffeine intake influences behavioral changes induced by AAS is unknown. The present study aimed to investigate behavioral effects of caffeine (a non-selective antagonist of adenosine receptors) alone or combined with nandrolone decanoate (one of the most commonly AAS abused) in female and male Lister Hooded rats. Our results indicated that chronic administration of nandrolone decanoate (10 mg/kg, i.m., once a week for 8 weeks) decreased risk assessment/anxiety-like behaviors (in the elevated plus maze test), regardless of sex. These effects were prevented by combined caffeine intake (0.1 g/L, p.o., ad libitum). Overall, the present study heralds a key role for caffeine intake in the modulation of nandrolone decanoate-induced behavioral changes in rats, suggesting adenosine receptors as candidate targets to manage impact of AAS on brain function and behavior.
Subject(s)
Anabolic Agents , Anabolic Androgenic Steroids , Nandrolone Decanoate , Receptors, Purinergic P1 , Animals , Female , Male , Rats , Anabolic Agents/pharmacology , Anabolic Androgenic Steroids/pharmacology , Anxiety/chemically induced , Caffeine/pharmacology , Nandrolone Decanoate/pharmacology , Receptors, Purinergic P1/metabolismABSTRACT
Glioblastoma is the most common and aggressive primary brain tumor, characterized by its high chemoresistance and the presence of a cell subpopulation that persists under hypoxic niches, called glioblastoma stem-like cells (GSCs). The chemoresistance of GSCs is mediated in part by adenosine signaling and ABC transporters, which extrude drugs outside the cell, such as the multidrug resistance-associated proteins (MRPs) subfamily. Adenosine promotes MRP1-dependent chemoresistance under normoxia. However, adenosine/MRPs-dependent chemoresistance under hypoxia has not been studied until now. Transcript and protein levels were determined by RT-qPCR and Western blot, respectively. MRP extrusion capacity was determined by intracellular 5 (6)-Carboxyfluorescein diacetate (CFDA) accumulation. Cell viability was measured by MTS assays. Cell cycle and apoptosis were determined by flow cytometry. Here, we show for the first time that MRP3 expression is induced under hypoxia through the A2B adenosine receptor. Hypoxia enhances MRP-dependent extrusion capacity and the chemoresistance of GSCs. Meanwhile, MRP3 knockdown decreases GSC viability under hypoxia. Downregulation of the A2B receptor decreases MRP3 expression and chemosensibilizes GSCs treated with teniposide under hypoxia. These data suggest that hypoxia-dependent activation of A2B adenosine receptor promotes survival of GSCs through MRP3 induction.
Subject(s)
Brain Neoplasms , Glioblastoma , Multidrug Resistance-Associated Proteins , Adenosine/metabolism , Brain Neoplasms/metabolism , Drug Resistance, Neoplasm , Glioblastoma/metabolism , Humans , Hypoxia/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Neoplastic Stem Cells/metabolism , Receptor, Adenosine A2B/metabolism , Receptors, Purinergic P1/metabolismABSTRACT
At the mouse neuromuscular junction, adenosine triphosphate (ATP), which is co-released with the neurotransmitter acetylcholine (ACh), and its metabolite adenosine, modulate neurotransmitter release by activating presynaptic inhibitory P2Y<sub>13</sub> receptors (a subtype of ATP/adenosine diphosphate [ADP] receptor), inhibitory A<sub>1</sub> and A<sub>3</sub> adenosine receptors, and excitatory A<sub>2A</sub> adenosine receptors. To study the effect of endogenous purines, when phrenic-diaphragm preparations are depolarized by different nerve stimulation patterns, we analyzed the effect of the antagonists for P2Y<sub>13</sub> , A<sub>1</sub> , A<sub>3</sub> , and A<sub>2A</sub> receptors (AR-C69931MX, 8-cyclopentyl-1,3-dipropylxanthine, MRS-1191, and SCH-58261, respectively) on the amplitude of the end-plate potentials of the trains, and contrasted these results with those obtained with the selective agonists of these receptors (2-methylthioadenosine 5'-diphosphate trisodium salt hydrate, 2-chloro-N<sup>6</sup> -cyclopentyl-adenosine, inosine, and PSB-0777, respectively). During continuous 0.5-Hz stimulation, the amount of endogenous purines was not enough to activate purinergic receptors, while at continuous 5-Hz stimulation, an incipient action of endogenous purines on P2Y<sub>13</sub> , A<sub>1</sub> and A3 receptors might be evident just at the end of the trains. During continuous 50-Hz stimulation, the concentration of endogenous ATP/ADP and adenosine exerted an inhibitory action on ACh release after of the initial phase of the train, but when the nerve was stimulated at intermittent 50 Hz (5 bursts), this behavior was not observed. Excitatory A<sub>2A</sub> receptors were only activated when continuous 100-Hz stimulation was applied. In conclusion, when motor nerve terminals are depolarized by repetitive stimulation of the phrenic nerve, endogenous ATP/ADP and adenosine are able to fine-tune neurosecretion depending on the frequency and pattern of stimulation.
Subject(s)
Acetylcholine , Neuromuscular Junction , Acetylcholine/metabolism , Adenosine , Adenosine Diphosphate , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Animals , Mice , Receptors, Purinergic P1/metabolismABSTRACT
Diabetes mellitus (DM) and hypertension are highly prevalent worldwide health problems and frequently associated with severe clinical complications, such as diabetic cardiomyopathy, nephropathy, retinopathy, neuropathy, stroke, and cardiac arrhythmia, among others. Despite all existing research results and reasonable speculations, knowledge about the role of purinergic system in individuals with DM and hypertension remains restricted. Purinergic signaling accounts for a complex network of receptors and extracellular enzymes responsible for the recognition and degradation of extracellular nucleotides and adenosine. The main components of this system that will be presented in this review are: P1 and P2 receptors and the enzymatic cascade composed by CD39 (NTPDase; with ATP and ADP as a substrate), CD73 (5'-nucleotidase; with AMP as a substrate), and adenosine deaminase (ADA; with adenosine as a substrate). The purinergic system has recently emerged as a central player in several physiopathological conditions, particularly those linked to inflammatory responses such as diabetes and hypertension. Therefore, the present review focuses on changes in both purinergic P1 and P2 receptor expression as well as the activities of CD39, CD73, and ADA in diabetes and hypertension conditions. It can be postulated that the manipulation of the purinergic axis at different levels can prevent or exacerbate the insurgency and evolution of diabetes and hypertension working as a compensatory mechanism.
Subject(s)
Diabetes Mellitus/metabolism , Hypertension/metabolism , Purines/metabolism , Receptors, Purinergic P1/metabolism , Receptors, Purinergic P2/metabolism , 5'-Nucleotidase/metabolism , Adenosine Deaminase/metabolism , Animals , Antigens, CD/metabolism , Apyrase/metabolism , Cell Communication , Diabetes Mellitus/epidemiology , Diabetes Mellitus/physiopathology , Diabetes Mellitus/therapy , Diet, Healthy , Exercise , Humans , Hypertension/epidemiology , Hypertension/physiopathology , Hypertension/therapy , Purinergic P1 Receptor Antagonists/therapeutic use , Purinergic P2 Receptor Antagonists/therapeutic use , Signal TransductionABSTRACT
SUMOylation is a post-translational modification (PTM) whereby members of the Small Ubiquitin-like MOdifier (SUMO) family of proteins are conjugated to lysine residues in target proteins. SUMOylation has been implicated in a wide range of physiological and pathological processes, and much attention has been given to its role in neurodegenerative conditions. Due to its reported role in neuroprotection, pharmacological modulation of SUMOylation represents an attractive potential therapeutic strategy in a number of different brain disorders. However, very few compounds that target the SUMOylation pathway have been identified. Guanosine is an endogenous nucleoside with important neuromodulatory and neuroprotective effects. Experimental evidence has shown that guanosine can modulate different intracellular pathways, including PTMs. In the present study we examined whether guanosine alters global protein SUMOylation. Primary cortical neurons and astrocytes were treated with guanosine at 1, 10, 100, 300, or 500 µM at four time points, 1, 6, 24, or 48 h. We show that guanosine increases global SUMO2/3-ylation in neurons and astrocytes at 1 h at concentrations above 10 µM. The molecular mechanisms involved in this effect were evaluated in neurons. The guanosine-induced increase in global SUMO2/3-ylation was still observed in the presence of dipyridamole, which prevents guanosine internalization, demonstrating an extracellular guanosine-induced effect. Furthermore, the A1 adenosine receptor antagonist DPCPX abolished the guanosine-induced increase in SUMO2/3-ylation. The A2A adenosine receptor antagonist ZM241385 increased SUMOylation per se, but did not alter guanosine-induced SUMOylation, suggesting that guanosine may modulate SUMO2/3-ylation through an A1-A2A receptor interaction. Taken together, this is the first report to show guanosine as a SUMO2/3-ylation enhancer in astrocytes and neurons.
Subject(s)
Astrocytes/drug effects , Guanosine/pharmacology , Neurons/drug effects , Receptors, Purinergic P1/metabolism , Sumoylation/drug effects , Animals , Astrocytes/metabolism , Cells, Cultured , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Neurons/metabolism , Rats , Rats, Wistar , Small Ubiquitin-Related Modifier Proteins/metabolismABSTRACT
Obesity is a worldwide health problem which have reached pandemic proportions, now also including low and middle-income countries. Excessive or abnormal fat deposition in the abdomen especially in the visceral compartment is tightly associated with a high metabolic risk for arterial hypertension, type II diabetes, cardiovascular diseases, musculoskeletal disorders (especially articular degeneration) and some cancers. Contrariwise, accumulation of fat in the subcutaneous compartment has been associated with a neutral metabolic impact, favoring a lower risk of insulin resistance. Obesity results more often from an avoidable imbalance between food consumption and energy expenditure. There are several recommended strategies for dealing with obesity, including pharmacological therapies, but their success remains incomplete and may not compensate the associated adverse effects. Purinergic signaling operated by ATP and its metabolite, adenosine, has attracted increasing attention in obesity. The extracellular levels of purines often reflect the energy status of a given cell population. Adenine nucleotides and nucleosides fine tuning control adipogenesis and mature adipocytes function via the activation of P2 and P1 purinoceptors, respectively. These features make the purinergic signaling cascade a putative target for therapeutic intervention in obesity and related metabolic syndromes. There are, however, gaps in our knowledge regarding the role of purines in adipocyte precursors differentiation and mature adipocytes functions, as well as their impact among distinct adipose tissue deposits (e.g. white vs. brown, visceral vs. subcutaneous), which warrants further investigations before translation to clinical trials can be made.
Subject(s)
Adipogenesis/physiology , Obesity/metabolism , Purines/metabolism , Receptors, Purinergic P1/metabolism , Receptors, Purinergic/metabolism , Signal Transduction/physiology , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Humans , Obesity/pathologyABSTRACT
Clostridium difficile causes intestinal inflammation, which increases adenosine. We compared the expression of adenosine receptors (AR) subtypes A1, A2A, A2B, and A3 in HCT-8, IEC-6 cells, and isolated intestinal epithelial cells, challenged or not with Clostridium difficile toxin A and B (TcdA and TcdB) or infection (CDI). In HCT-8, TcdB induced an early A2BR expression at 6 h and a late A2AR expression at 6 and 24 h. In addition, both TcdA and TcdB increased IL-6 expression at all time-points (peak at 6 h) and PSB603, an A2BR antagonist, decreased IL-6 expression and production. In isolated cecum epithelial cells, TcdA induced an early expression of A2BR at 2s and 6 h, followed by a late expression of A2AR at 6 and 24 h and of A1R at 24 h. In CDI, A2AR and A2BR expressions were increased at day 3, but not at day 7. ARs play a role in regulating inflammation during CDI by inducing an early pro-inflammatory and a late anti-inflammatory response. The timing of interventions with AR antagonist or agonists may be of relevance in treatment of CDI.
Subject(s)
Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Receptors, Purinergic P1/metabolism , Animals , Anti-Inflammatory Agents , Bacterial Proteins , Disease Models, Animal , Enterotoxins , Infections , Interleukin-6 , Up-RegulationABSTRACT
The incidence of infectious diseases affecting the central nervous system (CNS) has been increasing over the last several years. Among the reasons for the expansion of these diseases and the appearance of new neuropathogens are globalization, global warming, and the increased proximity between humans and wild animals due to human activities such as deforestation. Neurotropism affecting normal brain function is shared by organisms such as viruses, bacteria, fungi, and parasites. Neuroinfections caused by these agents activate immune responses, inducing neuroinflammation, excitotoxicity, and neurodegeneration. Purinergic signaling is an evolutionarily conserved signaling pathway associated with these neuropathologies. During neuroinfections, host cells release ATP as an extracellular danger signal with pro-inflammatory activities. ATP is metabolized to its derivatives by ectonucleotidases such as CD39 and CD73; ATP and its metabolites modulate neuronal and immune mechanisms through P1 and P2 purinergic receptors that are involved in pathophysiological mechanisms of neuroinfections. In this review we discuss the beneficial or deleterious effects of various components of the purinergic signaling pathway in infectious diseases that affect the CNS, including human immunodeficiency virus (HIV-1) infection, herpes simplex virus type 1 (HSV-1) infection, bacterial meningitis, sepsis, cryptococcosis, toxoplasmosis, and malaria. We also provide a description of this signaling pathway in emerging viral infections with neurological implications such as Zika and SARS-CoV-2.
Subject(s)
Central Nervous System Infections/metabolism , Receptors, Purinergic P1/metabolism , Receptors, Purinergic P2X/metabolism , Receptors, Purinergic P2Y/metabolism , AIDS Dementia Complex/metabolism , Betacoronavirus , COVID-19 , Coronavirus Infections/metabolism , Encephalitis, Herpes Simplex/metabolism , Humans , Malaria/metabolism , Meningitis, Bacterial/metabolism , Meningitis, Cryptococcal/metabolism , Pandemics , Pneumonia, Viral/metabolism , SARS-CoV-2 , Sepsis/metabolism , Signal Transduction , Toxoplasmosis, Cerebral/metabolism , Zika Virus Infection/metabolismABSTRACT
The severity score of quinolinic acid (QA)-induced seizures was investigated after N-methyl-D-aspartate (NMDA) preconditioning associated with adenosine receptors. Also, the levels of adenosine A1 and A2A receptors and subunits of NMDA receptors in the hippocampi of mice were determined to define components of the resistance mechanism. Adult CF-1 mice were treated intraperitoneally with saline or NMDA (75 mg/kg), and some mice were treated intracerebroventricularly (i.c.v.) with 0.1 pmol of adenosine receptor antagonists 8-cyclopentyltheophylline (CPT; receptor A1) or ZM241385 (receptor A2A) 0, 1, or 6 h after NMDA administration. These adenosine receptor antagonists were administered to block NMDA's protective effect. Seizures and their severity scores were evaluated during convulsions induced by QA (36.8 nmol) that was administered i.c.v. 24 h after NMDA. The cell viability and content of subunits of the NMDA receptors were analyzed 24 h after QA administration. NMDA preconditioning reduced the maximal severity 6 displayed in QA-administered mice, inducing protection in 47.6% of mice after QA-induced seizures. CPT increased the latency of seizures when administered 0 or 6 h, and ZM241385 generated the same effect when administered 6 h after NMDA administration. The GluN1 content was lower in the hippocampi of the QA mice and the NMDA-preconditioned animals without seizures. GluN2A content was unaltered in all groups. The results demonstrated the components of resistance evoked by NMDA, in which adenosine receptors participate in a time-dependent mode. Similarly, the reduction on GluN1 expression in the hippocampus may contribute to this effect during the preconditioning period.
Subject(s)
Anticonvulsants/therapeutic use , N-Methylaspartate/therapeutic use , Neuroprotective Agents/therapeutic use , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Purinergic P1/metabolism , Seizures/drug therapy , Animals , Anticonvulsants/administration & dosage , Anticonvulsants/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Injections, Intraperitoneal , Male , Mice , N-Methylaspartate/administration & dosage , N-Methylaspartate/pharmacology , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Quinolinic Acid/toxicity , Seizures/etiologyABSTRACT
Clostridium difficile causes intestinal inflammation, which increases adenosine. We compared the expression of adenosine receptors (AR) subtypes A1, A2A, A2B, and A3 in HCT-8, IEC-6 cells, and isolated intestinal epithelial cells, challenged or not with Clostridium difficile toxin A and B (TcdA and TcdB) or infection (CDI). In HCT-8, TcdB induced an early A2BR expression at 6 h and a late A2AR expression at 6 and 24 h. In addition, both TcdA and TcdB increased IL-6 expression at all time-points (peak at 6 h) and PSB603, an A2BR antagonist, decreased IL-6 expression and production. In isolated cecum epithelial cells, TcdA induced an early expression of A2BR at 2s and 6 h, followed by a late expression of A2AR at 6 and 24 h and of A1R at 24 h. In CDI, A2AR and A2BR expressions were increased at day 3, but not at day 7. ARs play a role in regulating inflammation during CDI by inducing an early pro-inflammatory and a late anti-inflammatory response. The timing of interventions with AR antagonist or agonists may be of relevance in treatment of CDI.
Subject(s)
Animals , Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Receptors, Purinergic P1/metabolism , Bacterial Proteins , Up-Regulation , Interleukin-6 , Disease Models, Animal , Enterotoxins , Infections , Anti-Inflammatory AgentsABSTRACT
Ischemic postconditioning (IPoC) reduces reperfusion arrhythmias but the antiarrhythmic mechanisms remain unknown. The aim of this study was to analyze IPoC electrophysiological effects and the role played by adenosine A1, A2A and A3 receptors, protein kinase C, ATP-dependent potassium (KATP) channels, and connexin 43. IPoC reduced reperfusion arrhythmias (mainly sustained ventricular fibrillation) in isolated rat hearts, an effect associated with a transient delay in epicardial electrical activation, and with action potential shortening. Electrical impedance measurements and Lucifer-Yellow diffusion assays agreed with such activation delay. However, this delay persisted during IPoC in isolated mouse hearts in which connexin 43 was replaced by connexin 32 and in mice with conditional deletion of connexin 43. Adenosine A1, A2A and A3 receptor blockade antagonized the antiarrhythmic effect of IPoC and the associated action potential shortening, whereas exogenous adenosine reduced reperfusion arrhythmias and shortened action potential duration. Protein kinase C inhibition by chelerythrine abolished the protective effect of IPoC but did not modify the effects on action potential duration. On the other hand, glibenclamide, a KATP inhibitor, antagonized the action potential shortening but did not interfere with the antiarrhythmic effect. The antiarrhythmic mechanisms of IPoC involve adenosine receptor activation and are associated with action potential shortening. However, this action potential shortening is not essential for protection, as it persisted during protein kinase C inhibition, a maneuver that abolished IPoC protection. Furthermore, glibenclamide induced the opposite effects. In addition, IPoC delays electrical activation and electrical impedance recovery during reperfusion, but these effects are independent of connexin 43.
Subject(s)
Arrhythmias, Cardiac/prevention & control , Connexin 43/physiology , Ischemic Postconditioning/methods , KATP Channels/metabolism , Myocardial Ischemia/complications , Protein Kinase C/metabolism , Receptors, Purinergic P1/metabolism , Adenosine Triphosphate/metabolism , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , KATP Channels/genetics , Mice , Mice, Transgenic , Protein Kinase C/genetics , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P1/geneticsABSTRACT
The guanine-based purines (GBPs) have essential extracellular functions such as modulation of glutamatergic transmission and trophic effects on neurons and astrocytes. We previously showed that GBPs, such as guanosine-5'-monophosphate (GMP) or guanosine (GUO), promote the reorganization of extracellular matrix proteins in astrocytes, and increase the number of neurons in a neuron-astrocyte co-culture protocol. To delineate the molecular basis underlying these effects, we isolated cerebellar neurons in culture and treated them with a conditioned medium derived from astrocytes previously exposed to GUO or GMP (GBPs-ACM) or, directly, with GUO or GMP. Agreeing with the previous studies, there was an increase in the number of ß-tubulin III-positive neurons in both conditions, compared with controls. Interestingly, the increase in the number of neurons in the neuronal cultures treated directly with GUO or GMP was more prominent, suggesting a direct interaction of GBPs on cerebellar neurons. To investigate this issue, we assessed the role of adenosine and glutamate receptors and related intracellular signaling pathways after GUO or GMP treatment. We found an involvement of A2A adenosine receptors, ionotropic glutamate N-methyl-D-aspartate (NMDA), and non-NMDA receptors in the increased number of cerebellar neurons. The signaling pathways extracellular-regulated kinase (ERK), calcium-calmodulin-dependent kinase-II (CaMKII), protein kinase C (PKC), phosphatidilinositol-3'-kinase (PI3-K), and protein kinase A (PKA) are also potentially involved with GMP and GUO effect. Such results suggest that GMP and GUO, and molecules released in GBPs-ACM promote the survival or maturation of primary cerebellar neurons or both via interaction with adenosine and glutamate receptors.
Subject(s)
Adenosine/metabolism , Guanosine/metabolism , Neurons/metabolism , Receptors, Glutamate/metabolism , Animals , Astrocytes/metabolism , Central Nervous System/metabolism , Glutamic Acid/metabolism , Guanosine Monophosphate/metabolism , Receptors, Purinergic P1/metabolismABSTRACT
Glial cells are involved in multiple cerebral functions that profoundly influence brain tissue viability during ischemia, and astrocytes are the main source of extracellular purines as adenosine and guanosine. The endogenous guanine-based nucleoside guanosine is a neuromodulator implicated in important processes in the brain, such as modulation of glutamatergic transmission and protection against oxidative and inflammatory damage. We evaluated if the neuroprotective effect of guanosine is also observed in cultured cortical astrocytes subjected to oxygen/glucose deprivation (OGD) and reoxygenation. We also assessed the involvement of A1 and A2A adenosine receptors and phosphatidylinositol-3 kinase (PI3K), MAPK, and protein kinase C (PKC) signaling pathways on the guanosine effects. OGD/reoxygenation decreased cell viability and glutamate uptake and increased reactive oxygen species (ROS) production in cultured astrocytes. Guanosine treatment prevented these OGD-induced damaging effects. Dipropyl-cyclopentyl-xanthine (an adenosine A1 receptor antagonist) and 4-[2-[[6-amino-9-(N-ethyl-ß-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl] benzenepropanoic acid hydrochloride (an adenosine A2A receptor agonist) abolished guanosine-induced protective effects on ROS production, glutamate uptake, and cell viability. The PI3K pathway inhibitor 2-morpholin-4-yl-8-phenylchromen-4-one, the extracellular-signal regulated kinase kinase (MEK) inhibitor 2'-amino-3'-methoxyflavone, or the PKC inhibitor chelerythrine abolished the guanosine effect of preventing OGD-induced cells viability reduction. PI3K inhibition partially prevented the guanosine effect of reducing ROS production, whereas MEK and PKC inhibitions prevented the guanosine effect of restoring glutamate uptake. The total immunocontent of the main astrocytic glutamate transporter glutamate transporter-1 (GLT-1) was not altered by OGD and guanosine. However, MEK and PKC inhibitions also abolished the guanosine effect of increasing cell-surface expression of GLT-1 in astrocytes subjected to OGD. Then, guanosine prevents oxidative damage and stimulates astrocytic glutamate uptake during ischemic events via adenosine A1 and A2A receptors and modulation of survival signaling pathways, contributing to microenvironment homeostasis that culminates in neuroprotection.
Subject(s)
Astrocytes/drug effects , Glucose/metabolism , Glutamic Acid/metabolism , Guanosine/pharmacology , Oxygen/metabolism , Animals , Astrocytes/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hypoxia/metabolism , Neuroprotective Agents/pharmacology , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Purinergic P1/drug effects , Receptors, Purinergic P1/metabolismABSTRACT
Traumatic brain injury (TBI) is a leading cause of disability worldwide, triggering chronic neurodegeneration underlying cognitive and mood disorder still without therapeutic prospects. Based on our previous observations that guanosine (GUO) attenuates short-term neurochemical alterations caused by TBI, this study investigated the effects of chronical GUO treatment in behavioral, molecular, and morphological disturbances 21 days after trauma. Rats subject to TBI displayed mood (anxiety-like) and memory dysfunction. This was accompanied by a decreased expression of both synaptic (synaptophysin) and plasticity proteins (BDNF and CREB), a loss of cresyl violet-stained neurons, and increased astrogliosis and microgliosis in the hippocampus. Notably, chronic GUO treatment (7.5 mg/kg i.p. daily starting 1 h after TBI) prevented all these TBI-induced long-term behavioral, neurochemical, and morphological modifications. This neuroprotective effect of GUO was abrogated in the presence of the adenosine A1 receptor antagonist DPCPX (1 mg/kg) but unaltered by the adenosine A2A receptor antagonist SCH58261 (0.05 mg/kg). These findings show that a chronic GUO treatment prevents the long-term mood and memory dysfunction triggered by TBI, which involves adenosinergic receptors.
Subject(s)
Behavior, Animal/drug effects , Brain Injuries, Traumatic/drug therapy , Guanosine/therapeutic use , Receptors, Purinergic P1/metabolism , Animals , Anxiety/drug therapy , Anxiety/etiology , Biomarkers/metabolism , Brain Injuries, Traumatic/complications , Gliosis/complications , Gliosis/pathology , Guanosine/pharmacology , Hippocampus/drug effects , Hippocampus/pathology , Male , Memory Disorders/complications , Microglia/drug effects , Microglia/pathology , Models, Biological , Motor Activity/drug effects , Neuronal Plasticity/genetics , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Rats, WistarABSTRACT
BACKGROUND: Tuberculous pneumonia, necrotic granulomatous lesions, and bacterial dissemination characterize severe forms of mycobacterial infection. METHODS: To evaluate the pulmonary CD4+ T-cell response during severe tuberculosis, C57BL/6 mice were infected with approximately 100 bacilli of 3 hypervirulent mycobacterial isolates (Mycobacterium tuberculosis strain Beijing 1471 and Mycobacterium bovis strains B2 and MP287/03) or the H37Rv M tuberculosis strain as reference for mycobacterial virulence. Because high expression of both CD39 and CD73 ectonucleotidases was detected on parenchymal CD4+ T cells, we investigated whether CD4+ T-cell suppression in the context of severe disease was due to the extracellular adenosine accumulation that resulted from tissue damage. RESULTS: Lowest expression of CD69, which is an activation marker implicated in maintaining cells in tissues, was observed in lungs from mice displaying the most severe pulmonary pathology. Reduced interferon (IFN)γ-producing CD4+ T cells were also found in the lung of these mice. Intranasal administration of the adenosine receptor antagonist caffeine substantially enhanced the frequency and number of parenchymal CD4+ T cells as well as both CD69 expression and IFNγ production. CONCLUSIONS: These results indicate that adenosine, which may be generated by extracellular adenosine triphosphate degradation, impairs the parenchymal CD4+ T-cell response and contributes to the development of severe tuberculosis.
Subject(s)
CD4-Positive T-Lymphocytes/pathology , Lung/pathology , Tuberculosis, Pulmonary/pathology , 5'-Nucleotidase/metabolism , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Caffeine/pharmacology , Interferon-gamma/metabolism , Lectins, C-Type/metabolism , Lung/microbiology , Mice, Inbred C57BL , Mycobacterium bovis/pathogenicity , Mycobacterium tuberculosis/pathogenicity , Purinergic P1 Receptor Antagonists/pharmacology , Receptors, Purinergic P1/metabolism , Signal Transduction , Tuberculosis, Pulmonary/microbiologyABSTRACT
Glioblastoma is the worst and most common primary brain tumor. Here, we demonstrated the role of CD73, an enzyme responsible for adenosine (ADO) production, in glioblastoma progression. ADO increased glioma cell viability via A1 receptor sensitization. CD73 downregulation decreased glioma cell migration and invasion by reducing metalloproteinase-2 and vimentin expression and reduced cell proliferation by 40%, which was related to necrosis and sub-G1 phase blockage of cell cycle. Those effects also involved the stimulation of Akt/NF-kB pathways. Additionally, CD73 knockdown or enzyme inhibition potentiated temozolomide cytotoxic effect on glioma cells by decreasing the IC50 value and sensitizing cells to a non-cytotoxic drug concentration. CD73 inhibition also decreased in vivo rat glioblastoma progression. Delivery of siRNA-CD73 or APCP reduced tumor size by 45 and 40%, respectively, when compared with control. This effect was followed by a parallel 95% reduction of ADO levels in cerebrospinal fluid, indicating the role of extracellular ADO in in vivo glioma growth. Treatment did not induce systemic damage or mortality. Altogether, we conclude that CD73 is an interesting target for glioblastoma treatment and its inhibition may provide new opportunities to improve the treatment of brain tumors. Graphical Abstract á .
Subject(s)
5'-Nucleotidase/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Down-Regulation/genetics , Glioblastoma/genetics , Glioblastoma/pathology , 5'-Nucleotidase/antagonists & inhibitors , 5'-Nucleotidase/metabolism , Adenosine/metabolism , Animals , Biomarkers, Tumor/blood , Brain Neoplasms/blood , Brain Neoplasms/drug therapy , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/genetics , Cell Survival , Disease Progression , Gene Knockdown Techniques , Glioblastoma/blood , Glioblastoma/drug therapy , Humans , Matrix Metalloproteinase 2/metabolism , NF-kappa B/metabolism , Neoplasm Invasiveness , Proto-Oncogene Proteins c-akt/metabolism , Rats , Receptors, Purinergic P1/metabolism , Signal Transduction , Temozolomide/pharmacology , Temozolomide/therapeutic use , Vimentin/metabolismABSTRACT
Ilex paraguariensis is a well-known plant that is widely consumed in South America, primarily as a drink called mate. Mate is described to have stimulant and medicinal properties. Considering the potential anti-lipid effects of I. paraguariensis infusion, we used an extract of this plant as a possible modulator of fat storage to control lipid metabolism in worms. Herein, the I. paraguariensis-dependent modulation of fat metabolism in Caenorhabditis elegans was investigated. C. elegans were treated with I. paraguariensis aqueous extract (1 mg/ml) from L1 larvae stage until adulthood, to simulate the primary form of consumption. Expression of adipocyte triglyceride lipase 1 (ATGL-1) and heat shock protein 16.2, lipid accumulation through C1-BODIPY-C12 (BODIPY) lipid staining, behavioral parameters, body length, total body energy expenditure and overall survival were analyzed. Total body energy expenditure was determined by the oxygen consumption rate in N2, nuclear hormone receptor knockout, nhr-49(nr2041), and adenosine receptor knockout, ador-1(ox489) strains. Ilex paraguariensis extract increased ATGL-1 expression 20.06% and decreased intestinal BODIPY fat staining 63.36%, compared with the respective control group, without affecting bacterial growth and energetic balance, while nhr-49(nr2041) and ador-1(ox489) strains blocked the worm fat loss. In addition, I. paraguariensis increased the oxygen consumption in N2 worms, but not in mutant strains, increased N2 worm survival following juglone exposure, and did not alter hsp-16.2 expression. We demonstrate for the first time that I. paraguariensis can decrease fat storage and increase body energy expenditure in worms. These effects depend on the purinergic system (ADOR-1) and NHR-49 pathways. Ilex paraguariensis upregulated the expression of ATGL-1 to modulate fat metabolism. Furthermore, our data corroborates with other studies that demonstrate that C. elegans is a useful tool for studies of fat metabolism and energy consumption.
Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/drug effects , Ilex paraguariensis , Lipid Metabolism/drug effects , Metabolic Networks and Pathways/drug effects , Plant Extracts/pharmacology , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Purinergic P1/metabolism , Animals , Caenorhabditis elegans/metabolism , Chromatography, High Pressure Liquid , Energy Metabolism/drug effects , Gene Knockdown Techniques , Lipase/metabolism , Oxidative Stress/drug effects , Oxygen Consumption/drug effectsABSTRACT
The brain regulates breathing in response to changes in tissue CO2/H+ via a process called central chemoreception. Neurons and astrocytes in the retrotrapezoid nucleus (RTN) function as respiratory chemoreceptors. The role of astrocytes in this process appears to involve CO2/H+-dependent release of ATP to enhance activity of chemosensitive RTN neurons. Considering that in most brain regions extracellular ATP is rapidly broken down to adenosine by ectonucleotidase activity and since adenosine is a potent neuromodulator, we wondered whether adenosine signaling contributes to RTN chemoreceptor function. To explore this possibility, we pharmacologically manipulated activity of adenosine receptors in the RTN under control conditions and during inhalation of 7-10% CO2 (hypercapnia). In urethane-anesthetized or unrestrained conscious rats, bilateral injections of adenosine into the RTN blunted the hypercapnia ventilatory response. The inhibitory effect of adenosine on breathing was blunted by prior RTN injection of a broad spectrum adenosine receptor blocker (8-PT) or a selective A1-receptor blocker (DPCPX). Although RTN injections of 8PT, DPCPX or the ectonucleotidase inhibitor ARL67156 did not affected baseline breathing in either anesthetized or awake rats. We did find that RTN application of DPCPX or ARL67156 potentiated the respiratory frequency response to CO2, suggesting a portion of ATP released in the RTN during high CO2/H+ is converted to adenosine and serves to limit chemoreceptor function. These results identify adenosine as a novel purinergic regulator of RTN chemoreceptor function during hypercapnia.
Subject(s)
Adenosine/metabolism , Hypercapnia/metabolism , Medulla Oblongata/metabolism , Receptors, Purinergic P1/metabolism , Reflex/physiology , Respiration , Adenosine/administration & dosage , Animals , Chemoreceptor Cells/drug effects , Chemoreceptor Cells/metabolism , Hypercapnia/drug therapy , Male , Medulla Oblongata/drug effects , Purinergic P1 Receptor Antagonists/pharmacology , Rats, Wistar , Reflex/drug effects , Respiration/drug effects , WakefulnessABSTRACT
Since 1929, several researchers have conducted studies in relation to the nucleoside of adenosine (1) mainly distribution identifying, characterizing their biological importance and synthetic chemistry to which this type of molecule has been subjected to obtain multiple of its derivatives. The receptors that interact with adenosine and its derivatives, called purinergic receptors, are classified as A1, A2A, A2B and A3. In the presence of agonists and antagonists, these receptors are involved in various physiological processes and diseases. This review describes and compares some of the synthetic methods that have been developed over the last 30 years for obtaining some adenosine derivatives, classified according to substitution processes, complexation, mating and conjugation. Finally, we mention that although the concentrations of these nucleosides are low in normal tissues, they can increase rapidly in pathophysiological conditions such as hypoxia, ischemia, inflammation, trauma and cancer. In particular, the evaluation of adenosine derivatives as adjunctive therapy promises to have a significant impact on the treatment of certain cancers, although the transfer of these results to clinical practice requires a deeper understanding of how adenosine regulates the process of tumorigenesis.