Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.712
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731872

ABSTRACT

Numerous studies suggest the involvement of adenosine-5'-triphosphate (ATP) and similar nucleotides in the pathophysiology of asthma. Androgens, such as testosterone (TES), are proposed to alleviate asthma symptoms in young men. ATP and uridine-5'-triphosphate (UTP) relax the airway smooth muscle (ASM) via purinergic P2Y2 and P2Y4 receptors and K+ channel opening. We previously demonstrated that TES increased the expression of voltage-dependent K+ (KV) channels in ASM. This study investigates how TES may potentiate ASM relaxation induced by ATP and UTP. Tracheal tissues treated with or without TES (control group) from young male guinea pigs were used. In organ baths, tracheas exposed to TES (40 nM for 48 h) showed enhanced ATP- and UTP-evoked relaxation. Tetraethylammonium, a K+ channel blocker, annulled this effect. Patch-clamp experiments in tracheal myocytes showed that TES also increased ATP- and UTP-induced K+ currents, and this effect was abolished with flutamide (an androgen receptor antagonist). KV channels were involved in this phenomenon, which was demonstrated by inhibition with 4-aminopyridine. RB2 (an antagonist of almost all P2Y receptors except for P2Y2), as well as N-ethylmaleimide and SQ 22,536 (inhibitors of G proteins and adenylyl cyclase, respectively), attenuated the enhancement of the K+ currents induced by TES. Immunofluorescence and immunohistochemistry studies revealed that TES did not modify the expression of P2Y4 receptors or COX-1 and COX-2, while we have demonstrated that this androgen augmented the expression of KV1.2 and KV1.5 channels in ASM. Thus, TES leads to the upregulation of P2Y4 signaling and KV channels in guinea pig ASM, enhancing ATP and UTP relaxation responses, which likely limits the severity of bronchospasm in young males.


Subject(s)
Adenosine Triphosphate , Adenylyl Cyclases , Muscle Relaxation , Muscle, Smooth , Testosterone , Trachea , Uridine Triphosphate , Animals , Uridine Triphosphate/pharmacology , Uridine Triphosphate/metabolism , Guinea Pigs , Muscle Relaxation/drug effects , Male , Adenosine Triphosphate/metabolism , Trachea/metabolism , Trachea/drug effects , Testosterone/pharmacology , Testosterone/metabolism , Adenylyl Cyclases/metabolism , Muscle, Smooth/metabolism , Muscle, Smooth/drug effects , Potassium Channels, Voltage-Gated/metabolism , Signal Transduction/drug effects , Receptors, Purinergic P2/metabolism
2.
Cell Biol Toxicol ; 40(1): 36, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771396

ABSTRACT

Purinergic receptor P2Y11, a G protein-coupled receptor that is stimulated by extracellular ATP, has been demonstrated to be related to the chemotaxis of granulocytes, apoptosis of neutrophils, and secretion of cytokines in vitro. P2Y11 mutations were associated with narcolepsy. However, little is known about the roles of P2RY11 in the occurrence of narcolepsy and inflammatory response in vivo. In this study, we generated a zebrafish P2Y11 mutant using CRISPR/Cas9 genome editing and demonstrated that the P2Y11 mutant replicated the narcolepsy-like features including reduced HCRT expression and excessive daytime sleepiness, suggesting that P2Y11 is essential for HCRT expression. Furthermore, we accessed the cytokine expression in the mutant and revealed that the P2RY11 mutation disrupted the systemic inflammatory balance by reducing il4, il10 and tgfb, and increasing il6, tnfa, and il1b. In addition, the P2RY11-deficient larvae with caudal fin injuries exhibited significantly slower migration and less recruitment of neutrophils and macrophages at damaged site, and lower expression of anti-inflammatory cytokines during tissue damage. All these findings highlight the vital roles of P2RY11 in maintaining HCRT production and secreting anti-inflammatory cytokines in the native environment, and suggested that P2RY11-deficient zebrafish can serve as a reliable and unique model to further explore narcolepsy and inflammatory-related diseases with impaired neutrophil and macrophage responses.


Subject(s)
Cytokines , Inflammation , Macrophages , Neutrophils , Zebrafish Proteins , Zebrafish , Animals , Neutrophils/metabolism , Neutrophils/immunology , Macrophages/metabolism , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Cytokines/metabolism , Mutation/genetics , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2/deficiency
3.
J Biol Chem ; 300(4): 107145, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460941

ABSTRACT

Extracellular ATP activates P2 purinergic receptors. Whether purinergic signaling is functionally coupled to cellular senescence is largely unknown. We find that oxidative stress induced release of ATP and caused senescence in human lung fibroblasts. Inhibition of P2 receptors limited oxidative stress-induced senescence, while stimulation with exogenous ATP promoted premature senescence. Pharmacological inhibition of P2Y11 receptor (P2Y11R) inhibited premature senescence induced by either oxidative stress or ATP, while stimulation with a P2Y11R agonist was sufficient to induce cellular senescence. Our data show that both extracellular ATP and a P2Y11R agonist induced calcium (Ca++) release from the endoplasmic reticulum (ER) and that either inhibition of phospholipase C or intracellular Ca++ chelation impaired ATP-induced senescence. We also find that Ca++ that was released from the ER, following ATP-mediated activation of phospholipase C, entered mitochondria in a manner dependent on P2Y11R activation. Once in mitochondria, excessive Ca++ promoted the production of reactive oxygen species in a P2Y11R-dependent fashion, which drove development of premature senescence of lung fibroblasts. Finally, we show that conditioned medium derived from senescent lung fibroblasts, which were induced to senesce through the activation of ATP/P2Y11R-mediated signaling, promoted the proliferation of triple-negative breast cancer cells and their tumorigenic potential by secreting amphiregulin. Our study identifies the existence of a novel purinergic signaling pathway that links extracellular ATP to the development of a protumorigenic premature senescent phenotype in lung fibroblasts that is dependent on P2Y11R activation and ER-to-mitochondria calcium signaling.


Subject(s)
Adenosine Triphosphate , Calcium , Cellular Senescence , Fibroblasts , Receptors, Purinergic P2 , Humans , Adenosine Triphosphate/metabolism , Calcium/metabolism , Calcium Signaling , Endoplasmic Reticulum/metabolism , Fibroblasts/metabolism , Lung/metabolism , Lung/cytology , Mitochondria/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Receptors, Purinergic P2/metabolism , Signal Transduction , Type C Phospholipases/metabolism , Cell Line , Cell Proliferation
4.
JCI Insight ; 9(8)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470490

ABSTRACT

Excessive lipolysis in white adipose tissue (WAT) leads to insulin resistance (IR) and ectopic fat accumulation in insulin-sensitive tissues. However, the impact of Gi-coupled receptors in restraining adipocyte lipolysis through inhibition of cAMP production remained poorly elucidated. Given that the Gi-coupled P2Y13 receptor (P2Y13-R) is a purinergic receptor expressed in WAT, we investigated its role in adipocyte lipolysis and its effect on IR and metabolic dysfunction-associated steatotic liver disease (MASLD). In humans, mRNA expression of P2Y13-R in WAT was negatively correlated to adipocyte lipolysis. In mice, adipocytes lacking P2Y13-R displayed higher intracellular cAMP levels, indicating impaired Gi signaling. Consistently, the absence of P2Y13-R was linked to increased lipolysis in adipocytes and WAT explants via hormone-sensitive lipase activation. Metabolic studies indicated that mice lacking P2Y13-R showed a greater susceptibility to diet-induced IR, systemic inflammation, and MASLD compared with their wild-type counterparts. Assays conducted on precision-cut liver slices exposed to WAT conditioned medium and on liver-specific P2Y13-R-knockdown mice suggested that P2Y13-R activity in WAT protects from hepatic steatosis, independently of liver P2Y13-R expression. In conclusion, our findings support the idea that targeting adipose P2Y13-R activity may represent a pharmacological strategy to prevent obesity-associated disorders, including type 2 diabetes and MASLD.


Subject(s)
Adipocytes , Adipose Tissue, White , Fatty Liver , Insulin Resistance , Lipolysis , Receptors, Purinergic P2 , Animals , Female , Humans , Male , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Adipose Tissue, White/metabolism , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Liver/metabolism , Liver/pathology , Mice, Inbred C57BL , Mice, Knockout , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2/deficiency
6.
J Pharmacol Sci ; 154(2): 108-112, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38246724

ABSTRACT

The purinergic receptor P2Y6 receptor (P2Y6R) is a member of the G protein-coupled receptors (GPCR) family. P2Y6R is widely expressed in various cell types and plays a critical role in physiological processes, where it is activated by extracellular uridine diphosphate (UDP) and mobilizes Ca2+ via the Gαq/11 protein pathway. We have recently discovered the pathophysiological role of P2Y6R in cardiovascular and inflammatory diseases, including inflammatory bowel disease and non-alcoholic fatty liver disease. Furthermore, we uncovered the redox-dependent internalization of P2Y6R. In this review, we provide a comprehensive overview of the pathophysiological activity of P2Y6R in cardiovascular and inflammatory diseases. Additionally, we discuss the concept of atypical internalization control of GPCRs, which may be applied in the prevention and treatment of intestinal inflammation and cardiovascular remodeling.


Subject(s)
Cardiovascular System , Inflammatory Bowel Diseases , Non-alcoholic Fatty Liver Disease , Receptors, Purinergic P2 , Humans
8.
Purinergic Signal ; 20(2): 115-125, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37246192

ABSTRACT

During the establishment of neuronal circuits, axons and dendrites grow and branch to establish specific synaptic connections. This complex process is highly regulated by positive and negative extracellular cues guiding the axons and dendrites. Our group was pioneer in describing that one of these signals are the extracellular purines. We found that extracellular ATP, through its selective ionotropic P2X7 receptor (P2X7R), negatively regulates axonal growth and branching. Here, we evaluate if other purinergic compounds, such as the diadenosine pentaphosphate (Ap5A), may module the dynamics of dendritic or axonal growth and branching in cultured hippocampal neurons. Our results show that Ap5A negatively modulates the dendrite's growth and number by inducing transient intracellular calcium increases in the dendrites' growth cone. Interestingly, phenol red, commonly used as a pH indicator in culture media, also blocks the P2X1 receptors, avoided the negative modulation of Ap5A on dendrites. Subsequent pharmacological studies using a battery of selective P2X1R antagonists confirmed the involvement of this subunit. In agreement with pharmacological studies, P2X1R overexpression caused a similar reduction in dendritic length and number as that induced by Ap5A. This effect was reverted when neurons were co-transfected with the vector expressing the interference RNA for P2X1R. Despite small hairpin RNAs reverting the reduction in the number of dendrites caused by Ap5A, it did not avoid the dendritic length decrease induced by the polyphosphate, suggesting, therefore, the involvement of a heteromeric P2X receptor. Our results are indicating that Ap5A exerts a negative influence on dendritic growth.


Subject(s)
Adenosine Triphosphate , Dinucleoside Phosphates , Receptors, Purinergic P2 , Adenosine Triphosphate/pharmacology , Receptors, Purinergic P2/metabolism , Neurons/metabolism , Dendrites/metabolism , Hippocampus/metabolism
9.
Eur Heart J ; 45(4): 268-283, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38036416

ABSTRACT

BACKGROUND AND AIMS: Macrophage-derived foam cells play a causal role during the pathogenesis of atherosclerosis. P2Y6 receptor (P2Y6R) highly expressed has been considered as a disease-causing factor in atherogenesis, but the detailed mechanism remains unknown. This study aims to explore P2Y6R in regulation of macrophage foaming, atherogenesis, and its downstream pathways. Furthermore, the present study sought to find a potent P2Y6R antagonist and investigate the feasibility of P2Y6R-targeting therapy for atherosclerosis. METHODS: The P2Y6R expression was examined in human atherosclerotic plaques and mouse artery. Atherosclerosis animal models were established in whole-body P2Y6R or macrophage-specific P2Y6R knockout mice to evaluate the role of P2Y6R. RNA sequencing, DNA pull-down experiments, and proteomic approaches were performed to investigate the downstream mechanisms. High-throughput Glide docking pipeline from repurposing drug library was performed to find potent P2Y6R antagonists. RESULTS: The P2Y6R deficiency alleviated atherogenesis characterized by decreasing plaque formation and lipid deposition of the aorta. Mechanically, deletion of macrophage P2Y6R significantly inhibited uptake of oxidized low-density lipoprotein through decreasing scavenger receptor A expression mediated by phospholipase Cß/store-operated calcium entry pathways. More importantly, P2Y6R deficiency reduced the binding of scavenger receptor A to CALR, accompanied by dissociation of calreticulin and STIM1. Interestingly, thiamine pyrophosphate was found as a potent P2Y6R antagonist with excellent P2Y6R antagonistic activity and binding affinity, of which the pharmacodynamic effect and mechanism on atherosclerosis were verified. CONCLUSIONS: Macrophage P2Y6R regulates phospholipase Cß/store-operated calcium entry/calreticulin signalling pathway to increase scavenger receptor A protein level, thereby improving foam cell formation and atherosclerosis, indicating that the P2Y6R may be a potential therapeutic target for intervention of atherosclerotic diseases using P2Y6R antagonists including thiamine pyrophosphate.


Subject(s)
Atherosclerosis , Foam Cells , Receptors, Purinergic P2 , Humans , Mice , Animals , Foam Cells/metabolism , Foam Cells/pathology , Calcium/metabolism , Calreticulin/metabolism , Calreticulin/pharmacology , Proteomics , Thiamine Pyrophosphate/metabolism , Thiamine Pyrophosphate/pharmacology , Atherosclerosis/genetics , Macrophages/metabolism , Lipoproteins, LDL/metabolism , Receptors, Scavenger/metabolism , Mice, Knockout , Phospholipases/metabolism , Phospholipases/pharmacology
10.
Neuropharmacology ; 245: 109818, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38142931

ABSTRACT

Cardiac autonomic neuropathy resulting from human immunodeficiency virus (HIV) infection is common; however, its mechanism remains unknown. The current work attempted to explore the function and mechanism of the P2Y13 receptor in HIV-glycoprotein 120 (gp120)-induced neuropathy in cervical sympathetic ganglion. The superior cervical ganglion (SCG) of the male SD rat was coated with HIV-gp120 to establish a model of autonomic neuropathy. In each group, we measured heart rate, blood pressure, heart rate variability, sympathetic nerve discharge and cardiac function. The expression of P2Y13 mRNA and protein in the SCG was tested by real-time polymerase chain reaction and western blotting. Additionally, this study focused on identifying the protein levels of NOD-like receptor family pyrin domain-containing 3 (NLRP3), Caspase-1, Gasdermin D (GSDMD), interleukin (IL)-1ß and IL-18 in the SCG using western blotting and immunofluorescence. In gp120 rats, increased blood pressure, heart rate, cardiac sympathetic nerve activity, P2Y13 receptor levels and decreased cardiac function could be found. P2Y13 shRNA or MRS2211 inhibited the above mentioned changes induced by gp120, suggesting that the P2Y13 receptor may be engaged in gp120-induced sympathetic nerve injury. Moreover, the levels of NLRP3, Caspase-1, GSDMD, IL-1ß and IL-18 in the gp120 group were increased, while significantly decreased by P2Y13 shRNA or MRS2211. Therefore, the P2Y13 receptor is involved in gp120-induced sympathetic neuropathy, and its molecular mechanism shows an association with the activation of the NLRP3 inflammasome, followed by GSDMD formation along with the release of inflammatory factors including IL-1ß and IL-18. This article is part of the Special Issue on "Purinergic Signaling: 50 years".


Subject(s)
HIV Infections , HIV-1 , Peripheral Nervous System Diseases , Receptors, Purinergic P2 , Animals , Male , Rats , Carrier Proteins , Caspases , Glycoproteins/metabolism , HIV Infections/complications , HIV Infections/metabolism , Inflammasomes/metabolism , Interleukin-18/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Peripheral Nervous System Diseases/virology , Rats, Sprague-Dawley , RNA, Small Interfering , Superior Cervical Ganglion/metabolism , HIV Envelope Protein gp120/metabolism , Receptors, Purinergic P2/metabolism
11.
Front Immunol ; 14: 1304758, 2023.
Article in English | MEDLINE | ID: mdl-38124753

ABSTRACT

Toll-interacting protein (Tollip) is a negative regulator of the pro-inflammatory response to viruses, including influenza A virus (IAV). Genetic variation of Tollip has been associated with reduced airway epithelial Tollip expression and poor lung function in patients with asthma. Whether Tollip deficiency exaggerates type 2 inflammation (e.g., eosinophils) and viral infection in asthma remains unclear. We sought to address this critical, but unanswered question by using a Tollip deficient mouse asthma model with IAV infection. Further, we determined the underlying mechanisms by focusing on the role of the ATP/IL-33 signaling axis. Wild-type and Tollip KO mice were intranasally exposed to house dust mite (HDM) and IAV with or without inhibitors for IL-33 (i.e., soluble ST2, an IL-33 decoy receptor) and ATP signaling (i.e., an antagonist of the ATP receptor P2Y13). Tollip deficiency amplified airway type 2 inflammation (eosinophils, IL-5, IL-13 and mucins), and the release of ATP and IL-33. Blocking ATP receptor P2Y13 decreased IL-33 release during IAV infection in HDM-challenged Tollip KO mice. Furthermore, soluble ST2 attenuated airway eosinophilic inflammation in Tollip KO mice treated with HDM and IAV. HDM challenges decreased lung viral load in wild-type mice, but Tollip deficiency reduced the protective effects of HDM challenges on viral load. Our data suggests that during IAV infection, Tollip deficiency amplified type 2 inflammation and delayed viral clearance, in part by promoting ATP signaling and subsequent IL-33 release. Our findings may provide several therapeutic targets, including ATP and IL-33 signaling inhibition for attenuating excessive airway type 2 inflammation in human subjects with Tollip deficiency and IAV infection.


Subject(s)
Asthma , Receptors, Purinergic P2 , Humans , Mice , Animals , Interleukin-1 Receptor-Like 1 Protein , Allergens , Interleukin-33 , Asthma/metabolism , Inflammation/metabolism , Pyroglyphidae , Dermatophagoides pteronyssinus , Adenosine Triphosphate , Intracellular Signaling Peptides and Proteins
12.
Brain Res Bull ; 204: 110800, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37913850

ABSTRACT

Past studies have suggested that Chinese herbal may alleviate neuropathic pain, and the mechanism might target the inhibition of purinergic receptor P2. This review discusses whether traditional Chinese medicine target P2 receptors in neuropathic pain and its mechanism in order to provide references for future clinical drug development. The related literatures were searched from Pubmed, Embase, Sinomed, and CNKI databases before June 2023. The search terms included"neuropathic pain", "purinergic receptor P2", "P2", "traditional Chinese medicine", "Chinese herbal medicine", and "herb". We described the traditional Chinese medicine alleviating neuropathic pain via purinergic receptor P2 signaling pathway including P2X2/3 R, P2X3R, P2X4R, P2X7R, P2Y1R. Inhibition of activating glial cells, changing synaptic transmission, increasing painful postsynaptic potential, and activating inflammatory signaling pathways maybe the mechanism. Purine receptor P2 can mediate the occurrence of neuropathic pain. And many of traditional Chinese medicines can target P2 receptors to relieve neuropathic pain, which provides reasonable evidences for the future development of drugs. Also, the safety and efficacy and mechanism need more in-depth experimental research.


Subject(s)
Neuralgia , Receptors, Purinergic P2 , Humans , Medicine, Chinese Traditional , Receptors, Purinergic P2/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , Receptors, Purinergic , Signal Transduction
13.
World J Surg Oncol ; 21(1): 341, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37880703

ABSTRACT

BACKGROUND: There is increasing evidence that recombinant human P2Y purinoceptor 6 (P2RY6) may be involved in inflammatory responses. However, the role of P2RY6 in lung adenocarcinoma (LUAD) remains unknown. METHODS: We used transcriptomic, genomic, single-cell transcriptomic, and methylation sequencing data from The Cancer Genome Atlas database to analyze the aberrant status and prognostic value of P2RY6 in a variety of tumors. The LUAD single-cell sequencing dataset was used to explore the effect of P2RY6 on the tumor microenvironment. Cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was used to quantify immune cells in the tumor microenvironment. We also analyzed the correlation of P2RY6 with immune checkpoints and immune regulation-related genes. The correlation of between tumor mutation burden (TMB), microsatellite instability (MSI), and P2RY6 expression was also analyzed simultaneously. Tissue microarray and immunohistochemistry were employed to assess the expression of P2RY6 in internal tumor samples. RESULTS: Our findings indicate that P2RY6 exhibits significantly higher expression levels in various cancer tissues, particularly in LUAD. High expression of P2RY6 was closely associated with a poor prognosis for patients, and it plays a role in regulating immune-related pathways, such as cytokine-cytokine receptor interaction. Notably, P2RY6 expression is closely linked to the abundance of CD8 + T cells. Furthermore, we have developed a P2RY6-related inflammation prediction model that demonstrates promising results in predicting the prognosis of LUAD patients, with an AUC (area under the curve) value of 0.83. This performance is significantly better than the traditional TNM staging system. Through single-cell transcriptome sequencing analysis, we observed that high P2RY6 expression is associated with increased intercellular communication. Additionally, pathway enrichment analysis revealed that P2RY6 influences antigen presentation and processing pathways within the LUAD microenvironment. CONCLUSIONS: This study suggests that P2RY6 would be a new target for immunotherapy in LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Receptors, Purinergic P2 , Humans , Adenocarcinoma of Lung/genetics , CD8-Positive T-Lymphocytes , Lung Neoplasms/genetics , Multiomics , Prognosis , Tumor Microenvironment , Receptors, Purinergic P2/genetics
14.
Front Immunol ; 14: 1216580, 2023.
Article in English | MEDLINE | ID: mdl-37868982

ABSTRACT

Since the late 1970s, there has been an alarming increase in the incidence of asthma and its morbidity and mortality. Acute obstruction and inflammation of allergic asthmatic airways are frequently caused by inhalation of exogenous substances such as allergens cross-linking IgE receptors expressed on the surface of the human lung mast cells (HLMC). The degree of constriction of human airways produced by identical amounts of inhaled allergens may vary from day to day and even hour to hour. Endogenous factors in the human mast cell (HMC)'s microenvironment during allergen exposure may markedly modulate the degranulation response. An increase in allergic responsiveness may significantly enhance bronchoconstriction and breathlessness. This review focuses on the role that the ubiquitous endogenous purine nucleotide, extracellular adenosine 5'-triphosphate (ATP), which is a component of the damage-associated molecular patterns, plays in mast cells' physiology. ATP activates P2 purinergic cell-surface receptors (P2R) to trigger signaling cascades resulting in heightened inflammatory responses. ATP is the most potent enhancer of IgE-mediated HLMC degranulation described to date. Current knowledge of ATP as it relates to targeted receptor(s) on HMC along with most recent studies exploring HMC post-receptor activation pathways are discussed. In addition, the reviewed studies may explain why brief, minimal exposures to allergens (e.g., dust, cat, mouse, and grass) can unpredictably lead to intense clinical reactions. Furthermore, potential therapeutic approaches targeting ATP-related enhancement of allergic reactions are presented.


Subject(s)
Asthma , Hypersensitivity , Receptors, Purinergic P2 , Humans , Animals , Mice , Mast Cells , Signal Transduction , Adenosine Triphosphate/metabolism , Asthma/metabolism , Lung , Hypersensitivity/metabolism , Allergens/metabolism , Receptors, Purinergic P2/metabolism
15.
J Neurosci ; 43(48): 8259-8270, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37821229

ABSTRACT

The recent increase in the use of nicotine products by teenagers has revealed an urgent need to better understand the impact of nicotine on the adolescent brain. Here, we sought to examine the actions of extracellular ATP as a neurotransmitter and to investigate whether ATP and nicotinic signaling interact during adolescence. With the GRABATP (G-protein-coupled receptor activation-based ATP sensor), we first demonstrated that nicotine induces extracellular ATP release in the medial habenula, a brain region involved in nicotine aversion and withdrawal. Using patch-clamp electrophysiology, we then demonstrated that activation of the ATP receptors P2X or P2Y1 increases the neuronal firing of cholinergic neurons. Surprisingly, contrasting interactive effects were observed with nicotine exposure. For the P2X receptor, activation had no observable effect on acute nicotine-mediated activity, but during abstinence after 10 d of nicotine exposure, coexposure to nicotine and the P2X agonist potentiated neuronal activity in female, but not male, neurons. For P2Y1 signaling, a potentiated effect of the agonist and nicotine was observed with acute exposure, but not following extended nicotine exposure. These data reveal a complex interactive effect between nicotinic and ATP signaling in the adolescent brain and provide mechanistic insights into extracellular ATP signaling with sex-specific alterations of neuronal responses based on prior drug exposure.SIGNIFICANCE STATEMENT In these studies, it was discovered that nicotine induces extracellular ATP release in the medial habenula and subsequent activation of the ATP purinergic receptors increases habenular cholinergic neuronal firing in the adolescent brain. Interestingly, following extended nicotine exposure, nicotine was found to alter the interplay between purinergic and nicotinic signaling in a sex-specific manner. Together, these studies provide a novel understanding for the role of extracellular ATP in mediating habenular activity and reveal how nicotine exposure during adolescence alters these signaling mechanisms, which has important implications given the high incidence of e-cigarette/vape use by youth.


Subject(s)
Electronic Nicotine Delivery Systems , Habenula , Receptors, Purinergic P2 , Male , Adolescent , Female , Humans , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Synaptic Transmission , Cholinergic Neurons , Receptors, Purinergic P2/physiology , Adenosine Triphosphate/pharmacology
17.
Neuropharmacology ; 238: 109655, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37423482

ABSTRACT

Uridine 5'-diphosphoglucose (UDP-G) as a preferential agonist, but also other UDP-sugars, such as UDP galactose, function as extracellular signaling molecules under conditions of cell injury and apoptosis. Consequently, UDP-G is regarded to function as a damage-associated molecular pattern (DAMP), regulating immune responses. UDP-G promotes neutrophil recruitment, leading to the release of pro-inflammatory chemokines. As a potent endogenous agonist with the highest affinity for the P2Y14 receptor (R), it accomplishes an exclusive relationship between P2Y14Rs in regulating inflammation via cyclic adenosine monophosphate (cAMP), nod-like receptor protein 3 (NLRP3) inflammasome, mitogen-activated protein kinases (MAPKs), and signal transducer and activator of transcription 1 (STAT1) pathways. In this review, we initially present a brief introduction into the expression and function of P2Y14Rs in combination with UDP-G. Subsequently, we summarize emerging roles of UDP-G/P2Y14R signaling pathways that modulate inflammatory responses in diverse systems, and discuss the underlying mechanisms of P2Y14R activation in inflammation-related diseases. Moreover, we also refer to the applications as well as effects of novel agonists/antagonists of P2Y14Rs in inflammatory conditions. In conclusion, due to the role of the P2Y14R in the immune system and inflammatory pathways, it may represent a novel target for anti-inflammatory therapy.


Subject(s)
Receptors, Purinergic P2 , Humans , Receptors, Purinergic P2/metabolism , Uridine Diphosphate Glucose/metabolism , Uridine Diphosphate Glucose/pharmacology , Uridine Diphosphate Sugars/pharmacology , Inflammation/drug therapy , Glucose
18.
J Med Chem ; 66(13): 9076-9094, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37382926

ABSTRACT

P2Y14 receptor (P2Y14R) is activated by extracellular UDP-glucose, a damage-associated molecular pattern that promotes inflammation in the kidney, lung, fat tissue, and elsewhere. Thus, selective P2Y14R antagonists are potentially useful for inflammatory and metabolic diseases. The piperidine ring size of potent, competitive P2Y14R antagonist (4-phenyl-2-naphthoic acid derivative) PPTN 1 was varied from 4- to 8-membered rings, with bridging/functional substitution. Conformationally and sterically modified isosteres included N-containing spirocyclic (6-9), fused (11-13), and bridged (14, 15) or large (16-20) ring systems, either saturated or containing alkene or hydroxy/methoxy groups. The alicyclic amines displayed structural preference. An α-hydroxyl group increased the affinity of 4-(4-((1R,5S,6r)-6-hydroxy-3-azabicyclo[3.1.1]heptan-6-yl)phenyl)-7-(4-(trifluoromethyl)phenyl)-2-naphthoic acid 15 (MRS4833) compared to 14 by 89-fold. 15 but not its double prodrug 50 reduced airway eosinophilia in a protease-mediated asthma model, and orally administered 15 and prodrugs reversed chronic neuropathic pain (mouse CCI model). Thus, we identified novel drug leads having in vivo efficacy.


Subject(s)
Receptors, Purinergic P2 , Mice , Animals , Receptors, Purinergic P2/metabolism , Naphthalenes/pharmacology , Naphthalenes/therapeutic use , Uridine Diphosphate Glucose/metabolism
19.
Int J Mol Sci ; 24(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37047682

ABSTRACT

P2Y12 is a G-protein-coupled receptor that is activated upon ADP binding. Considering its well-established role in platelet activation, blocking P2Y12 has been used as a therapeutic strategy for antiplatelet aggregation in cardiovascular disease patients. However, receptor studies have shown that P2Y12 is functionally expressed not only in platelets and the microglia but also in other cells of the immune system, such as in monocytes, dendritic cells, and T lymphocytes. As a result, studies were carried out investigating whether therapies targeting P2Y12 could also ameliorate inflammatory conditions, such as sepsis, rheumatoid arthritis, neuroinflammation, cancer, COVID-19, atherosclerosis, and diabetes-associated inflammation in animal models and human subjects. This review reports what is known about the expression of P2Y12 in the cells of the immune system and the effect of P2Y12 activation and/or inhibition in inflammatory conditions. Lastly, we will discuss the major problems and challenges in studying this receptor and provide insights on how they can be overcome.


Subject(s)
COVID-19 , Receptors, Purinergic P2 , Animals , Humans , Purinergic P2Y Receptor Antagonists/pharmacology , Purinergic P2Y Receptor Antagonists/therapeutic use , COVID-19/metabolism , Blood Platelets/metabolism , Signal Transduction , Immune System , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2Y12/genetics , Receptors, Purinergic P2Y12/metabolism , Platelet Aggregation , Platelet Aggregation Inhibitors/pharmacology , Adenosine Diphosphate/metabolism
20.
Neuropharmacology ; 233: 109541, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37062423

ABSTRACT

The purinergic pathway mediates both pro-inflammatory and anti-inflammatory responses, whereas the breakdown of adenosine triphosphate (ATP) is in a critical equilibrium. Under physiological conditions, extracellular ATP is maintained at a nanomolar concentration. Whether released into the medium following tissue damage, inflammation, or hypoxia, ATP is considered a clear indicator of cell damage and a marker of pathological conditions. In this overview, we provide an update on the participation of P2 receptor-mediated purinergic signaling in normal and pathological brain development, with special emphasis on neurodevelopmental psychiatric disorders. Since purinergic signaling is ubiquitous, it is not surprising that it plays a prominent role in developmental processes and pathological alterations. The main aim of this review is to conceptualize the time-dependent dynamic changes in the participation of different players in the purinome in shaping the normal and aberrant developmental patterns and diseases of the central nervous system over one's lifespan. This article is part of the Special Issue on "Purinergic Signaling: 50 years".


Subject(s)
Receptors, Purinergic P2 , Humans , Receptors, Purinergic P2/metabolism , Adenosine Triphosphate/metabolism , Signal Transduction/physiology , Brain/metabolism , Aging
SELECTION OF CITATIONS
SEARCH DETAIL
...