Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
1.
Purinergic Signal ; 20(1): 5-8, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37211586

ABSTRACT

Heart failure is associated with multiple mechanisms, including sympatho-excitation, and is one of the leading causes of death worldwide. Enhanced carotid body chemoreflex function is strongly related to excessive sympathetic nerve activity and sleep-disordered breathing in heart failure. How to reduce the excitability of the carotid body is still scientifically challenging. Both clinical and experimental evidence have suggested that targeting purinergic receptors is of great potential to combat heart failure. In a recent study, Lataro et al. (Lataro et al. in Nat Commun 14:1725, 5) demonstrated that targeting purinergic P2X3 receptors in the carotid body attenuates the progression of heart failure. Using a series of molecular, biochemical, and functional assays, the authors observed that the carotid body generates spontaneous, episodic burst discharges coincident with the onset of disordered breathing in male rats with heart failure, which was generated by ligating the left anterior descending coronary artery. Moreover, P2X3 receptor expression was found to be upregulated in the petrosal ganglion chemoreceptive neurons of rats with heart failure. Of particular note, treatment with a P2X3 antagonist rescued pathological breathing disturbances, abolished episodic discharges, reinstated autonomic balance, attenuated cardiac dysfunction, and reduced the immune cell response and plasma cytokine levels in those rats.


Subject(s)
Carotid Body , Heart Failure , Rats , Male , Animals , Carotid Body/metabolism , Receptors, Purinergic P2X/metabolism , Heart Failure/metabolism , Neurons/metabolism , Sympathetic Nervous System , Receptors, Purinergic P2X3/metabolism , Receptors, Purinergic P2X2/metabolism
2.
Purinergic Signal ; 19(3): 465-466, 2023 09.
Article in English | MEDLINE | ID: mdl-37676356

ABSTRACT

Receptor agonists and antagonists and other modulators of purinergic signalling have potential as novel therapeutics for a broad range of diseases and conditions. This special issue focuses on compounds or approaches that are either in clinical trials or headed in that direction. It is intended to serve as an up-to-date description of selected efforts to discover and develop new small molecular purinergic drugs.


Subject(s)
Biological Products , Receptors, Purinergic P2X/metabolism , Signal Transduction
3.
Int Immunopharmacol ; 122: 110674, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37481846

ABSTRACT

We previously demonstrated that experimental traumatic occlusion (ETO) induces a long-lasting nociceptive response. These findings were associated with altered neuronal patterns and suggestive satellite glial cell activation. This study aimed to elucidate the activation of satellite glial cells following ETO in the trigeminal ganglion. Moreover, we explored the involvement of resident and infiltrating cells in trigeminal ganglion in ETO. Finally, we investigated the overexpression of purinergic signaling and the CX3CL1/CX3CR1 axis. RT-qPCR and electrophoresis showed overexpression of GFAP in the trigeminal ganglion (TG), and immunohistochemistry corroborated these findings, demonstrating SGCs activation. ELISA reveals enhanced levels of TNF-α and IL-1ß in TG after 28 d of ETO. In trigeminal ganglia, ETO groups improved the release of CX3CL1, and immunohistochemistry showed higher CX3CR1+ -immunoreactive cells in ETO groups. Immunohistochemistry and electrophoresis of the P2X7 receptor were found in ETO groups. The mRNA levels of IBA1 are upregulated in the 0.7-mm ETO group, while immunohistochemistry showed higher IBA1+ -immunoreactive cells in both ETO groups. The expression of CD68 by electrophoresis and immunohistochemistry was observed in the ETO groups. For last, ELISA revealed increased levels of IL-6, IL-12, and CCL2 in the TG of ETO groups. Furthermore, the mRNA expression revealed augmented transcription factors and cytokines associated with lymphocyte activation, such as RORγt, IL-17, Tbet, IFNγ, FOXP3, and IL-10. The findings of this study suggested that ETO activates SGCs in TG, and purinergic signaling and CX3CL1/CX3CR1 axis were upregulated. We uncovered the involvement of a distinct subtype of macrophages, named sensory neuron-associated macrophage activation (sNMAs), and detected an expanded number of infiltrated macrophages onto TG. These findings indicate that ETO induces chronic/persistent immune response.


Subject(s)
Lymphocyte Activation , Macrophage Activation , Nociceptive Pain , Oligodendroglia , Trigeminal Ganglion , Trigeminal Ganglion/injuries , Nociceptive Pain/immunology , CX3C Chemokine Receptor 1/metabolism , Chemokine CX3CL1/metabolism , Animals , Rats , Glial Fibrillary Acidic Protein/metabolism , Male , Rats, Wistar , Oligodendroglia/immunology , Receptors, Purinergic P2X/metabolism
4.
Int J Mol Sci ; 24(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37511174

ABSTRACT

In angiotensin II (Ang II)-dependent hypertension, Ang II activates angiotensin II type 1 receptors (AT1R) on renal vascular smooth muscle cells, leading to renal vasoconstriction with eventual glomerular and tubular injury and interstitial inflammation. While afferent arteriolar vasoconstriction is initiated by the increased intrarenal levels of Ang II activating AT1R, the progressive increases in arterial pressure stimulate the paracrine secretion of adenosine triphosphate (ATP), leading to the purinergic P2X receptor (P2XR)-mediated constriction of afferent arterioles. Thus, the afferent arteriolar tone is maintained by two powerful systems eliciting the co-existing activation of P2XR and AT1R. This raises the conundrum of how the AT1R and P2XR can both be responsible for most of the increased renal afferent vascular resistance existing in angiotensin-dependent hypertension. Its resolution implies that AT1R and P2XR share common receptor or post receptor signaling mechanisms which converge to maintain renal vasoconstriction in Ang II-dependent hypertension. In this review, we briefly discuss (1) the regulation of renal afferent arterioles in Ang II-dependent hypertension, (2) the interaction of AT1R and P2XR activation in regulating renal afferent arterioles in a setting of hypertension, (3) mechanisms regulating ATP release and effect of angiotensin II on ATP release, and (4) the possible intracellular pathways involved in AT1R and P2XR interactions. Emerging evidence supports the hypothesis that P2X1R, P2X7R, and AT1R actions converge at receptor or post-receptor signaling pathways but that P2XR exerts a dominant influence abrogating the actions of AT1R on renal afferent arterioles in Ang II-dependent hypertension. This finding raises clinical implications for the design of therapeutic interventions that will prevent the impairment of kidney function and subsequent tissue injury.


Subject(s)
Angiotensin II , Hypertension , Kidney , Receptor, Angiotensin, Type 1 , Receptors, Purinergic P2X , Humans , Adenosine Triphosphate/metabolism , Angiotensin II/metabolism , Arterioles/metabolism , Hypertension/metabolism , Kidney/blood supply , Receptor, Angiotensin, Type 1/metabolism , Receptors, Angiotensin/metabolism , Receptors, Purinergic P2X/metabolism
5.
Neuropharmacology ; 234: 109542, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37040816

ABSTRACT

Neurosteroids are steroids synthesized de novo in the brain from cholesterol in an independent manner from peripheral steroid sources. The term "neuroactive steroid" includes all steroids independent of their origin, and newly synthesized analogs of neurosteroids that modify neuronal activities. In vivo application of neuroactive steroids induces potent anxiolytic, antidepressant, anticonvulsant, sedative, analgesic and amnesic effects, mainly through interaction with the γ-aminobutyric acid type-A receptor (GABAAR). However, neuroactive steroids also act as positive or negative allosteric regulators on several ligand-gated channels including N-methyl-d-aspartate receptors (NMDARs), nicotinic acetylcholine receptors (nAChRs) and ATP-gated purinergic P2X receptors. Seven different P2X subunits (P2X1-7) can assemble to form homotrimeric or heterotrimeric ion channels permeable for monovalent cations and calcium. Among them, P2X2, P2X4, and P2X7 are the most abundant within the brain and can be regulated by neurosteroids. Transmembrane domains are necessary for neurosteroid binding, however, no generic motif of amino acids can accurately predict the neurosteroid binding site for any of the ligand-gated ion channels including P2X. Here, we will review what is currently known about the modulation of rat and human P2X by neuroactive steroids and the possible structural determinants underlying neurosteroid-induced potentiation and inhibition of the P2X2 and P2X4 receptors. This article is part of the Special Issue on "Purinergic Signaling: 50 years".


Subject(s)
Ligand-Gated Ion Channels , Neurosteroids , Rats , Humans , Animals , Ligand-Gated Ion Channels/metabolism , Receptors, Purinergic P2X/metabolism , Brain/metabolism , Binding Sites , Adenosine Triphosphate/metabolism , Receptors, Purinergic P2X2/metabolism
6.
Curr Opin Pharmacol ; 69: 102358, 2023 04.
Article in English | MEDLINE | ID: mdl-36848824

ABSTRACT

Human Immunodeficiency Virus Type 1 (HIV-1) causes a chronic, incurable infection associated with chronic inflammation despite virologic suppression on antiretroviral therapy (ART). This chronic inflammation underlies significant comorbidities, including cardiovascular disease, neurocognition decline, and malignancies. The mechanisms of chronic inflammation have been attributed, in part, to the role of extracellular ATP and P2X-type purinergic receptors that sense damaged or dying cells and undergo signaling responses to activate inflammation and immunomodulation. This review describes the current literature on the role of extracellular ATP and P2X receptors in HIV-1 pathogenesis, describing the known intersection with the HIV-1 life cycle in mediating immunopathogenesis and neuronal disease. The literature supports key roles for this signaling mechanism in cell-to-cell communication and in activating transcriptional changes that impact the inflammatory state leading to disease progression. Future studies must characterize the numerous functions of ATP and P2X receptors in HIV-1 pathogenesis to inform future therapeutic targeting.


Subject(s)
HIV-1 , Humans , Receptors, Purinergic P2X/metabolism , Signal Transduction/physiology , Inflammation , Adenosine Triphosphate , Receptors, Purinergic P2X7
7.
Neurosci Bull ; 39(5): 845-862, 2023 May.
Article in English | MEDLINE | ID: mdl-36445556

ABSTRACT

Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.


Subject(s)
Acid Sensing Ion Channels , Adenosine Triphosphate , Brain Diseases , Protons , Receptors, Purinergic P2X , Humans , Acid Sensing Ion Channel Blockers/pharmacology , Acid Sensing Ion Channels/metabolism , Adenosine Triphosphate/metabolism , Alzheimer Disease , Amyotrophic Lateral Sclerosis , Brain Diseases/epidemiology , Brain Diseases/metabolism , Brain Diseases/pathology , Chronic Pain , COVID-19 , Epilepsy , Huntington Disease , Ischemic Stroke , Mental Disorders , Multiple Sclerosis , Neurodegenerative Diseases , Neuroinflammatory Diseases , Parkinson Disease , Receptors, Purinergic P2X/metabolism , Animals
8.
Brain Res Bull ; 190: 42-49, 2022 11.
Article in English | MEDLINE | ID: mdl-36113681

ABSTRACT

The development of cerebral ischemia involves brain damage and abnormal changes in brain function, which can cause neurosensory and motor dysfunction, and bring serious consequences to patients. P2X purinergic receptors are expressed in nerve cells and immune cells, and are mainly expressed in microglia. The P2X4 and P2X7 receptors in the P2X purinergic receptors play a significant role in regulating the activity of microglia. Moreover, ATP-P2X purine information transmission is involved in the progression of neurological diseases, including the release of pro-inflammatory factors, driving factors and cytokines after cerebral ischemia injury, inducing inflammation, and aggravating cerebral ischemia injury. P2X receptors activation can mediate the information exchange between microglia and neurons, induce neuronal apoptosis, and aggravate neurological dysfunction after cerebral ischemia. However, inhibiting the activation of P2X receptors, reducing their expression, inhibiting the activation of microglia, and has the effect of protecting nerve function. In this paper, we discussed the relationship between P2X receptors and nervous system function and the role of microglia activation inducing cerebral ischemia injury. Additionally, we explored the potential role of P2X receptors in the progression of cerebral ischemic injury and their potential pharmacological targets for the treatment of cerebral ischemic injury.


Subject(s)
Adenosine Triphosphate , Brain Ischemia , Humans , Adenosine Triphosphate/metabolism , Receptors, Purinergic P2X/metabolism , Microglia/metabolism , Brain Ischemia/metabolism , Neurons , Cerebral Infarction , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X4/metabolism
9.
Int J Mol Sci ; 23(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35743029

ABSTRACT

P2X receptors belong to a family of cation channel proteins, which respond to extracellular adenosine 5'-triphosphate (ATP). These receptors have gained increasing attention in basic and translational research, as they are central to a variety of important pathophysiological processes such as the modulation of cardiovascular physiology, mediation of nociception, platelet and macrophage activation, or neuronal-glial integration. While P2X1 receptor activation is long known to drive platelet aggregation, P2X7 receptor antagonists have recently been reported to inhibit platelet activation. Considering the role of both P2X receptors and platelet-mediated inflammation in neuronal diseases such as multiple sclerosis, Alzheimer's disease, Parkinson's disease, and stroke, targeting purinergic receptors may provide a valuable novel therapeutic approach in these diseases. Therefore, the present review illuminates the role of platelets and purinergic signaling in these neurological conditions to evaluate potential translational implications.


Subject(s)
Blood Platelets , Thrombosis , Adenosine Triphosphate/metabolism , Blood Platelets/metabolism , Humans , Inflammation/metabolism , Nociception , Pain/metabolism , Receptors, Purinergic P2X/metabolism , Receptors, Purinergic P2X7/metabolism , Thromboinflammation , Thrombosis/metabolism
10.
Purinergic Signal ; 18(2): 177-191, 2022 06.
Article in English | MEDLINE | ID: mdl-35188598

ABSTRACT

P2X receptors are trimeric nonselective cation channels gated by ATP. They assemble from seven distinct subunit isoforms as either homo- or heteromeric complexes and contain three extracellularly located binding sites for ATP. P2X receptors are expressed in nearly all tissues and are there involved in physiological processes like synaptic transmission, pain, and inflammation. Thus, they are a challenging pharmacological target. The determination of crystal and cryo-EM structures of several isoforms in the last decade in closed, open, and desensitized states has provided a firm basis for interpreting the huge amount of functional and biochemical data. Electrophysiological characterization in conjugation with optical approaches has generated significant insights into structure-function relationships of P2X receptors. This review focuses on novel optical and related approaches to better understand the conformational changes underlying the activation of these receptors.


Subject(s)
Adenosine Triphosphate , Ion Channel Gating , Adenosine Triphosphate/metabolism , Ion Channel Gating/physiology , Receptors, Purinergic P2X/metabolism
11.
FASEB J ; 36(3): e22197, 2022 03.
Article in English | MEDLINE | ID: mdl-35147989

ABSTRACT

Neonatal meningitis-associated Escherichia coli (NMEC) is among the leading causes of bacterial meningitis and sepsis in newborn infants. Several virulence factors have been identified as common among NMEC, and have been shown to play an important role in the development of bacteremia and/or meningitis. However, there is significant variability in virulence factor expression between NMEC isolates, and relatively little research has been done to assess the impact of variable virulence factor expression on immune cell activation and the outcome of infection. Here, we investigated the role of NMEC strain-dependent P2X receptor (P2XR) signaling on the outcome of infection in neonatal mice. We found that alpha-hemolysin (HlyA)-expressing NMEC (HlyA+ ) induced robust P2XR-dependent macrophage cell death in vitro, while HlyA- NMEC did not. P2XR-dependent cell death was inflammasome independent, suggesting an uncoupling of P2XR and inflammasome activation in the context of NMEC infection. In vivo inhibition of P2XRs was associated with increased mortality in neonatal mice infected with HlyA+ NMEC, but had no effect on the survival of neonatal mice infected with HlyA- NMEC. Furthermore, we found that P2XR-dependent protection against HlyA+ NMEC in vivo required macrophages, but not neutrophils or NLRP3. Taken together, these data suggest that HlyA+ NMEC activates P2XRs which in turn confers macrophage-dependent protection against infection in neonates. In addition, our findings indicate that strain-dependent virulence factor expression should be taken into account when studying the immune response to NMEC.


Subject(s)
Escherichia coli Proteins/toxicity , Hemolysin Proteins/toxicity , Inflammasomes/metabolism , Meningitis, Escherichia coli/metabolism , Neonatal Sepsis/metabolism , Receptors, Purinergic P2X/metabolism , Animals , Cells, Cultured , Escherichia coli K12 , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Macrophages/metabolism , Meningitis, Escherichia coli/microbiology , Mice , Mice, Inbred C57BL , Neonatal Sepsis/microbiology , Receptors, Purinergic P2X/genetics
12.
Biochim Biophys Acta Mol Cell Res ; 1869(5): 119237, 2022 05.
Article in English | MEDLINE | ID: mdl-35150807

ABSTRACT

Nucleotides are released from all cells through regulated pathways or as a result of plasma membrane damage or cell death. Outside the cell, nucleotides act as signalling molecules triggering multiple responses via specific plasma membrane receptors of the P2 family. In the nervous system, purinergic signalling has a key function in neurotransmission. Outside the nervous system, purinergic signalling is one of the major modulators of basal tissue homeostasis, while its dysregulation contributes to the pathogenesis of various disease, including inflammation and cancer. Pre-clinical and clinical evidence shows that selective P2 agonists or antagonists are effective treatments for many pathologies, thus highlighting the relevance of extracellular nucleotides and P2 receptors as therapeutic targets.


Subject(s)
Nucleotides/metabolism , Signal Transduction , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cell Membrane/metabolism , Humans , Lung Diseases/metabolism , Lung Diseases/pathology , Neoplasms/metabolism , Neoplasms/pathology , Nucleotides/analysis , Receptors, Purinergic P2X/metabolism , Receptors, Purinergic P2Y/metabolism
13.
Proteins ; 90(10): 1779-1785, 2022 10.
Article in English | MEDLINE | ID: mdl-35023590

ABSTRACT

P2X receptors are ATP-gated trimeric nonselective cation channels that are important for various physiological and pathological processes, including synaptic transmission, pain perception, immune regulation, and apoptosis. Accordingly, they attract a wide range of interest as drug targets, such as those for chronic cough, neuropathic pain, and depression. After the zebrafish P2X4 receptor structure was reported in 2009, various other P2X receptor structures have been reported, extending our understanding of the molecular mechanisms of P2X receptors. This review article describes the recent progress on understanding the structures and mechanisms of P2X receptors, especially of the mechanisms underlying ATP binding and conformational changes during the gating cycle. In addition, since several antagonists for different P2X subtypes have entered into clinical trials, this review also summarizes the binding sites and regulatory mechanisms of these antagonists, which may contribute to new strategies of targeting P2X receptors for drug discovery.


Subject(s)
Receptors, Purinergic P2X4 , Zebrafish , Adenosine Triphosphate/chemistry , Animals , Biology , Receptors, Purinergic P2X/chemistry , Receptors, Purinergic P2X/metabolism , Zebrafish/metabolism
14.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34638992

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a disease with a resilient neuroinflammatory component caused by activated microglia and infiltrated immune cells. How to successfully balance neuroprotective versus neurotoxic actions through the use of anti-inflammatory agents is still under debate. There has been a boost of awareness regarding the role of extracellular ATP and purinergic receptors in modulating the physiological and pathological mechanisms in the nervous system. Particularly in ALS, it is known that the purinergic ionotropic P2X7 receptor plays a dual role in disease progression by acting at different cellular and molecular levels. In this context, we previously demonstrated that the P2X7 receptor antagonist, brilliant blue G, reduces neuroinflammation and ameliorates some of the pathological features of ALS in the SOD1-G93A mouse model. Here, we test the novel, noncommercially available, and centrally permeant Axxam proprietary P2X7 antagonist, AXX71, in SOD1-G93A mice, by assessing some behavioral and molecular parameters, among which are disease progression, survival, gliosis, and motor neuron wealth. We demonstrate that AXX71 affects the early symptomatic phase of the disease by reducing microglia-related proinflammatory markers and autophagy without affecting the anti-inflammatory markers or motor neuron survival. Our results suggest that P2X7 modulation can be further investigated as a therapeutic strategy in preclinical studies, and exploited in ALS clinical trials.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Anti-Inflammatory Agents/therapeutic use , Autophagy/drug effects , Disease Progression , Purinergic P2X Receptor Antagonists/therapeutic use , Superoxide Dismutase/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Anti-Inflammatory Agents/pharmacokinetics , Behavior, Animal/drug effects , Disease Models, Animal , Female , Inflammation/drug therapy , Inflammation/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/drug effects , Microglia/metabolism , Motor Activity/drug effects , Muscle Strength/drug effects , Purinergic P2X Receptor Antagonists/pharmacokinetics , Receptors, Purinergic P2X/metabolism
15.
Cells ; 10(9)2021 09 02.
Article in English | MEDLINE | ID: mdl-34571930

ABSTRACT

Localisation of mast cells (MCs) at the abluminal side of blood vessels in the brain favours their interaction with glial cells, neurons, and endothelial cells, resulting in the activation of these cells and the release of pro-inflammatory mediators. In turn, stimulation of glial cells, such as microglia, astrocytes, and oligodendrocytes may result in the modulation of MC activities. MCs, microglia, astrocytes, and oligodendrocytes all express P2X receptors (P2XRs) family members that are selectively engaged by ATP. As increased concentrations of extracellular adenosine 5'-triphosphate (ATP) are present in the brain in neuropathological conditions, P2XR activation in MCs and glial cells contributes to the control of their communication and amplification of the inflammatory response. In this review we discuss P2XR-mediated MC activation, its bi-directional effect on microglia, astrocytes and oligodendrocytes and role in neuroinflammation.


Subject(s)
Inflammation/pathology , Mast Cells/immunology , Neuroglia/immunology , Neurons/immunology , Receptors, Purinergic P2X/metabolism , Animals , Humans , Inflammation/immunology , Inflammation/metabolism
16.
Eur J Med Chem ; 226: 113838, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34571173

ABSTRACT

The P2X7 receptor (P2X7R) stands out among the purinergic receptors due to its strong involvement in the regulation of tumor growth and metastasis formation as well as in innate immune responses and afferent signal transmission. Numerous studies have pointed out the beneficial effects of P2X7R antagonism for the treatment of a variety of cancer types, inflammatory diseases, and chronic pain. Herein we describe the development of novel P2X7R antagonists, incorporating piperazine squaric diamides as a central element. Besides improving the antagonists' potency from pIC50 values of 5.7-7.6, ADME properties (logD7.4 value, plasma protein binding, in vitro metabolic stability) of the generated compounds were investigated and optimized to provide novel P2X7R antagonists with drug-like properties. Furthermore, docking studies revealed the antagonists binding to the allosteric binding pocket in two distinct binding poses, depending on the substitution of the central piperazine moiety.


Subject(s)
Cyclobutanes/pharmacology , Diamide/pharmacology , Piperazine/pharmacology , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X/metabolism , Cyclobutanes/chemical synthesis , Cyclobutanes/chemistry , Diamide/chemical synthesis , Diamide/chemistry , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Molecular Structure , Piperazine/chemical synthesis , Piperazine/chemistry , Purinergic P2X Receptor Antagonists/chemical synthesis , Purinergic P2X Receptor Antagonists/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
17.
Purinergic Signal ; 17(4): 633-648, 2021 12.
Article in English | MEDLINE | ID: mdl-34476721

ABSTRACT

This review article presents a collection of tool compounds that selectively block and are recommended for studying P2Y and P2X receptor subtypes, investigating their roles in physiology and validating them as future drug targets. Moreover, drug candidates and approved drugs for P2 receptors will be discussed.


Subject(s)
Adenosine Triphosphate/metabolism , Purinergic P2X Receptor Antagonists/pharmacology , Purinergic P2Y Receptor Antagonists/pharmacology , Receptors, Purinergic P2X/metabolism , Receptors, Purinergic P2Y/metabolism , Animals , Humans
18.
Front Endocrinol (Lausanne) ; 12: 718429, 2021.
Article in English | MEDLINE | ID: mdl-34456873

ABSTRACT

Extracellular nucleosides and nucleotides activate a group of G protein-coupled receptors (GPCRs) known as purinergic receptors, comprising adenosine and P2Y receptors. Furthermore, purinergic P2X ion channels are activated by ATP. These receptors are expressed in liver resident cells and play a critical role in maintaining liver function. In the normal physiology, these receptors regulate hepatic metabolic processes such as insulin responsiveness, glycogen and lipid metabolism, and bile secretion. In disease states, ATP and other nucleotides serve as danger signals and modulate purinergic responses in the cells. Recent studies have demonstrated that purinergic receptors play a significant role in the development of metabolic syndrome associated non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, hepatocellular carcinoma (HCC) and liver inflammation. In this concise review, we dissect the role of purinergic signaling in different liver resident cells involved in maintaining healthy liver function and in the development of the above-mentioned liver pathologies. Moreover, we discuss potential therapeutic strategies for liver diseases by targeting adenosine, P2Y and P2X receptors.


Subject(s)
Adenosine/metabolism , Liver Diseases/pathology , Receptors, Purinergic P2X/metabolism , Receptors, Purinergic P2Y/metabolism , Animals , Humans , Liver Diseases/metabolism , Signal Transduction
19.
J Immunol ; 207(5): 1275-1287, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34389624

ABSTRACT

The airway epithelial cells (AECs) lining the conducting passageways of the lung secrete a variety of immunomodulatory factors. Among these, PGE2 limits lung inflammation and promotes bronchodilation. By contrast, IL-6 drives intense airway inflammation, remodeling, and fibrosis. The signaling that differentiates the production of these opposing mediators is not understood. In this study, we find that the production of PGE2 and IL-6 following stimulation of human AECs by the damage-associated molecular pattern extracellular ATP shares a common requirement for Ca2+ release-activated Ca2+ (CRAC) channels. ATP-mediated synthesis of PGE2 required activation of metabotropic P2Y2 receptors and CRAC channel-mediated cytosolic phospholipase A2 signaling. By contrast, ATP-evoked synthesis of IL-6 occurred via activation of ionotropic P2X receptors and CRAC channel-mediated calcineurin/NFAT signaling. In contrast to ATP, which elicited the production of both PGE2 and IL-6, the uridine nucleotide, UTP, stimulated PGE2 but not IL-6 production. These results reveal that human AECs employ unique receptor-specific signaling mechanisms with CRAC channels as a signaling nexus to regulate release of opposing immunomodulatory mediators. Collectively, our results identify P2Y2 receptors, CRAC channels, and P2X receptors as potential intervention targets for airway diseases.


Subject(s)
Dinoprostone/metabolism , Inflammation/immunology , Interleukin-6/metabolism , Respiratory Mucosa/metabolism , Adenosine Triphosphate/pharmacokinetics , Alarmins/metabolism , Calcium Release Activated Calcium Channels/metabolism , Cells, Cultured , Humans , Immunomodulation , Interleukin-6/genetics , NFATC Transcription Factors/metabolism , Phospholipases A2/metabolism , Receptors, Purinergic P2X/metabolism , Respiratory Mucosa/pathology , Signal Transduction , Uracil Nucleotides/metabolism
20.
J Neurophysiol ; 126(4): 1045-1054, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34433003

ABSTRACT

The prepositus hypoglossi nucleus (PHN) and the interstitial nucleus of Cajal (INC) are oculomotor neural integrators involved in the control of horizontal and vertical gaze, respectively. We previously reported that local application of adenosine 5'-trisphosphate (ATP) to PHN neurons induced P2X receptor-mediated fast inward currents, P2Y receptor-mediated slow inward currents, and/or adenosine P1 receptor-mediated slow outward currents. In contrast to the findings on PHN neurons, the expression of functional purinergic receptors in INC neurons has not been examined. In this study, we investigated ATP-induced current responses in INC neurons and the distributions of the three current types across distinct firing patterns in PHN and INC neurons using whole cell recordings of rat brainstem slices. The application of ATP induced all three current types in INC neurons. Pharmacological analyses indicated that the fast inward and slow outward currents were mainly mediated by the P2X and P1 subtypes, respectively, corresponding to the receptor subtypes in PHN neurons. However, agonists of the P2Y subtype did not induce the slow inward current in INC neurons, suggesting that other subtypes or mechanisms are responsible for this current. Analysis of the distribution of the three current types in PHN and INC neurons revealed that the proportions of the currents were distinctly dependent on the firing patterns of PHN neurons whereas the proportion of the fast inward current was higher during all firing patterns of INC neurons. The different distributions of ATP-induced currents suggest distinct modes of purinergic modulation specific to horizontal and vertical integrators.NEW & NOTEWORTHY The roles of purinergic signaling on vertical (mediated by the interstitial nucleus of Cajal; INC) and horizontal (prepositus hypoglossal nucleus; PHN) gaze control are not understood. Here, we report three current types induced by ATP in INC neurons; the distribution of these current types across different types of INC neurons is different from that in PHN neurons. These results suggest distinct modes of purinergic modulation in horizontal and vertical gaze control centers.


Subject(s)
Adenosine Triphosphate/metabolism , Electrophysiological Phenomena/physiology , Eye Movements/physiology , Neurons/physiology , Receptors, Purinergic P2X/metabolism , Receptors, Purinergic P2Y/metabolism , Tegmentum Mesencephali/physiology , Animals , Female , Male , Patch-Clamp Techniques , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...