Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.775
Filter
1.
J Vis Exp ; (206)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38738876

ABSTRACT

Functional characterization of proteins requires them to be expressed and purified in substantial amounts with high purity to perform biochemical assays. The Fast Protein Liquid Chromatography (FPLC) system allows high-resolution separation of complex protein mixtures. By adjusting various parameters in FPLC, such as selecting the appropriate purification matrix, regulating the protein sample's temperature, and managing the sample's flow rate onto the matrix and the elution rate, it is possible to ensure the protein's stability and functionality. In this protocol, we will demonstrate the versatility of the FPLC system to purify 6X-His-tagged flap endonuclease 1 (FEN1) protein, produced in bacterial cultures. To improve protein purification efficiency, we will focus on multiple considerations, including proper column packing and preparation, sample injection using a sample loop, flow rate of sample application to the column, and sample elution parameters. Finally, the chromatogram will be analyzed to identify fractions containing high yields of protein and considerations for proper recombinant protein long-term storage. Optimizing protein purification methods is crucial for improving the precision and reliability of protein analysis.


Subject(s)
Chromatography, Affinity , Chromatography, Affinity/methods , Flap Endonucleases/chemistry , Flap Endonucleases/isolation & purification , Flap Endonucleases/metabolism , Chromatography, Liquid/methods , Histidine/chemistry , Escherichia coli/genetics , Escherichia coli/chemistry , Escherichia coli/metabolism , Oligopeptides/chemistry , Oligopeptides/isolation & purification , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
2.
J Chromatogr A ; 1724: 464908, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38669943

ABSTRACT

Affinity tags are frequently engineered into recombinant proteins to facilitate purification. Although this technique is powerful, removal of the tag is desired because the tag can interfere with biological activity and can potentially increase the immunogenicity of therapeutic proteins. Tag removal is complex, as it requires adding expensive protease enzymes. To overcome this limitation, split intein based affinity purification systems have been developed in which a CC-intein tag is engineered into a protein of interest for binding to a NC-intein peptide ligand fixed to a chromatographic support. Tag removal in these systems is achieved by creating an active intein-complex during protein capture, which triggers a precise self-cleavage reaction. In this work, we show applications of a new split intein system, Cytiva™ ProteinSelect™. One advantage of the new system is that the NC-intein ligand can be robustly produced and conjugated to large volumes of resin for production of gram scale proteins. SARS-CoV-2 spike protein receptor binding domain and a Bispecific T Cell Engager in this work were successfully captured on the affinity resin and scaled 10-fold. Another advantage of this system is the ability to sanitize the resin with sodium hydroxide without loosing the 10-20 g/L binding capacity. Binding studies with IL-1b and IFNAR-1 ECD showed that the resin can be regenerated and sanitized for up to 50 cycles without loosing binding capacity. Additionally, after several cycles of sanitization, binding capacity was retained for the SARS-CoV-2 spike protein receptor binding domain and a Bispecific T Cell Engager. As with other split intein systems, optimization was needed to achieve ideal expression and recovery. The N-terminal amino acid sequence of the protein of interest required engineering to enable the cleavage reaction. Additionally, ensuring the stability of the CC-intein tag was important to prevent premature cleavage or truncation. Controlling the hold time of the expression product and the prevention of protease activity prior to purification was needed. These results demonstrate the feasibility of the Cytiva™ ProteinSelect™ system to be used in academic and industrial research and development laboratories for the purification of novel proteins expressed in either bacterial or mammalian systems.


Subject(s)
Chromatography, Affinity , Inteins , Chromatography, Affinity/methods , Humans , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/isolation & purification , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/chemistry , Interleukin-1beta/metabolism , Interleukin-1beta/genetics
3.
Biomater Sci ; 12(9): 2408-2417, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38511491

ABSTRACT

Alzheimer's disease is a severe brain condition caused by the formation of amyloid plaques composed of amyloid beta (Aß) peptides. These peptides form oligomers, protofibrils, and fibrils before deposition into amyloid plaques. Among these intermediates, Aß oligomers (AßOs) were found to be the most toxic and therefore an appealing target for drug development and understanding their role in the disease. However, precise isolation and characterization of AßOs have proven challenging because AßOs tend to aggregate and form heterogeneous mixtures in solution. As a solution, we genetically fused the Aß peptide with a ferritin monomer. Such fusion allowed the encapsulation of precisely 24 Aß peptides inside the 24-mer ferritin cage. Using high-speed atomic force microscopy (HS-AFM), we disassembled ferritin and directly visualized the Aß core enclosed within the cage. The thioflavin-T assay (ThT) and attenuated total reflection infrared spectroscopy (ATR-IR) revealed the presence of a ß-sheet structure in the encapsulated oligomeric aggregate. Gallic acid, an amyloid inhibitor, can inhibit the fluorescence of ThT bound AßOs. Our approach represents a significant advancement in the isolation and characterization of ß-sheet rich AßOs and is expected to be useful for future studies of other disordered peptides such as α-synuclein and tau.


Subject(s)
Amyloid beta-Peptides , Ferritins , Protein Conformation, beta-Strand , Amyloid beta-Peptides/chemistry , Ferritins/chemistry , Microscopy, Atomic Force , Protein Aggregates/drug effects , Humans , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification
4.
Arch Microbiol ; 205(5): 199, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069440

ABSTRACT

Antibiotic-resistant pathogens have become a great universal health concern. Antimicrobial peptides (AMPs) are small amphipathic and cationic polypeptides with high therapeutic potential against various microorganisms containing drug-resistant strains. Two major groups of these peptides, which have antibacterial activity against Gram-positive and Gram-negative bacteria, antiviral activity, and even antifungal activity, are defensins and cathelicidins. Hybridization of various AMPs is an appropriate approach to achieving new fusion AMPs with high antibacterial activity but low cellular toxicity. In the current research, the amino-acid sequence of human cathelicidin LL-37 (2-31) and Human beta-defensin (hBD)-129 were combined, and the fusion protein was evaluated by bioinformatics tool. The designed AMP gene sequence was commercially synthesized and cloned in the pET-28a expression vector. The LL-37/hBD-129 fusion protein was expressed in E.coli BL21-gold (DE3). The expression of the recombinant protein was evaluated using the SDS-PAGE method. The LL37/hBD-129 was successfully expressed as a recombinant hybrid AMP in E.coli BL21-gold (DE3) strain. Purification of the expressed AMP was performed by Ni-NTA column affinity chromatography, and the purified AMP was validated using the Western blot technic. Finally, the antimicrobial activity of the fusion AMP against Staphylococcus aureus and Escherichia coli bacteria was assessed. Based on the in silico analysis and experimental evaluations, the fusion AMP showed a significant antimicrobial effect on E. coli and Staphylococcus aureus bacteria.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Cathelicidins , Recombinant Fusion Proteins , beta-Defensins , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/pharmacology , beta-Defensins/biosynthesis , beta-Defensins/chemistry , beta-Defensins/genetics , beta-Defensins/pharmacology , Cathelicidins/biosynthesis , Cathelicidins/chemistry , Cathelicidins/genetics , Cathelicidins/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/genetics , Antimicrobial Peptides/isolation & purification , Antimicrobial Peptides/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Drug Design , Computer Simulation , Molecular Dynamics Simulation , Microbial Sensitivity Tests , Protein Stability
5.
Methods Mol Biol ; 2643: 359-372, 2023.
Article in English | MEDLINE | ID: mdl-36952198

ABSTRACT

The heteromeric complex of the two AAA+ ATPases PEX1 and PEX6 is involved in the export of the monoubiquitinated import receptor PEX5 from the peroxisomal membrane. Mutations in this complex make up for over 60% of the patients with Peroxisomal Biogenesis Disorders. To have better options for the treatment of the milder mutations we purified the human PEX1/PEX6 complex after overexpression of plasmids encoding tagged proteins from HEK293TT cells. We used a combination of a HisTrap Column (Ni-NTA chromatography) and a Strep-Tactin®XT cartridge for small-scale purification of the complex using the His-tag of PEX1 and the Strep-tagII of PEX6.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Recombinant Fusion Proteins , HEK293 Cells , Humans , Chromatography, Affinity/methods , Recombinant Fusion Proteins/isolation & purification , Plasmids/genetics , ATPases Associated with Diverse Cellular Activities/isolation & purification , Transfection , Cell Separation
6.
Biomolecules ; 12(2)2022 02 08.
Article in English | MEDLINE | ID: mdl-35204774

ABSTRACT

Ribonuclease inhibitors (RIs) are an indispensable biotechnological tool for the detection and manipulation of RNA. Nowadays, due to the outbreak of COVID-19, highly sensitive detection of RNA has become more important than ever. Although the recombinant expression of RNase inhibitors is possible in E. coli, the robust expression is complicated by maintaining the redox potential and solubility by various expression tags. In the present paper we describe the expression of RI in baculovirus-infected High Five cells in large scale utilizing a modified transfer vector combining the beneficial properties of Profinity Exact Tag and pONE system. The recombinant RI is expressed at a high level in a fusion form, which is readily cleaved during on-column chromatography. A subsequent anion exchange chromatography was used as a polishing step to yield 12 mg native RI per liter of culture. RI expressed in insect cells shows higher thermal stability than the commercially available RI products (mainly produced in E. coli) based on temperature-dependent RNase inhibition studies. The endotoxin-free RI variant may also be applied in future therapeutics as a safe additive to increase mRNA stability in mRNA-based vaccines.


Subject(s)
Insecta/genetics , Insecta/metabolism , Placental Hormones/biosynthesis , Recombinant Fusion Proteins/biosynthesis , Animals , Enzyme Stability , Humans , Placental Hormones/isolation & purification , Placental Hormones/metabolism , Plasmids , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Temperature
7.
Protein Expr Purif ; 191: 106025, 2022 03.
Article in English | MEDLINE | ID: mdl-34826607

ABSTRACT

The detection of antibody to non-structural protein (NSP) of Foot-and-mouth disease virus (FMDV) is the reliable diagnostic method for differentiating infected from vaccinated animals (DIVA). For this purpose, the detection of antibodies to non-structural 3ABC protein is suitable for identification of virus activity in the animals exposed to FMDV infection. However, large-scale production of recombinant 3ABC protein is challenging due to the formation of inclusion bodies in Escherichia coli and low yield due to protein aggregation during in vitro refolding. In this study, 3ABC gene was fused with SUMO (small ubiquitin-like modifiers) fusion system which significantly enhanced expression of recombinant 3ABC protein in E. coli. The solubility of the recombinant 6xHis-SUMO 3ABC fusion protein was improved by mild detergent treatment and purified through Ni-NTA chromatography under non-denaturing conditions which yielded 9 mg protein obtained from 1-L bacterial fermentation culture. The diagnostic potential of recombinant 3ABC protein was also tested by ELISA that provided reliable diagnostic performance (DSn = 92%, DSp = 94%) upon comparison with commercially available kit. The thermal stability of fusion protein was also tested which presented reliable performance at different temperatures. In conclusion, we presented SUMO fusion for the enhanced expression in E. coli and purification of active recombinant 3ABC protein using non-denaturing conditions without refolding steps. This protein can be used as a suitable diagnostic antigen to detect antibodies following FMDV infection.


Subject(s)
Foot-and-Mouth Disease Virus/genetics , Gene Expression , Recombinant Fusion Proteins , SUMO-1 Protein , Viral Nonstructural Proteins , Foot-and-Mouth Disease Virus/chemistry , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , SUMO-1 Protein/biosynthesis , SUMO-1 Protein/chemistry , SUMO-1 Protein/genetics , SUMO-1 Protein/isolation & purification , Viral Nonstructural Proteins/biosynthesis , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/isolation & purification
8.
Chembiochem ; 23(2): e202100514, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34859550

ABSTRACT

In addition to a membrane anchor, the transmembrane domain (TMD) of single-pass transmembrane proteins (SPTMPs) recently has shown essential roles in the cross-membrane activity or receptor assembly/clustering. However, these small TMD peptides are generally hydrophobic and dynamic, difficult to be expressed and purified. Here, we have integrated the power of TrpLE fusion protein and a sequence-specific nickel-assisted cleavage (SNAC)-tag to produce small TMD peptides in a highly efficient way under mild conditions, which uses Ni2+ as the cleavage reagent, avoiding the usage of toxic cyanogen bromide (CNBr). Furthermore, this method simplifies the downstream protein purification and reconstitution. Two representative TMDs, including the Spike-TMD from severe acute respiratory syndrome coronavirus 2 (SARS2), were successfully produced with high-quality nuclear magnetic resonance (NMR) spectra. Therefore, our study provides a more efficient and practical approach for general structural characterization of the small TM proteins.


Subject(s)
Nickel/chemistry , Peptides/metabolism , Recombinant Fusion Proteins/metabolism , COVID-19/pathology , COVID-19/virology , Catalysis , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , Peptides/isolation & purification , Proteolysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
9.
Protein Expr Purif ; 191: 106021, 2022 03.
Article in English | MEDLINE | ID: mdl-34798273

ABSTRACT

Many recombinant proteins are products of great value in biomedical and industrial fields. The use of solubility and affinity tags are commonly used to increase yields and facilitate the purification process. However, it is of paramount importance in several applications to remove the fusion tag from the final product. In this regard, the Tobacco Etch Virus protease (TEV) is one of the most widely used for tag removal. The presence in the TEV of the same tag to be removed facilitates the separation of TEV and the tag from the cleaved recombinant protein in a single purification step. We generated a double-tagged (StrepTagII and HisTag) TEV variant with reported mutations that improve the activity, the expression yield in E.coli, and that decrease the auto-proteolysis. This TEV can be easily purified by two consecutive affinity chromatography steps with high yields and purity. The cleavage reaction can be done to almost completeness in as fast as 15 min at room temperature and the removal of the protease and tags is performed in a single purification step, independent of the previous presence of a StrepTagII or a HisTag on the target.


Subject(s)
Endopeptidases , Escherichia coli , Recombinant Fusion Proteins , Endopeptidases/biosynthesis , Endopeptidases/chemistry , Endopeptidases/genetics , Endopeptidases/isolation & purification , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification
10.
Mol Biotechnol ; 64(1): 42-56, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34528219

ABSTRACT

GLIS1 has multiple roles in embryonic development and in deriving induced pluripotent stem cells by aiding signaling pathways and chromatin assembly. An inexpensive and simple method to produce human GLIS1 protein from Escherichia coli (E. coli) is demonstrated in this study. Various parameters such as codon usage bias, E. coli strains, media, induction conditions (such as inducer concentration, cell density, time, and temperature), and genetic constructs were investigated to obtain soluble expression of human GLIS1 protein. Using identified expression conditions and an appropriate genetic construct, the human GLIS1 protein was homogeneously purified (purity > 90%) under native conditions. Importantly, the purified protein has upheld a stable secondary structure, as demonstrated by circular dichroism spectroscopy. To the best of our knowledge, this is the first study to report the ideal expression conditions of human GLIS1 protein in E. coli to achieve soluble expression and purification under native conditions, upholding its stable secondary structure post-purification. The biological activity of the purified GLIS1 fusion protein was further assessed in MDA-MB-231 cells. This biologically active human GLIS1 protein potentiates new avenues to understand its molecular mechanisms in different cellular functions in various cancers and in the generation of induced pluripotent stem cells.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/isolation & purification , Escherichia coli/genetics , Transcription Factors/genetics , Transcription Factors/isolation & purification , Cell Line, Tumor , Cell Movement , Cloning, Molecular , Codon , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Escherichia coli/growth & development , Escherichia coli/metabolism , Gene Expression , Genetic Vectors , Humans , Protein Structure, Secondary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Solubility , Transcription Factors/chemistry , Transcription Factors/metabolism
11.
Molecules ; 26(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34946663

ABSTRACT

Zinc finger proteins play pivotal roles in health and disease and exert critical functions in various cellular processes. A majority of zinc finger proteins bind DNA and act as transcription factors. B-cell lymphoma/leukemia 11B (BCL11B) represents one member of the large family of zinc finger proteins. The N-terminal domain of BCL11B was shown to be crucial for BCL11B to exert its proper function by homodimerization. Here, we describe an easy and fast preparation protocol to yield the fluorescently tagged protein of the recombinant N-terminal BCL11B zinc finger domain (BCL11B42-94) for in vitro studies. First, we expressed fluorescently tagged BCL11B42-94 in E. coli and described the subsequent purification utilizing immobilized metal ion affinity chromatography to achieve very high yields of a purified fusion protein of 200 mg/L culture. We proceeded with characterizing the atypical zinc finger domain using circular dichroism and size exclusion chromatography. Validation of the functional fluorescent pair CyPet-/EYFP-BCL11B42-94 was achieved with Förster resonance energy transfer. Our protocol can be utilized to study other zinc finger domains to expand the knowledge in this field.


Subject(s)
Escherichia coli/metabolism , Gene Expression , Green Fluorescent Proteins , Recombinant Fusion Proteins , Repressor Proteins , Tumor Suppressor Proteins , Escherichia coli/genetics , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/isolation & purification , Humans , Protein Domains , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Repressor Proteins/biosynthesis , Repressor Proteins/chemistry , Repressor Proteins/genetics , Repressor Proteins/isolation & purification , Tumor Suppressor Proteins/biosynthesis , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/isolation & purification , Zinc Fingers
12.
Microb Cell Fact ; 20(1): 232, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34963459

ABSTRACT

BACKGROUND: Proteins with novel functions or advanced activities developed by various protein engineering techniques must have sufficient solubility to retain their bioactivity. However, inactive protein aggregates are frequently produced during heterologous protein expression in Escherichia coli. To prevent the formation of inclusion bodies, fusion tag technology has been commonly employed, owing to its good performance in soluble expression of target proteins, ease of application, and purification feasibility. Thus, researchers have continuously developed novel fusion tags to expand the expression capacity of high-value proteins in E. coli. RESULTS: A novel fusion tag comprising carbohydrate-binding module 66 (CBM66) was developed for the soluble expression of heterologous proteins in E. coli. The target protein solubilization capacity of the CBM66 tag was verified using seven proteins that are poorly expressed or form inclusion bodies in E. coli: four human-derived signaling polypeptides and three microbial enzymes. Compared to native proteins, CBM66-fused proteins exhibited improved solubility and high production titer. The protein-solubilizing effect of the CBM66 tag was compared with that of two commercial tags, maltose-binding protein and glutathione-S-transferase, using poly(ethylene terephthalate) hydrolase (PETase) as a model protein; CBM66 fusion resulted in a 3.7-fold higher expression amount of soluble PETase (approximately 370 mg/L) compared to fusion with the other commercial tags. The intact PETase was purified from the fusion protein upon serial treatment with enterokinase and affinity chromatography using levan-agarose resin. The bioactivity of the three proteins assessed was maintained even when the CBM66 tag was fused. CONCLUSIONS: The use of the CBM66 tag to improve soluble protein expression facilitates the easy and economic production of high-value proteins in E. coli.


Subject(s)
Carbohydrates/chemistry , Escherichia coli/metabolism , Protein Engineering/methods , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Alcohol Dehydrogenase/biosynthesis , Alcohol Dehydrogenase/isolation & purification , Bacterial Proteins/biosynthesis , Bacterial Proteins/isolation & purification , Bone Morphogenetic Protein 7/biosynthesis , Bone Morphogenetic Protein 7/isolation & purification , Carrier Proteins/biosynthesis , Carrier Proteins/isolation & purification , Cloning, Molecular , Epidermal Growth Factor/biosynthesis , Epidermal Growth Factor/isolation & purification , Fungal Proteins/biosynthesis , Fungal Proteins/isolation & purification , Gene Expression , Humans , Hydrolases/biosynthesis , Hydrolases/isolation & purification , Inclusion Bodies/metabolism , Lipase/biosynthesis , Lipase/isolation & purification , Maltose-Binding Proteins , Protein Processing, Post-Translational , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Solubility , Vascular Endothelial Growth Factor A/biosynthesis , Vascular Endothelial Growth Factor A/isolation & purification
13.
PLoS One ; 16(11): e0259837, 2021.
Article in English | MEDLINE | ID: mdl-34793488

ABSTRACT

Human protoporphyrinogen oxidase IX (hPPO) is an oxygen-dependent enzyme catalyzing the penultimate step in the heme biosynthesis pathway. Mutations in the enzyme are linked to variegate porphyria, an autosomal dominant metabolic disease. Here we investigated eukaryotic cells as alternative systems for heterologous expression of hPPO, as the use of a traditional bacterial-based system failed to produce several clinically relevant hPPO variants. Using bacterially-produced hPPO, we first analyzed the impact of N-terminal tags and various detergent on hPPO yield, and specific activity. Next, the established protocol was used to compare hPPO constructs heterologously expressed in mammalian HEK293T17 and insect Hi5 cells with prokaryotic overexpression. By attaching various fusion partners at the N- and C-termini of hPPO we also evaluated the influence of the size and positioning of fusion partners on expression levels, specific activity, and intracellular targeting of hPPO fusions in mammalian cells. Overall, our results suggest that while enzymatically active hPPO can be heterologously produced in eukaryotic systems, the limited availability of the intracellular FAD co-factor likely negatively influences yields of a correctly folded protein making thus the E.coli a system of choice for recombinant hPPO overproduction. At the same time, PPO overexpression in eukaryotic cells might be preferrable in cases when the effects of post-translational modifications (absent in bacteria) on target protein functions are studied.


Subject(s)
Flavoproteins/biosynthesis , Flavoproteins/isolation & purification , Mitochondrial Proteins/biosynthesis , Mitochondrial Proteins/isolation & purification , Protoporphyrinogen Oxidase/biosynthesis , Protoporphyrinogen Oxidase/isolation & purification , Animals , Cell Line , Escherichia coli/genetics , Flavoproteins/genetics , HEK293 Cells , Humans , Mitochondrial Proteins/genetics , Protoporphyrinogen Oxidase/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Sf9 Cells
14.
Sci Rep ; 11(1): 19500, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34593880

ABSTRACT

Invasive fungal infections mainly affect patients undergoing transplantation, surgery, neoplastic disease, immunocompromised subjects and premature infants, and cause over 1.5 million deaths every year. The most common fungi isolated in invasive diseases are Candida spp., Cryptococcus spp., and Aspergillus spp. and even if four classes of antifungals are available (Azoles, Echinocandins, Polyenes and Pyrimidine analogues), the side effects of drugs and fungal acquired and innate resistance represent the major hurdles to be overcome. Monoclonal antibodies are powerful tools currently used as diagnostic and therapeutic agents in different clinical contexts but not yet developed for the treatment of invasive fungal infections. In this paper we report the development of the first humanized monoclonal antibody specific for ß-1,3 glucans, a vital component of several pathogenic fungi. H5K1 has been tested on C. auris, one of the most urgent threats and resulted efficient both alone and in combination with Caspofungin and Amphotericin B showing an enhancement effect. Our results support further preclinical and clinical developments for the use of H5K1 in the treatment of patients in need.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Fungi/drug effects , Recombinant Fusion Proteins/pharmacology , Animals , Antibodies, Monoclonal, Humanized/genetics , Antibodies, Monoclonal, Humanized/isolation & purification , Antibody Specificity/immunology , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Drug Resistance, Fungal/drug effects , Enzyme-Linked Immunosorbent Assay , Genetic Engineering , Humans , Immunoglobulin Heavy Chains , Immunoglobulin Light Chains/genetics , Mice , Microbial Sensitivity Tests , Phagocytosis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification
15.
Sci Rep ; 11(1): 19411, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34593913

ABSTRACT

A major class of bispecific antibodies (BsAbs) utilizes heterodimeric Fc to produce the native immunoglobulin G (IgG) structure. Because appropriate pairing of heavy and light chains is required, the design of BsAbs produced through recombination or reassembly of two separately-expressed antigen-binding fragments is advantageous. One such method uses intein-mediated protein trans-splicing (IMPTS) to produce an IgG1-based structure. An extra Cys residue is incorporated as a consensus sequence for IMPTS in successful examples, but this may lead to potential destabilization or disturbance of the assay system. In this study, we designed a BsAb linked by IMPTS, without the extra Cys residue. A BsAb binding to both TNFR2 and CD30 was successfully produced. Cleaved side product formation was inevitable, but it was minimized under the optimized conditions. The fine-tuned design is suitable for the production of IgG-like BsAb with high symmetry between the two antigen-binding fragments that is advantageous for screening BsAbs.


Subject(s)
Antibodies, Bispecific/isolation & purification , Immunoglobulin Fab Fragments/immunology , Immunoglobulin G/immunology , Protein Engineering/methods , Recombinant Fusion Proteins/isolation & purification , Humans
16.
J Biochem ; 169(6): 675-692, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34492114

ABSTRACT

Mitochondrial ribosomal small subunit (MRPS) group of proteins is structural constituents of the small subunit of mitoribosomes involved in translation. Recent studies indicate role in tumourigenic process, however, unlike cytosolic ribosomal proteins, knowledge on the role of MRPS proteins in alternate cellular processes is very limited. Mapping protein-protein interactions (PPIs) onto known cellular processes can be a valuable tool to identify novel protein functions. In this study, to identify PPIs of MRPS proteins, we have constructed 31 glutathione-S-transferase (GST)/MRPS fusion clones. GST/MRPS fusion proteins were confirmed by MALDI-TOF analysis. GST pull-downs were performed using eight GST/MRPS proteins (MRPS9, MRPS10, MRPS11, MRPS18B, MRPS31, MRPS33, MRPS38 and MRPS39), GST alone as pull-down control and HEK293 cell lysate as the source for anchor proteins followed by nLC/MS/MS analysis and probable PPIs of eight MRPS proteins were identified. Three PPIs from GST pull-downs and interaction between six MRPS proteins and p53 previously reported in PPI database were validated. The PPI network analysis revealed putative role in cellular processes with implications for tumourigenesis. Gene expression screening of a cancer cell line panel indicated overexpression of MRPS10 and MRPS31 in breast cancer. Co-expression module identification tool analysis of breast cancer gene expression and MRPS10 and MRPS31 PPIs revealed putative role for PPI with acyl-CoA dehydrogenase in fatty acid oxidation process regulated by brain-derived neurotrophic factor signalling pathway.


Subject(s)
Breast Neoplasms/pathology , Mitochondrial Proteins/metabolism , Protein Interaction Maps , Recombinant Fusion Proteins/metabolism , Ribosomal Proteins/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Chromatography, Affinity , Female , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Humans , Mitochondrial Proteins/genetics , Mitochondrial Proteins/isolation & purification , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Ribosomal Proteins/genetics , Ribosomal Proteins/isolation & purification , Tumor Cells, Cultured
17.
Protein Expr Purif ; 188: 105974, 2021 12.
Article in English | MEDLINE | ID: mdl-34520839

ABSTRACT

Human growth hormone (hGH) plays an important role in growth control, growth promotion, cell development, and regulation of numerous metabolic pathways in the human body and has been approved by the U.S. FDA for the treatment of several human dysfunctions. Over-expression of recombinant hGH (rhGH) affords a misfolded form in cytoplasm of Escherichia coli, and the refolding step required to obtain active rhGH greatly affects its production costs. Herein, the cleavable self-aggregating tag (cSAT) scheme was used for the expression and purification of rhGH in E. coli. Four aggregating tags (L6KD/α3-peptide/EFK8/ELK16) successfully drove rhGH into active protein aggregates. After the Mxe GyrA intein-mediated cleavage, 2.8-21.4 µg rhGH/mg wet cell weight was obtained at laboratory scale, of which the L6KD fusion achieved the highest rhGH yield. The further refined rhGH maintained 92% of the bioactivity compared to commercial rhGH. The self-assembling of the aggregating tag might physically separate the hGH polypeptide chains, which in turn was beneficial to its folding into the active form. This study provided a simple and cost-effective approach for active rhGH production, and suggested an opportunity for improve folding of recombinant proteins in E. coli.


Subject(s)
Gene Expression , Human Growth Hormone/genetics , Inteins/genetics , Recombinant Fusion Proteins/genetics , Amino Acid Sequence , Chromatography, Affinity , Chromatography, Gel , Cloning, Molecular , DNA Gyrase/genetics , DNA Gyrase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Human Growth Hormone/biosynthesis , Human Growth Hormone/isolation & purification , Humans , Peptides/genetics , Peptides/metabolism , Protein Aggregates , Protein Folding , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/isolation & purification
18.
Protein Expr Purif ; 188: 105977, 2021 12.
Article in English | MEDLINE | ID: mdl-34547433

ABSTRACT

Homoserine dehydrogenase (HSD), encoded by the hom gene, is a key enzyme in the aspartate pathway, which reversibly catalyzes the conversion of l-aspartate ß-semialdehyde to l-homoserine (l-Hse), using either NAD(H) or NADP(H) as a coenzyme. In this work, we presented the first characterization of the HSD from the symbiotic Polynucleobacter necessaries subsp. necessarius (PnHSD) produced in Escherichia coli. Sequence analysis showed that PnHSD is an ACT domain-containing monofunctional HSD with 436 amnio acid residues. SDS-PAGE and Western blot demonstrated that PnHSD could be overexpressed in E. coli BL21(DE3) cell as a soluble form by using SUMO fusion technique. It could be purified to apparent homogeneity for biochemical characterization. Size-exclusion chromatography revealed that the purified PnHSD has a native molecular mass of ∼160 kDa, indicating a homotetrameric structure. The oxidation activity of PnHSD was studied in this work. Kinetic analysis revealed that PnHSD displayed an up to 1460-fold preference for NAD+ over NADP+, in contrast to its homologs. The purified PnHSD displayed maximal activity at 35 °C and pH 11. Similar to its NAD+-dependent homolog, neither NaCl and KCl activation nor L-Thr inhibition on the enzymatic activity of PnHSD was observed. These results will contribute to a better understanding of the coenzyme specificity of the HSD family and the aspartate pathway of P. necessarius.


Subject(s)
Aspartic Acid/biosynthesis , Bacterial Proteins/genetics , Burkholderiaceae/enzymology , Homoserine Dehydrogenase/genetics , NAD/metabolism , Recombinant Fusion Proteins/genetics , Amino Acid Sequence , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Bacterial Proteins/biosynthesis , Bacterial Proteins/isolation & purification , Burkholderiaceae/chemistry , Burkholderiaceae/genetics , Chromatography, Gel , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Euplotes/microbiology , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Homoserine/metabolism , Homoserine Dehydrogenase/biosynthesis , Homoserine Dehydrogenase/isolation & purification , Kinetics , Molecular Weight , NADP/metabolism , Protein Multimerization , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/isolation & purification , Sequence Alignment , Sequence Homology, Amino Acid , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Symbiosis/physiology
19.
Biotechnol Bioeng ; 118(11): 4159-4167, 2021 11.
Article in English | MEDLINE | ID: mdl-34370304

ABSTRACT

Recombinant proteins are generally fused with solubility enhancer tags to improve the folding and solubility of the target protein of interest. However, the fusion protein strategy usually requires expensive proteases to perform in vitro proteolysis and additional chromatographic steps to obtain tag-free recombinant proteins. Expression systems based on intracellular processing of solubility tags in Escherichia coli, through co-expression of a site-specific protease, simplify the recombinant protein purification process, and promote the screening of molecules that fail to remain soluble after tag removal. High yields of soluble target proteins have already been achieved using these protease co-expression systems. Herein, we review approaches for controlled intracellular processing systems tailored to produce soluble untagged proteins in E. coli. We discuss the different genetic systems available for intracellular processing of recombinant proteins regarding system design features, advantages, and limitations of the various strategies.


Subject(s)
Cloning, Molecular , Endopeptidases/chemistry , Escherichia coli , Gene Expression , Recombinant Fusion Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification
20.
Int J Mol Sci ; 22(12)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204265

ABSTRACT

Human epidermal growth factor receptor 2 (HER-2) is overexpressed in many malignant tumors. The anti-HER2 antibody trastuzumab has been approved for treating HER2-positive early and metastatic breast cancers. Pseudomonas exotoxin A (PE), a bacterial toxin of Pseudomonas aeruginosa, consists of an A-domain with enzymatic activity and a B-domain with cell binding activity. Recombinant immunotoxins comprising the HER2(scFv) single-chain Fv from trastuzumab and the PE24B catalytic fragment of PE display promising cytotoxic effects, but immunotoxins are typically insoluble when expressed in the cytoplasm of Escherichia coli, and thus they require solubilization and refolding. Herein, a recombinant immunotoxin gene was fused with maltose binding protein (MBP) and overexpressed in a soluble form in E. coli. Removal of the MBP yielded stable HER2(scFv)-PE24B at 91% purity; 0.25 mg of pure HER2(scFv)-PE24B was obtained from a 500 mL flask culture. Purified HER2(scFv)-PE24B was tested against four breast cancer cell lines differing in their surface HER2 level. The immunotoxin showed stronger cytotoxicity than HER2(scFv) or PE24B alone. The IC50 values for HER2(scFv)-PE24B were 28.1 ± 2.5 pM (n = 9) and 19 ± 1.4 pM (n = 9) for high HER2-positive cell lines SKBR3 and BT-474, respectively, but its cytotoxicity was lower against MDA-MB-231 and MCF7. Thus, fusion with MBP can facilitate the soluble expression and purification of scFv immunotoxins.


Subject(s)
ADP Ribose Transferases , Antineoplastic Agents, Immunological/pharmacology , Bacterial Toxins , Exotoxins , Immunotoxins/pharmacology , Maltose-Binding Proteins , Receptor, ErbB-2/antagonists & inhibitors , Recombinant Fusion Proteins/pharmacology , Single-Chain Antibodies , Virulence Factors , ADP Ribose Transferases/genetics , Bacterial Toxins/genetics , Cell Line, Tumor , Cell Survival , Dose-Response Relationship, Drug , Escherichia coli/genetics , Escherichia coli/metabolism , Exotoxins/genetics , Gene Expression , Genetic Engineering , Genetic Vectors/genetics , Humans , Immunotoxins/genetics , Immunotoxins/isolation & purification , Maltose-Binding Proteins/genetics , Mass Spectrometry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Single-Chain Antibodies/genetics , Virulence Factors/genetics , Pseudomonas aeruginosa Exotoxin A
SELECTION OF CITATIONS
SEARCH DETAIL
...