Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.083
Filter
1.
J Rehabil Med ; 56: jrm35095, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712968

ABSTRACT

OBJECTIVE: This study aimed to investigate the predictive functional factors influencing the acquisition of basic activities of daily living performance abilities during the early stages of stroke rehabilitation using classification and regression analysis trees. METHODS: The clinical data of 289 stroke patients who underwent rehabilitation during hospitalization (164 males; mean age: 62.2 ± 13.9 years) were retrospectively collected and analysed. The follow-up period between admission and discharge was approximately 6 weeks. Medical records, including demographic characteristics and various functional assessments with item scores, were extracted. The modified Barthel Index on discharge served as the target outcome for analysis. A "good outcome" was defined as a modified Barthel Index score ≥ 75 on discharge, while a modified Barthel Index score < 75 was classified as a "poor outcome." RESULTS: Two classification and regression analysis tree models were developed. The first model, predicting activities of daily living outcomes based on early motor functions, achieved an accuracy of 92.4%. Among patients with a "good outcome", 70.9% exhibited (i) ≥ 4 points in the "sitting-to-standing" category in the motor assessment scale and (ii) 32 points on the Berg Balance Scale score. The second model, predicting activities of daily living outcome based on early cognitive functions, achieved an accuracy of 82.7%. Within the "poor outcome" group, 52.2% had (i) ≤ 21 points in the "visuomotor organization" category of Lowenstein Occupational Therapy Cognitive Assessment, (ii) ≤ 1 point in the "time orientation" category of the Mini Mental State Examination. CONCLUSION: The ability to perform "sitting-to-standing" and visuomotor organization functions at the beginning of rehabilitation emerged as the most significant predictors for achieving successful basic activities of daily living on discharge after stroke.


Subject(s)
Activities of Daily Living , Decision Trees , Stroke Rehabilitation , Humans , Stroke Rehabilitation/methods , Male , Female , Middle Aged , Aged , Retrospective Studies , Stroke/physiopathology , Recovery of Function/physiology , Disability Evaluation , Treatment Outcome , Independent Living
2.
Jt Dis Relat Surg ; 35(2): 448-454, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38727128

ABSTRACT

Several surgical procedures are used to treat dynamic pronation position of the forearm and flexion deformity of the wrist in cerebral palsy. Postoperative results of pronator teres rerouting were explored, while specially designed postoperative physiotherapy and its outcomes were limited. Herein, we present a case in whom the outcomes of electromyographic biofeedback (EMG-BF) training were assessed after pronator teres rerouting and brachioradialis tendon to extensor carpi radialis brevis tendon transfer combined with derotation osteotomy. The peak value increased, while the resting value decreased for the muscles after the intervention. Range of motion, hand function, manual ability, functional independence, and quality of life levels were improved. In conclusion, EMG biofeedback training may have a positive effect on neuromuscular control of pronator teres and brachioradialis. Free use of the upper extremity and improved manual ability positively affect the activity and quality of life of the patients.


Subject(s)
Cerebral Palsy , Muscle, Skeletal , Range of Motion, Articular , Tendon Transfer , Humans , Tendon Transfer/methods , Cerebral Palsy/surgery , Cerebral Palsy/rehabilitation , Cerebral Palsy/physiopathology , Muscle, Skeletal/surgery , Muscle, Skeletal/physiopathology , Male , Forearm/surgery , Electromyography , Quality of Life , Treatment Outcome , Biofeedback, Psychology/methods , Osteotomy/methods , Pronation/physiology , Recovery of Function/physiology
3.
Neurology ; 102(10): e209387, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38701386

ABSTRACT

BACKGROUND AND OBJECTIVES: Motor outcomes after stroke relate to corticospinal tract (CST) damage. The brain leverages surviving neural pathways to compensate for CST damage and mediate motor recovery. Thus, concurrent age-related damage from white matter hyperintensities (WMHs) might affect neurologic capacity for recovery after CST injury. The role of WMHs in post-stroke motor outcomes is unclear. In this study, we evaluated whether WMHs modulate the relationship between CST damage and post-stroke motor outcomes. METHODS: We used data from the multisite ENIGMA Stroke Recovery Working Group with T1 and T2/fluid-attenuated inversion recovery imaging. CST damage was indexed with weighted CST lesion load (CST-LL). WMH volumes were extracted with Freesurfer's SAMSEG. Mixed-effects beta-regression models were fit to test the impact of CST-LL, WMH volume, and their interaction on motor impairment, controlling for age, days after stroke, and stroke volume. RESULTS: A total of 223 individuals were included. WMH volume related to motor impairment above and beyond CST-LL (ß = 0.178, 95% CI 0.025-0.331, p = 0.022). Relationships varied by WMH severity (mild vs moderate-severe). In individuals with mild WMHs, motor impairment related to CST-LL (ß = 0.888, 95% CI 0.604-1.172, p < 0.001) with a CST-LL × WMH interaction (ß = -0.211, 95% CI -0.340 to -0.026, p = 0.026). In individuals with moderate-severe WMHs, motor impairment related to WMH volume (ß = 0.299, 95% CI 0.008-0.590, p = 0.044), but did not significantly relate to CST-LL or a CST-LL × WMH interaction. DISCUSSION: WMHs relate to motor outcomes after stroke and modify relationships between motor impairment and CST damage. WMH-related damage may be under-recognized in stroke research as a factor contributing to variability in motor outcomes. Our findings emphasize the importance of brain structural reserve in motor outcomes after brain injury.


Subject(s)
Pyramidal Tracts , Stroke , White Matter , Humans , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/pathology , Male , Female , Aged , White Matter/diagnostic imaging , White Matter/pathology , Stroke/diagnostic imaging , Stroke/pathology , Stroke/complications , Stroke/physiopathology , Middle Aged , Magnetic Resonance Imaging , Recovery of Function/physiology , Aged, 80 and over
4.
BMC Neurol ; 24(1): 148, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698310

ABSTRACT

BACKGROUND: During episodes of benign paroxysmal positional vertigo (BPPV), individuals with migraine, compared with individuals without migraine, may experience more severe vestibular symptoms because of their hyperexcitable brain structures, more adverse effects on quality of life, and worse recovery processes from BPPV. METHODS: All patients with BPPV were assigned to the migraine group (MG, n = 64) and without migraine group (BPPV w/o MG, n = 64) and completed the Vertigo Symptom Scale (VSS), Vertigo Dizziness Imbalance Symptom Scale (VDI-SS), VDI Health-Related Quality of Life Scale (VDI-HRQoLS), Beck Anxiety Inventory (BAI), and Beck Depression Inventory (BDI) at the time of BPPV diagnosis (baseline) and on the one-month follow-up. Headache Impact Test-6 and Migraine Disability Assessment Scale were used for an assessment of headache. Motion sickness was evaluated based on the statement of each patient as present or absent. RESULTS: Compared with the BPPV w/o MG, the MG had higher VSS scores at baseline [19.5 (10.7) vs. 11.3 (8.5); p < 0.001] and on one-month follow-up [10.9 (9.3) vs. 2.2 (2.7), p < 0.001]; experienced more severe dizziness and imbalance symptoms based on the VDI-SS at baseline (61.9% vs. 77.3%; p < 0.001) and after one month (78.9% vs. 93.7%, p < 0.001); and more significantly impaired quality of life according to the VDI-HRQoLS at baseline (77.4% vs. 91.8%, p < 0.001) and after one month (86.3% vs. 97.6%, p < 0.001). On the one-month follow-up, the subgroups of patients with moderate and severe scores of the BAI were higher in the MG (39.2%, n = 24) than in the BPPV w/o MG (21.8%, n = 14) and the number of patients who had normal scores of the BDI was lower in the MG than in the BPPV w/o MG (67.1% vs. 87.5%, p = 0.038). CONCLUSION: Clinicians are advised to inquire about migraine when evaluating patients with BPPV because it may lead to more intricate and severe clinical presentation. Further studies will be elaborated the genuine nature of the causal relationship between migraine and BPPV.


Subject(s)
Benign Paroxysmal Positional Vertigo , Migraine Disorders , Quality of Life , Humans , Male , Benign Paroxysmal Positional Vertigo/diagnosis , Benign Paroxysmal Positional Vertigo/epidemiology , Benign Paroxysmal Positional Vertigo/complications , Female , Migraine Disorders/diagnosis , Migraine Disorders/epidemiology , Middle Aged , Adult , Quality of Life/psychology , Recovery of Function/physiology , Follow-Up Studies , Dizziness/diagnosis , Dizziness/epidemiology , Aged
5.
Neuron ; 112(10): 1595-1610, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38754372

ABSTRACT

Recovery of consciousness after coma remains one of the most challenging areas for accurate diagnosis and effective therapeutic engagement in the clinical neurosciences. Recovery depends on preservation of neuronal integrity and evolving changes in network function that re-establish environmental responsiveness. It typically occurs in defined steps: it begins with eye opening and unresponsiveness in a vegetative state, then limited recovery of responsiveness characterizes the minimally conscious state, and this is followed by recovery of reliable communication. This review considers several points for novel interventions, for example, in persons with cognitive motor dissociation in whom a hidden cognitive reserve is revealed. Circuit mechanisms underlying restoration of behavioral responsiveness and communication are discussed. An emerging theme is the possibility to rescue latent capacities in partially damaged human networks across time. These opportunities should be exploited for therapeutic engagement to achieve individualized solutions for restoration of communication and environmental interaction across varying levels of recovery.


Subject(s)
Coma , Recovery of Function , Humans , Coma/physiopathology , Coma/therapy , Recovery of Function/physiology , Consciousness/physiology , Persistent Vegetative State/physiopathology , Persistent Vegetative State/rehabilitation
6.
Neuroreport ; 35(9): 549-557, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38739900

ABSTRACT

Neuroinflammation after traumatic brain injury (TBI) exhibits a strong correlation with neurological impairment, which is a crucial target for improving the prognosis of TBI patients. The involvement of CXCL5/CXCR2 signaling in the regulation of neuroinflammation in brain injury models has been documented. Therefore, the effects of CXCL5 on post-TBI neuroinflammation and its potential mechanisms need to be explored. Following TBI, C57BL/6 mice were administered intraperitoneal injections of a CXCL5 neutralizing antibody (Nab-CXCL5) (5 mg/kg, 2 times/day). Subsequently, the effects on neuroinflammation, nerve injury, and neurological function were assessed. Nab-CXCL5 significantly reduced the release of inflammatory factors, inhibited the formation of inflammatory microglia and astrocytes, and reduced the infiltration of peripheral immune cells in TBI mice. Additionally, this intervention led to a reduction in neuronal impairment and facilitated the restoration of sensorimotor abilities, as well as improvements in learning and memory functions. Peripheral administration of the Nab-CXCL5 to TBI mice could suppress neuroinflammation, reduce neurological damage, and improve neurological function. Our data suggest that neutralizing antibodies against CXCL5 (Nab-CXCL5) may be a promising agent for treating TBI.


Subject(s)
Brain Injuries, Traumatic , Chemokine CXCL5 , Mice, Inbred C57BL , Neuroinflammatory Diseases , Recovery of Function , Animals , Brain Injuries, Traumatic/immunology , Brain Injuries, Traumatic/drug therapy , Chemokine CXCL5/metabolism , Neuroinflammatory Diseases/drug therapy , Mice , Male , Recovery of Function/drug effects , Recovery of Function/physiology , Antibodies, Neutralizing/pharmacology , Microglia/drug effects , Microglia/metabolism
7.
PLoS One ; 19(4): e0302008, 2024.
Article in English | MEDLINE | ID: mdl-38603768

ABSTRACT

Malnutrition after stroke may lessen the beneficial effects of rehabilitation on motor recovery through influences on both brain and skeletal muscle. Enriched rehabilitation (ER), a combination of environmental enrichment and forelimb reaching practice, is used preclinically to study recovery of skilled reaching after stroke. However, the chronic food restriction typically used to motivate engagement in reaching practice is a barrier to using ER to investigate interactions between nutritional status and rehabilitation. Thus, our objectives were to determine if a modified ER program comprised of environmental enrichment and skilled reaching practice motivated by a short fast would enhance post-stroke forelimb motor recovery and preserve forelimb muscle size and metabolic fiber type, relative to a group exposed to stroke without ER. At one week after photothrombotic cortical stroke, male, Sprague-Dawley rats were assigned to modified ER or standard care for 2 weeks. Forelimb recovery was assessed in the Montoya staircase and cylinder task before stroke and on days 5-6, 22-23, and 33-34 after stroke. ER failed to improve forelimb function in either task (p > 0.05). Atrophy of extensor digitorum communis (EDC) and triceps brachii long head (TBL) muscles was not evident in the stroke-targeted forelimb on day 35, but the area occupied by hybrid fibers was increased in the EDC muscle (p = 0.038). ER bilaterally increased EDC (p = 0.046), but not TBL, muscle size; EDC muscle fiber type was unchanged by ER. While the modified ER did not promote forelimb motor recovery, it does appear to have utility for studying the role of skeletal muscle plasticity in post-stroke recovery.


Subject(s)
Stroke Rehabilitation , Stroke , Rats , Male , Animals , Humans , Rats, Sprague-Dawley , Recovery of Function/physiology , Forelimb , Muscle, Skeletal , Disease Models, Animal
8.
Trials ; 25(1): 254, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605413

ABSTRACT

BACKGROUND AND PURPOSE: Research to date has lacked definitive evidence to determine whether mirror therapy promotes the recovery of upper extremity function after stroke. Considering that previous studies did not stratify patients based on structural retention, this may be one of the reasons for the negative results obtained in many trials. The goal evaluates the efficacy of TBMT (utilizing an innovatively designed mirror) versus standard occupational therapy for stroke patient's upper limb functionality. METHODS AND ANALYSIS: This single-center randomized controlled trial will involve 50 patients with stroke. All patients will be randomly assigned to either the task-based mirror therapy or the control group. The interventions will be performed 5 days per week for 4 weeks. The primary outcomes will be the mean change in scores on both the FMA-UE and modified Barthel Index (MBI) from baseline to 4 weeks intervention and at 12 weeks follow-up between the two groups and within groups. The other outcomes will include the Action Research Arm Test (ARAT), the Nine Hole Peg Test (9HPT), the Functional Independence Measure, and MRI. DISCUSSION: This trial will not only to establish that task-based mirror therapy (TBMT) could improve the recovery of hand function after stroke but also to explore the underlying mechanisms. We expect that this finding will clarify the brain activation and brain network mechanisms underlying the improvement of hand function with task-oriented mirror therapy and lead to new ideas for stroke hand function rehabilitation. TRIAL REGISTRATION: URL: https://www.chictr.org.cn ; Unique identifier: ChiCTR2300068855. Registered on March 1, 2023.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Mirror Movement Therapy , Hemiplegia/diagnosis , Hemiplegia/etiology , Recovery of Function/physiology , Stroke/diagnosis , Stroke/therapy , Upper Extremity , Stroke Rehabilitation/methods , Treatment Outcome , Randomized Controlled Trials as Topic
9.
J Orthop Surg Res ; 19(1): 270, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689328

ABSTRACT

BACKGROUND: Rotator cuff tears (RCTs) are a common musculoskeletal disorder, and arthroscopic rotator cuff repair (ARCR) is widely performed for tendon repair. Handgrip strength correlates with rotator cuff function; however, whether preoperative grip strength can predict functional outcomes in patients undergoing ARCR remains unknown. This study aimed to investigate the correlation between preoperative grip strength and postoperative shoulder function following ARCR. METHODS: A total of 52 patients with full-thickness repairable RCTs were prospectively enrolled. Baseline parameters, namely patient characteristics and intraoperative findings, were included for analysis. Postoperative shoulder functional outcomes were assessed using the Quick Disabilities of the Arm, Shoulder, and Hand (QDASH) questionnaire and Constant-Murley scores (CMSs). Patients were followed up and evaluated at three and six months after ARCR. The effects of baseline parameters on postoperative outcomes were measured using generalized estimating equations. RESULTS: At three and six months postoperatively, all clinical outcomes evaluated exhibited significant improvement from baseline following ARCR. Within 6 months postoperatively, higher preoperative grip strength was significantly correlated with higher CMSs (ß = 0.470, p = 0.022), whereas increased numbers of total suture anchors were significantly correlated with decreased CMSs (ß = - 4.361, p = 0.03). Higher body mass index was significantly correlated with higher postoperative QDASH scores (ß = 1.561, p = 0.03) during follow-up. CONCLUSIONS: Higher baseline grip strength predicts more favorable postoperative shoulder function following ARCR. A preoperative grip strength test in orthopedic clinics may serve as a predictor for postoperative shoulder functional recovery in patients undergoing ARCR.


Subject(s)
Arthroscopy , Hand Strength , Rotator Cuff Injuries , Humans , Male , Female , Middle Aged , Arthroscopy/methods , Hand Strength/physiology , Rotator Cuff Injuries/surgery , Rotator Cuff Injuries/physiopathology , Aged , Prospective Studies , Preoperative Period , Postoperative Period , Treatment Outcome , Predictive Value of Tests , Recovery of Function/physiology , Rotator Cuff/surgery , Rotator Cuff/physiopathology , Follow-Up Studies , Adult , Shoulder/surgery , Shoulder/physiopathology
10.
Glia ; 72(7): 1259-1272, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38587137

ABSTRACT

After spinal cord injury (SCI), re-establishing cellular homeostasis is critical to optimize functional recovery. Central to that response is PERK signaling, which ultimately initiates a pro-apoptotic response if cellular homeostasis cannot be restored. Oligodendrocyte (OL) loss and white matter damage drive functional consequences and determine recovery potential after thoracic contusive SCI. We examined acute (<48 h post-SCI) and chronic (6 weeks post-SCI) effects of conditionally deleting Perk from OLs prior to SCI. While Perk transcript is expressed in many types of cells in the adult spinal cord, its levels are disproportionately high in OL lineage cells. Deletion of OL-Perk prior to SCI resulted in: (1) enhanced acute phosphorylation of eIF2α, a major PERK substrate and the critical mediator of the integrated stress response (ISR), (2) enhanced acute expression of the downstream ISR genes Atf4, Ddit3/Chop, and Tnfrsf10b/Dr5, (3) reduced acute OL lineage-specific Olig2 mRNA, but not neuronal or astrocytic mRNAs, (4) chronically decreased OL content in the spared white matter at the injury epicenter, (5) impaired hindlimb locomotor recovery, and (6) reduced chronic epicenter white matter sparing. Cultured primary OL precursor cells with reduced PERK expression and activated ER stress response showed: (1) unaffected phosphorylation of eIF2α, (2) enhanced ISR gene induction, and (3) increased cytotoxicity. Therefore, OL-Perk deficiency exacerbates ISR signaling and potentiates white matter damage after SCI. The latter effect is likely mediated by increased loss of Perk-/- OLs.


Subject(s)
Oligodendroglia , Recovery of Function , Spinal Cord Injuries , eIF-2 Kinase , Animals , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/pathology , Oligodendroglia/metabolism , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Recovery of Function/physiology , Mice , Mice, Transgenic , Female , Disease Models, Animal , Mice, Inbred C57BL
11.
J Vestib Res ; 34(2-3): 145-157, 2024.
Article in English | MEDLINE | ID: mdl-38669501

ABSTRACT

BACKGROUND: Individuals after a vestibular schwannoma resection (VSR) experience significant vestibular symptoms that can be provoked with turning. Vestibular rehabilitation assists in recovery of function and symptom relief, however turning response is unknown. OBJECTIVE: Examine peak turning speed response to surgery and rehabilitation. METHODS: Eight participants with a vestibular schwannoma (PwVS) and five healthy controls (HC) participated in this study. Peak turning speed (PTS) was captured with inertial measurement units (IMU) at the head and/or trunk during turning tasks at a pre-operative, post-operative and post-treatment assessment. Vestibular rehabilitation was provided twice weekly for six weeks. Linear mixed models were used to assess change in PTS across time points. RESULTS: PwVS performed slower PTS than HC prior to surgery. PTS was significantly slower post-operatively compared to pre-operative during walking with head turns (B = -61.03, p = 0.004), two-minute walk test (B = -37.33, p = 0.015), 360° turn (B range from 50.05 to -57.4, p < 0.05) and complex turning course (CTC) at the trunk (B = -18.63, p = 0.009). Post-treatment PTS was significantly faster than pre-operative during CTC at the head (B = 18.46, p = 0.014) and trunk (B = 15.99, p = 0.023). CONCLUSION: PwVS may have turning deficits prior to surgical resection. PTS was significantly affected post-operatively, however improved with rehabilitation.


Subject(s)
Neuroma, Acoustic , Recovery of Function , Humans , Neuroma, Acoustic/surgery , Neuroma, Acoustic/rehabilitation , Female , Male , Middle Aged , Adult , Recovery of Function/physiology , Walking/physiology , Aged , Postural Balance/physiology
12.
Pediatr Neurol ; 155: 187-192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677241

ABSTRACT

BACKGROUND: Research on disorders of consciousness in children is scarce and includes disparate and barely comparable participants and assessment instruments and therefore provides inconclusive information on the clinical progress and recovery in this population. This study retrospectively investigated the neurobehavioral progress and the signs of transition between states of consciousness in a group of children admitted to a rehabilitation program either with an unresponsive wakefulness syndrome (UWS) or in a minimally conscious state (MCS). METHODS: Systematic weekly assessments were conducted with the Coma Recovery Scale-Revised (CRS-R) until emergence from MCS, discharge, or death. RESULTS: Twenty-one children, nine admitted with a UWS and 12 admitted in an MCS, were included in the study. Four children with a UWS transitioned to an MCS with a CRS-R of 10 (9.2 to 12.2) by showing visual pursuit, visual fixation, or localization to noxious stimulation. Twelve children emerged from the MCS with a CRS-R of 20.5 (19 to 21.7). Children who emerged from the MCS had had a shorter time postinjury and higher CRS-R at admission, compared with those who did not emerge. CONCLUSIONS: Almost half of the children who were admitted with a UWS transitioned to an MCS, and almost all who were admitted in an MCS emerged from this state. Children who emerged had shorter times since injury and higher scores on the CRS-R at admission, compared with those who did not emerge.


Subject(s)
Consciousness Disorders , Persistent Vegetative State , Humans , Female , Child , Male , Retrospective Studies , Longitudinal Studies , Consciousness Disorders/physiopathology , Consciousness Disorders/diagnosis , Consciousness Disorders/etiology , Child, Preschool , Adolescent , Persistent Vegetative State/physiopathology , Persistent Vegetative State/etiology , Persistent Vegetative State/diagnosis , Recovery of Function/physiology , Coma/physiopathology , Coma/diagnosis , Coma/etiology
13.
J Clin Neurosci ; 123: 130-136, 2024 May.
Article in English | MEDLINE | ID: mdl-38574684

ABSTRACT

BACKGROUND: Aphasia is a language disorder acquired secondary to brain damage. This study aims to evaluate clinical and radiological profile of patients with post stroke aphasia and factors affecting its recovery. METHODS: We conducted a prospective study of patients with first left Middle or Anterior Cerebral Artery infarct or Intracerebral Hemorrhage (ICH) with aphasia admitted within 14 days of stroke onset. Aphasia Quotient (AQ) was assessed at 2 weeks (AQ1) and 3 months (AQ2) using Western Aphasia Battery-Hindi version. Magnetic Resonance Imaging of brain with Diffusion Tensor Imaging (DTI) of bilateral Arcuate Fasciculus (AF) and Corticospinal Tract was done at admission, and stroke volume, Laterality Indices of Fractional Anisotropy (LI-FA), Mean Diffusivity (LI-MD), Radial Diffusivity (LI-RD), Axial Diffusivity (LI-AD) and Apparent Diffusion Coefficient (LI-ADC) were obtained. RESULTS: 36 patients [8 ICH and 28 Acute Ischemic Stroke (AIS)] were included. AQ1 and AQ2 were significantly higher in subcortical stroke than cortical. AQ2 and increase in AQ scores (including its subscores) were significantly higher in ICH than AIS. National Institutes of Health Stroke Scale score at admission and volume of stroke had significant negative correlation with AQ1 and AQ2. Laterality Index of Fractional Anisotropy of Arcuate Fasciculus [LI-FA (AF)] had significant positive correlation with AQ2 and naming score at 3 months. Laterality Index of Mean Diffusivity of Arcuate Fasciculus [LI-MD (AF)] had significant negative correlation with AQ1, AQ2 and all subcomponents of AQ2. Significant positive correlation was seen between improvements in Modified Rankin Scale score and AQ. CONCLUSION: The study shows that DTI can be used to predict severity of aphasia at follow up and recovery in language and motor functions occur in parallel.


Subject(s)
Aphasia , Diffusion Tensor Imaging , Stroke , Humans , Male , Female , Middle Aged , Aphasia/etiology , Aphasia/diagnostic imaging , Prospective Studies , India , Stroke/complications , Stroke/diagnostic imaging , Aged , Follow-Up Studies , Adult , Brain/diagnostic imaging , Brain/pathology , Recovery of Function/physiology
14.
Cell Mol Neurobiol ; 44(1): 39, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649645

ABSTRACT

Spinal-cord injury (SCI) is a severe condition that can lead to limb paralysis and motor dysfunction, and its pathogenesis is not fully understood. The objective of this study was to characterize the differential gene expression and molecular mechanisms in the spinal cord of mice three days after spinal cord injury. By analyzing RNA sequencing data, we identified differentially expressed genes and discovered that the immune system and various metabolic processes play crucial roles in SCI. Additionally, we identified UHRF1 as a key gene that plays a significant role in SCI and found that SCI can be improved by suppressing UHRF1. These findings provide important insights into the molecular mechanisms of SCI and identify potential therapeutic targets that could greatly contribute to the development of new treatment strategies for SCI.


Subject(s)
CCAAT-Enhancer-Binding Proteins , Spinal Cord Injuries , Ubiquitin-Protein Ligases , Animals , Spinal Cord Injuries/physiopathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Motor Activity/physiology , Mice, Inbred C57BL , Recovery of Function/physiology , Female , Spinal Cord/metabolism , Spinal Cord/pathology , Gene Expression Regulation
15.
J Neuroinflammation ; 21(1): 106, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658922

ABSTRACT

BACKGROUND: Intracerebral hemorrhage (ICH) is a devastating neurological disease causing severe sensorimotor dysfunction and cognitive decline, yet there is no effective treatment strategy to alleviate outcomes of these patients. The Mas axis-mediated neuroprotection is involved in the pathology of various neurological diseases, however, the role of the Mas receptor in the setting of ICH remains to be elucidated. METHODS: C57BL/6 mice were used to establish the ICH model by injection of collagenase into mice striatum. The Mas receptor agonist AVE0991 was administered intranasally (0.9 mg/kg) after ICH. Using a combination of behavioral tests, Western blots, immunofluorescence staining, hematoma volume, brain edema, quantitative-PCR, TUNEL staining, Fluoro-Jade C staining, Nissl staining, and pharmacological methods, we examined the impact of intranasal application of AVE0991 on hematoma absorption and neurological outcomes following ICH and investigated the underlying mechanism. RESULTS: Mas receptor was found to be significantly expressed in activated microglia/macrophages, and the peak expression of Mas receptor in microglia/macrophages was observed at approximately 3-5 days, followed by a subsequent decline. Activation of Mas by AVE0991 post-treatment promoted hematoma absorption, reduced brain edema, and improved both short- and long-term neurological functions in ICH mice. Moreover, AVE0991 treatment effectively attenuated neuronal apoptosis, inhibited neutrophil infiltration, and reduced the release of inflammatory cytokines in perihematomal areas after ICH. Mechanistically, AVE0991 post-treatment significantly promoted the transformation of microglia/macrophages towards an anti-inflammatory, phagocytic, and reparative phenotype, and this functional phenotypic transition of microglia/macrophages by Mas activation was abolished by both Mas inhibitor A779 and Nrf2 inhibitor ML385. Furthermore, hematoma clearance and neuroprotective effects of AVE0991 treatment were reversed after microglia depletion in ICH. CONCLUSIONS: Mas activation can promote hematoma absorption, ameliorate neurological deficits, alleviate neuron apoptosis, reduced neuroinflammation, and regulate the function and phenotype of microglia/macrophages via Akt/Nrf2 signaling pathway after ICH. Thus, intranasal application of Mas agonist ACE0991 may provide promising strategy for clinical treatment of ICH patients.


Subject(s)
Hematoma , Hemorrhagic Stroke , Mice, Inbred C57BL , Receptors, G-Protein-Coupled , Recovery of Function , Animals , Mice , Hematoma/drug therapy , Hematoma/pathology , Hematoma/metabolism , Male , Hemorrhagic Stroke/pathology , Hemorrhagic Stroke/drug therapy , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Recovery of Function/drug effects , Recovery of Function/physiology , Proto-Oncogene Proteins/metabolism , Brain Edema/etiology , Brain Edema/metabolism , Brain Edema/drug therapy , Microglia/drug effects , Microglia/metabolism
16.
J Neurophysiol ; 131(5): 865-871, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38568478

ABSTRACT

Motor disturbances predominantly characterize hypoxic-ischemic encephalopathy (HIE). Among its intervention methods, environmental enrichment (EE) is strictly considered a form of sensory intervention. However, limited research uses EE as a single sensory input intervention to validate outcomes postintervention. A Sprague-Dawley rat model subjected to left common carotid artery ligation and exposure to oxygen-hypoxic conditions is used in this study. EE was achieved by enhancing the recreational and stress-relief items within the cage, increasing the duration of sunlight, colorful items exposure, and introducing background music. JZL184 (JZL) was administered as neuroprotective drugs. EE was performed 21 days postoperatively and the rats were randomly assigned to the standard environment and EE groups, the two groups were redivided into control, JZL, and vehicle injection subgroups. The Western blotting and behavior test indicated that EE and JZL injections were efficacious in promoting cognitive function in rats following HIE. In addition, the motor function performance in the EE-alone intervention group and the JZL-alone group after HIE was significantly improved compared with the control group. The combined EE and JZL intervention group exhibited even more pronounced improvements in these performances. EE may enhance motor function through sensory input different from the direct neuroprotective effect of pharmacological treatment.NEW & NOTEWORTHY Rarely does literature assess motor function, even though it is common after hypoxia ischemic encephalopathy (HIE). Previously used environmental enrichment (EE) components have not been solely used as sensory inputs. Physical factors were minimized in our study to observe the effects of purely sensory inputs.


Subject(s)
Hypoxia-Ischemia, Brain , Rats, Sprague-Dawley , Animals , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/physiopathology , Rats , Disease Models, Animal , Neuroprotective Agents/pharmacology , Male , Environment , Recovery of Function/physiology , Motor Activity/physiology
17.
Hand Clin ; 40(2): 259-267, 2024 May.
Article in English | MEDLINE | ID: mdl-38553097

ABSTRACT

Traumatic brachial plexus injury is the most common indication for functional free muscle transfer, and elbow flexion recovery is the functional target, followed by shoulder stability and hand reanimation. In this article, we provide a literature review of functional free muscle transfer (FFMT) for adult traumatic brachial plexus injuries and the surgical technical recommendations to achieve the best functional results with FFMT for adult traumatic brachial plexus injuries.


Subject(s)
Brachial Plexus Neuropathies , Brachial Plexus , Elbow Joint , Nerve Transfer , Adult , Humans , Brachial Plexus Neuropathies/surgery , Elbow Joint/surgery , Range of Motion, Articular/physiology , Recovery of Function/physiology , Brachial Plexus/surgery , Brachial Plexus/injuries , Muscles , Nerve Transfer/methods , Treatment Outcome
18.
Neuroscience ; 545: 16-30, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38431041

ABSTRACT

Neuregulin receptor degradation protein 1 (Nrdp1) is a ring finger E3 ubiquitin ligase involved in some inflammation through ubiquitination, including macrophage polarization following cerebral hemorrhage. However, there is limited understanding regarding the mechanisms through which Nrdp1 modulates macrophage polarization and the potential impact of this modulation on neurological function. Using stereotactic injection and adenoviral transfection techniques, the corresponding animal models were constructed through injecting adenovirus, saline, or blood into the mouse striatum at different periods of time in this research. The alteration in the ratio of various M1/M2 phenotype-associated markers (e.g., CD86, CD206, IL-6, IL-10, etc.) was evaluated through immunohistochemistry, immunofluorescence, western blotting, and elisa assays. Additionally, neurological function scores and behavioral tests were utilized to evaluate changes in neurological function in mice after cerebral hemorrhage. Our results show that overexpression of Nrdp1 promotes the expression of a variety of M2 macrophage-associated markers and enhance transcriptional activity of arginase-1 (Arg1) protein through ubiquitination for early regulation M2 macrophage polarization. Additionally, Nrdp1 promotes hematoma absorption, increases IL-10 expression, inhibits inducible nitric oxide synthase (iNOS), IL-6, and TNF-α production, alleviates neurological impairment and brain edema, and accelerates functional recovery. These findings suggest that modulating macrophage polarization through Nrdp1 could be a therapeutic strategy for neurofunctional impairment in cerebral hemorrhage.


Subject(s)
Cerebral Hemorrhage , Macrophages , Recovery of Function , Ubiquitin-Protein Ligases , Animals , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Macrophages/metabolism , Male , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice , Recovery of Function/physiology , Mice, Inbred C57BL , Arginase/metabolism , Arginase/genetics , Phenotype , Disease Models, Animal , Ubiquitination , Macrophage Activation/physiology
19.
Brain Inj ; 38(7): 559-568, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38469745

ABSTRACT

OBJECTIVE: To evaluate the effects of Lower Extremity - Constraint Induced Movement Therapy on gait function and balance in chronic hemiparetic patients. METHODS: Randomized, controlled, single-blinded study. We recruited chronic post stroke patients and allocated them to Lower Extremity - Constraint Induced Movement Tharapy (LE-CIMT) or Control Group. The LE-CIMT group received this protocol 2.5 hour/day for 15 followed days, including: 1) intensive supervised training, 2) use of shaping as a strategy for motor training, and 3) application of a transfer package. The control group received conventional physiotherapy for 2.5 hours/day for 15 followed days. Outcomes were assessed at baseline, after the interventions, and after 6 months, through 6-minute walk test and Mini-Balance Evaluation Systems Test; 10-meter walk test, Timed Up and Go, 3-D gait analysis, and Lower Extremity - Motor Activity Log. RESULTS: LE-CIMT was superior on the Assistance and confidence subscale of Lower Extremity - Motor Activity Log, Mini-BESTest and 6-minute walk test. The effect size for all outcomes was small when comparing both groups. LE-CIMT showed clinically significant differences in daily activities, balance, and gait capacity, with no clinically significant difference for spatiotemporal parameters. CONCLUSION: The LE-CIMT protocol had positive outcomes on balance, performance, and confidence perception.


Subject(s)
Lower Extremity , Postural Balance , Stroke Rehabilitation , Stroke , Humans , Male , Female , Middle Aged , Stroke Rehabilitation/methods , Postural Balance/physiology , Stroke/complications , Stroke/physiopathology , Aged , Single-Blind Method , Lower Extremity/physiopathology , Treatment Outcome , Gait/physiology , Exercise Therapy/methods , Recovery of Function/physiology , Gait Disorders, Neurologic/rehabilitation , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/physiopathology , Adult , Chronic Disease
20.
Brain Inj ; 38(7): 574-582, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38511887

ABSTRACT

OBJECTIVE: We examined post-concussion symptom presentation, exercise, and sleep among pediatric athletes who sustained concussion during the school year vs. summer months. METHODS: We evaluated athletes 6-18 years old within 21-days of concussion. They reported symptoms (Health and Behavior Inventory), with cognitive/somatic domain sub-scores calculated, and indicated if they had exercised or experienced sleep problems since injury. We grouped patients by injury season: summer months (June-August) vs. school year (September-May). RESULTS: 350 patients (14.4 ± 2.4 years old; 37% female; initial visit 8.8 ± 5.3 days post-concussion) were seen for care: 24% sustained a concussion during summer months, 76% during the school year. Lower cognitive (median = 7 [IQR = 1, 15] vs. 9.5 [4, 17]; p = 0.01), but not somatic (7 [2.5, 11] vs. 8 [4, 13]; p = 0.06), HBI scores were observed for patients injured during the summer. Groups were similar in proportion exercising (16% vs 17%) and endorsing sleep problems (29% vs 31%). After adjustments, sustaining a concussion during the summer predicted total (ß=-3.43; 95%CI = -6.50, -0.36; p = 0.029) and cognitive (ß = -2.29; 95%CI = -4.22, -0.36; p = 0.02), but not somatic (ß=-1.46; 95%CI = -2.84, -0.08; p = 0.04), symptom severity. CONCLUSION: Pediatric patients with concussion may present with greater cognitive symptoms during the school year, compared to summer months.


Subject(s)
Athletic Injuries , Brain Concussion , Schools , Seasons , Humans , Female , Male , Adolescent , Child , Brain Concussion/complications , Brain Concussion/diagnosis , Athletic Injuries/complications , Athletes , Recovery of Function/physiology , Post-Concussion Syndrome/diagnosis , Post-Concussion Syndrome/etiology , Neuropsychological Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...