ABSTRACT
Alongside the concerns of waste management, plastic production represents a future problem for managing greenhouse gas emissions. Advanced recycling and bio-based production are paramount to face this challenge. The sustainability of bio-based polyethylene (bioPE) depends on the feedstock, avoiding stress on natural resources. This work discusses Brazil's potential to meet future global bioPE demand by 2050, using sugarcane as feedstock and considering environmental sustainability for production expansion. From the assessed 35.6 Mha, 3.55 Mha would be exempt from trade-offs related to land use change (dLUC), biodiversity, and water availability. The scenario with the highest circularity efficiency would require 22.2 Mha to meet the global demand, which can be accommodated in areas with positive impacts in carbon stocks, neutral impacts in water availability, and medium impacts on biodiversity. Here, we show that dropping demand is essential to avoid trade-offs and help consolidate bioPE as a sustainable alternative for future net-zero strategies.
Subject(s)
Biodiversity , Conservation of Natural Resources , Brazil , Polyethylene , Saccharum , Recycling , Greenhouse Gases , Plastics , Waste Management/methods , Sustainable DevelopmentABSTRACT
Alternatives to address the ocean plastic crisis have been a hot topic in scientific literature, although a systemic approach to assess their effectiveness and identify bottlenecks is still lacking. To contribute to discussions on this topic, this study aims to conduct a literature review on current scientific information regarding management strategies for marine plastic pollution. The PRISMA method was used to select the most relevant articles from the Scopus® database, resulting in a sample of 176 articles after applying exclusion criteria for full-text evaluation. Unlike other literature review studies, Odum's Macroscope is used here to develop a model that provides a systemic view of the plastic crisis on a large scale, encompassing various compartments and their interactions. Specifically, eight compartments are identified: industry, consumers, waste collection & management, freshwater systems, fisheries, aquaculture and shipping, marine ecosystems, marine plastic collection and recycling, and life cycle. Each piece of literature reviewed is categorized into one of these compartments and discussed accordingly. The highlights of the results indicate that: (i) waste collection & management and freshwater systems, which are primary pathways for plastic litter reaching the ocean, have been relatively under-investigated compared to other compartments. (ii) Most studies originate from developed countries, raising doubts about the effectiveness of management proposals in underdeveloped countries. (ii) Existing strategies for collecting and recycling marine litter are unlikely to be implemented at a large scale due to operational obstacles, thus offering insufficient mitigation for the plastic crisis. (iv) The development of new biomaterials has proven mostly ineffective and harmful. (v) Alternatives management for microplastic pollution are still in their infancy, resulting in scarce information across all compartments. (vi) No studies focus on the origin of the plastic issue, which lies in the petrochemical industry. From a general perspective, the literature indicates that there is no one-size-fits-all management strategy to the plastic crisis, and the available options are often scattered and disconnected, making a systemic approach essential for studying such a transboundary issue. While efforts exist, stakeholders must act to effectively address the problem, or at least make meaningful progress. The marine plastic crisis operates systemically, analogous to the climate crisis, both stemming from human dependence on fossil fuels. Similar to achieving carbon neutrality, designing a globally sustainable economy should prioritize achieving plastic neutrality as a core component.
Subject(s)
Plastics , Waste Management/methods , Recycling , Water Pollutants, Chemical/analysis , Oceans and Seas , Environmental Monitoring/methods , Ecosystem , Water PollutionABSTRACT
Waste is the materials left over after the processing of ores. Significant disasters involving waste disposal structures have occurred in Brazil in recent years and caused severe damage by contaminating soil, rivers and coastal areas, destroying native fauna and flora, interrupting the water supply and compromising its potability, putting the population's health, livelihoods and economy at risk, as well as causing 289 irreparable human deaths. Regulatory laws have become stricter, and since 2019, after the tailings dam tragedies occurred in 2015 and 2019 in Mariana and Brumadinho, in Minas Gerais, the operation of upstream-raised tailings dams has been prohibited in Brazil. In 2022, a waste slide from a sterile pile at the Pau Branco Mine in Nova Lima promoted a dike overflow. There was the death of five people whose car was buried by a landslide on a hillside. New strategies and technologies, such as reprocessing and recycling, can be tested to ascertain whether they can help improve practices in tailings management. Indeed, mining companies' corporate responsibility and sustainability practices need to be evaluated to verify whether they better match expectations. On the other hand, more specific and detailed regulations and resolutions are required to ensure the safe monitoring and management of sterile waste piles. This paper presents a review of the facts, a discussion of the literature (mainly on recent tailings dam disasters), the current situation of mining-containing waste structures in Brazil, a brief sustainability analysis and perspectives aimed at preventing/minimising catastrophes in the future.
Subject(s)
Mining , Brazil , Waste Management/methods , Recycling , HumansABSTRACT
Polyethylene, one of the most used petroleum-derived polymers, causes serious environmental pollution. The ability of Pleurotus ostreatus to degrade UV-treated and untreated recycled and unused (new) low-density polyethylene (LDPE) films was studied. We determined the fungal biomass production, enzyme production, and enzyme yield. Changes in the chemical structure and surface morphology of the LDPE after fungal growth were analyzed using FTIR spectroscopy and SEM. Functional group indices and contact angles were also evaluated. In general, the highest Lac (6013 U/L), LiP (2432 U/L), MnP (995 U/L) and UP (6671 U/L) activities were observed in irradiated recycled LDPE (IrRPE). The contact angle of all samples was negatively correlated with fermentation time; the smaller the contact angle, the longer the fermentation time, indicating effective biodegradation. The IrRPE samples exhibited the smallest contact angle (49°) at 4 weeks, and the samples were fragmented (into two pieces) at 5 weeks. This fungus could degrade unused (new) LDPE significantly within 6 weeks. The biodegradation of LDPE proceeded faster in recycled than in unused samples, which can be enhanced by exposing LDPE to UV radiation. Enzymatic production during fungal growth suggest that LDPE degradation is initiated by laccase (Lac) followed by lignin peroxidase (LiP), whereas manganese peroxidase (MnP) and unspecific peroxygenase (UP) are involved in the final degradation process. This is the first experimental study on the fungal growth and its main enzymes involved in LDPE biodegradation. This fungus has great promise as a safe, efficient, and environmentally friendly organism capable of degrading LDPE.
Subject(s)
Biodegradation, Environmental , Laccase , Pleurotus , Polyethylene , Ultraviolet Rays , Pleurotus/growth & development , Pleurotus/metabolism , Polyethylene/chemistry , Polyethylene/metabolism , Laccase/metabolism , Fermentation , Recycling , Biomass , Peroxidases/metabolism , Spectroscopy, Fourier Transform InfraredABSTRACT
In this study, the generation of domestic waste electrical and electronic equipment (WEEE) and waste printed circuit board (WPCB) were estimated, from 2015 to 2030. Based on the number of EEE put on the Brazilian market, the possession rate in the Brazilian households and obsolescence amounts of five EEE types were estimated using time series. The results show that, between 2015 and 2030, the quantity of WEEE generated per year will increase from 131.87 kt to 195.22 kt. In this period, WPCB generation will stay around 10% of WEEE generation. Additionally, this study shows that the urban mining potential of the materials recoverable from WPCB can be an important revenue source, with environmental benefits deriving from energy savings and a reduction in CO2 emissions. The results of this study provide a quantitative basis that may help decision makers develop strategic policies for WEEE management, considering material circularity.
Subject(s)
Electronic Waste , Metals , Brazil , RecyclingABSTRACT
Healthcare waste management is a critical aspect of public health and environmental protection, particularly in establishments such as dental clinics. This study examined the dental clinic waste (DCW) management processes in clinics within the city of Belo Horizonte, Brazil. Utilizing data from Healthcare Waste Management Plans (HCWMP) provided by the Urban Cleaning Superintendence, the study investigated waste generation, segregation, storage, collection, treatment, and final disposal practices. The results revealed that hazardous DCW represented a significant portion (26.5 %) of waste generated in dental clinics, exceeding the World Health Organization's recommended threshold. Biological waste (22.9 %), mainly consisting of cotton, gauze, and gloves contaminated with blood or body fluids, was the most generated hazardous waste group, followed by chemical (2.2 %) and sharps waste (1.3 %). Incineration was the predominant treatment method for hazardous DCW, raising concerns about environmental impacts and greenhouse gas emissions. Non-hazardous waste, primarily destined for landfills, had limited recycling rates (2.4 %), emphasizing the need for improved waste management strategies to minimize environmental impacts and increase circular economy. Challenges in DCW management included inadequate segregation practices, limited recycling initiatives, and incomplete HCWMPs lacking descriptions of waste management beyond establishment boundaries. Addressing these challenges requires comprehensive training programs, strengthened regulations, and increased environmental awareness among healthcare professionals. In conclusion, improving DCW management in dental clinics is crucial for mitigating occupational and environmental risks. Collective efforts are needed to enhance waste segregation, promote recycling, and ensure compliance with regulations, ultimately safeguarding public health and the environment.
Subject(s)
Dental Clinics , Hazardous Waste , Medical Waste Disposal , Brazil , Medical Waste Disposal/methods , Recycling/methods , Waste Management/methods , Dental Waste/analysis , Incineration , HumansABSTRACT
The concrete industry is a significant consumer of drinking water and natural aggregates, such as sand and gravel. However, the scarcity of water and aggregate resources and the challenges associated with the disposal of construction and demolition waste prompted the exploration of alternative materials. This study investigates the feasibility of incorporating secondary treated wastewater from UASB reactors followed by trickling filters and mixed recycled aggregates as potential alternatives. To assess the viability of these alternatives, the study considered the replacement of 100% potable water with treated wastewater, as well as varying proportions of recycled gravel (20, 40, 60, 80, and 100%) and recycled sand (10, 20, 30, 40, and 100%). Physical and mechanical properties were negatively affected, but it was possible to reach compressive results over 40 MPa and splitting tensile strength over 4 MPa for almost all mixes. Regarding physical properties, the use of alternative materials caused poorer outcomes for density, water absorption, and air-void ratio. The limited magnitude of these detrimental effects indicates the potential of manufacturing concrete with the addition of combined treated wastewater and recycled aggregate as a viable strategy while enhancing reuse practices.
Subject(s)
Construction Materials , Recycling , Wastewater , Recycling/methods , Wastewater/chemistry , Waste Disposal, Fluid/methods , Water Purification/methodsABSTRACT
Photocatalytic membranes are a promising technology for water and wastewater treatment. Towards circular economy, extending the lifetime of reverse osmosis (RO) membranes for as long as possible is extremely important, due to the great amount of RO modules discarded every year around the world. Therefore, in the present study, photocatalytic membranes made of recycled post-lifespan RO membrane (polyamide thin-film composite), TiO2 nanoparticles and graphene oxide are used in the treatment tertiary-treated domestic wastewater to remove trace organic compounds (TrOCs). The inclusion of dopamine throughout the surface modification process enhanced the stability of the membranes to be used as long as 10 months of operation. We investigated TrOCs removal by the membrane itself and in combination with UV-C and visible light by LED. The best results were obtained with integrated membrane UV-C system at pH 9, with considerable reductions of diclofenac (92%) and antipyrine (87%). Changes in effluent pH demonstrated an improvement in the attenuation of TrOCs concentration at higher pHs. By modifying membranes with nanocomposites, an increase in membrane hydrophilicity (4° contact angle reduction) was demonstrated. The effect of the lamp position on the light fluence that reaches the membrane was assessed, and greater values were found in the middle of the membrane, providing parameters for process optimization (0.29 ± 0.10 mW cm-2 at the center of the membrane and 0.07 ± 0.03 mW cm-2 at the right and left extremities). Photocatalytic recycled TiO2-GO membranes have shown great performance to remove TrOCs and extend membrane lifespan, as sustainable technology to treat wastewater.
Subject(s)
Graphite , Membranes, Artificial , Titanium , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Water Purification , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Wastewater/chemistry , Graphite/chemistry , Waste Disposal, Fluid/methods , Catalysis , Water Purification/methods , Organic Chemicals/chemistry , Recycling/methods , Ultraviolet Rays , OsmosisABSTRACT
Printed circuit boards, which make up part of waste from electrical and electronic equipment, contain elements that can be economically reused, such as copper, silver, gold, and nickel, as well as metals that are harmful to the environment and health, such as lead, mercury, and cadmium. Thus, through recycling this scrap, materials that would otherwise be discarded can be reinserted as secondary raw materials to produce new consumer goods through urban mining. In this context, the synthesis of nanoparticles shows promise as it allows the reinsertion of these materials in the manufacture of new products. Therefore, this study used obsolete computer motherboards as a secondary material to obtain copper to produce nanoparticles of this metal. From a solution based on the leach liquor of this scrap, a purification route using solvent extraction was defined and applied to the real leach liquor. Applying the hydroxyoxime extractant at a dilution of 20% (v/v) in kerosene, A/O of 1/1, 298 K, and 0.25 h of contact during extraction, and stripping in H2SO4 (2 M), 298 K, 0.25 h, W/O ratio of 3/1, and two theoretical countercurrent stages, a solution containing more than 95% of the copper in the leach liquor could be obtained with less than 1% of contaminants. From this purified liquor, nanoparticles containing copper and metallic copper oxides and hydroxides were produced, with an average size of 84 nm, at pH 11, 3 h of hot stirring, volume of 0.015 L of ascorbic acid (0.50 M) and 0.015 L of precursor solution (0.03 M Cu), and temperature (343 K).
Subject(s)
Copper , Solvents , Copper/chemistry , Solvents/chemistry , Recycling , Metal Nanoparticles/chemistry , Electronic Waste , Nanoparticles/chemistryABSTRACT
Water treatment plants (WTPs) produce thousands of tons of sludge annually, which is destined for landfill disposal, an environmentally and economically impractical alternative. Chemical, mineralogical, and morphological characterization besides environmental classification has been performed for WTP sludge and it was evaluated application potential in building materials, from a literature review. The characterization was carried out by X-ray fluorescence spectrometry, X-ray diffraction, scanning electron microscopy analysis, and leaching and solubilization tests. The results show that the presence of activated charcoal residues from water treatment in one type of sludge was of little relevance for changes in the properties of the waste. Both sludges have a wide range of particle sizes, consisting mainly of silica, aluminum and iron oxides, as well as kaolinite, quartz, and iron minerals. Special attention must be paid to the solubilization of metallic contaminants to avoid contamination risks and order to make the application safer and more effective, it is necessary to study deeply ways to inert the WTP sludge. The sludges studied have a high potential for application in ceramic products, mortars, geopolymers and concrete paving stones. Depending on the type of building material, different contents of sludge in natural or calcined state can be incorporated.
Subject(s)
Construction Materials , Sewage , Construction Materials/analysis , Sewage/chemistry , Water Purification/methods , Recycling/methods , X-Ray Diffraction , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Waste Disposal, Fluid/methodsABSTRACT
Population growth has driven an increased demand for solid construction materials, leading to higher amounts of construction and demolition waste (C&DW). Efficient strategies to manage this waste include reduction, reuse, and recycling. Technosols-soils engineered from recycled waste-can potentially help with environmental challenges. However, there is a critical need to explore the potential of Technosols constructed with C&DW for land reclamation, through the growth of native vegetation. The objective of this study was to investigate this potential by studying two Brazilian native tree species (Guazuma ulmifolia and Piptadenia gonoacantha). Technosols were created using C&DW, with and without organic compost and a liquid biofertilizer. A soil health index (SHI) was applied to evaluate the soil quality regarding physical, chemical, and biological indicators of Technosols compared to a control soil (Ferralsol). The results showed that P. gonoacantha plants presented the same height and total biomass in all treatments, while G. ulmifolia plants exhibited greater height and total biomass when grown in Technosols. The enhanced plant development in the Technosols was primarily associated with higher cation exchangeable capacity and nutrients concentration in plant tissues. Technosols with added compost provided higher fertility and total organic carbon. Additionally, Technosols presented higher SHI (â¼0.68) compared to control (â¼0.38) for both studied species. Our experiment reveals that construction and demolition waste (C&DW) have significant potential to form healthy Technosols capable of supporting the growth of native Brazilian trees. This approach offers a promising alternative for addressing C&DW disposal challenges while serving as a nature-based solution for land reclamation.
Subject(s)
Construction Materials , Recycling , Soil , Soil/chemistry , Recycling/methods , Brazil , Composting/methods , Biomass , Waste Management/methods , Trees , Industrial WasteABSTRACT
The increased production of polystyrene waste has led to the need to find efficient ways to dispose of it. One possibility is the use of solid waste to produce filter media by the electrospinning technique. The aim of this work was to develop an ultra-fast electrospinning process applied to recycled polystyrene, with statistical evaluation of the influence of polymeric solution parameters (polymer concentration and percentage of DL-limonene) and process variables (flow rate, voltage, and type of support) on nanoparticle collection efficiency, air permeability, and fiber diameter. An extensive characterization of the materials and evaluation of the morphology of the fibers was also carried out. It was found that recycled expanded polystyrene could be used in electrospinning to produce polymeric membranes. The optimized condition that resulted in the highest nanoparticle collection efficiency was a polymer concentration of 13.5%, percentage of DL-limonene of 50%, voltage of 25 kV, and flow rate of 1.2 mL/h, resulting in values of 99.97 ± 0.01%, 2.6 ± 0.5 × 10-13 m2, 0.19 Pa-1, and 708 ± 176 nm for the collection efficiency of nanoparticles in the range from 6.38 to 232.9 nm, permeability, quality factor, and mean fiber diameter, respectively. All the parameters were found to influence collection efficiency and fiber diameter. The use of DL-limonene, a natural solvent, provided benefits including increased collection efficiency and decreased fiber size. In addition, the electrostatic filtration mechanism was evaluated using the presence of a copper grid as a support for the nanofibers. The findings demonstrated that an electrospinning time of only 5 min was sufficient to obtain filters with high collection efficiencies and low pressure drops, opening perspectives for the application of polystyrene waste in the development of materials with excellent characteristics for application in the area of atmospheric pollution mitigation.
Subject(s)
Filtration , Nanoparticles , Polystyrenes , Polystyrenes/chemistry , Nanoparticles/chemistry , Filtration/methods , Membranes, Artificial , Polymers/chemistry , Recycling , PermeabilityABSTRACT
Alum sludge (AS) is a by-product generated from drinking water treatment and produced in large amounts around the world. Its chemical composition makes this waste an emerging alternative source of silicon and aluminum for aluminosilicates or zeolite material production, which can add value to residues and contribute to the circular economy process on a global scale. In this sense, and considering the scarcity of information about AS, this review shows data collection about AS in different countries, including generation, chemical composition, and disposal information. The reuse of AS is discussed based on circular economy and the environmental gains derived from such approaches are highlighted, including the possibility of utilization with other residues (e.g., ash, bioproducts, etc). Moreover, this review shows and discusses the benefits and challenges of AS reuse in the synthesis process and how it can be a sustainable raw material for aluminosilicates and zeolite synthesis. The most common conditions (conventional or non-conventional) in zeolite synthesis from AS are mentioned and advantages, limitations and trends are discussed. The discussions and data presented can improve the AS management and reuse legislations, which certainly will collaborate with sustainable AS use and circular economy processes.
Subject(s)
Alum Compounds , Aluminum Silicates , Recycling , Sewage , Water Purification , Zeolites , Zeolites/chemistry , Aluminum Silicates/chemistry , Alum Compounds/chemistry , Water Purification/methods , Recycling/methods , Waste Disposal, Fluid/methodsABSTRACT
Costa Rica is at the forefront of environmental conservation in Central America, with its focus on sustainability and green practices. Building on this foundation, the country joins a cohort of middle-income developing countries that have set forth ambitious goals to eliminate plastic pollution and become plastics-free. Recycling remains one of the most effective ways of removing plastic waste from the environment. Although GIS has been utilized in environmental research, its use is still expanding in developing countries of the Global South. These countries are experiencing unprecedented adverse climate and ecological impacts while also pursuing fundamental socioeconomic growth. The application of more cost-effective and strategic technological solutions, as well as data-driven decision-making, could fast-track the achievement of their urgent environmental goals. Using Geographic Information Systems (GIS) analysis, this study applies hot spot, location-allocation, and time-distance measures to examine Costa Rica's capacity to recycle plastic waste. Focusing specifically on availability and the public's access to recycling facilities, this article offers insights into the resource constraints and evolution of plastics governance in developing countries with environmentally-focused priorities. The findings of this study suggest that while Costa Rica is implementing progressive plastics regulatory policies, the ability to achieve plastics-free status is hampered by shortfalls in the number and distribution of recycling facilities and the public's access to recycling services. Expanding recycling infrastructure, including transportation, and adopting a less canton-centric waste administration system could contribute to resolving these challenges. This study contributes to discourses on global plastics governance and environmental change management in the Global South.
Subject(s)
Environmental Pollution , Geographic Information Systems , Plastics , Recycling , Costa Rica , Plastics/analysis , Environmental Pollution/statistics & numerical data , Spatial Analysis , Conservation of Natural Resources/methods , Environmental MonitoringABSTRACT
The new technology of microbially induced calcium carbonate precipitation (MICP) has been applied in construction materials as a strategy to enhance their properties. In pursuit of solutions that are more localized and tailored to the study's target, this work focused on isolating and selecting bacteria capable of producing CaCO3 for posterior application in concrete aggregates. First, eleven bacterial isolates were obtained from aggregates and identified as genera Bacillus, Lysinibacillus, Exiguobacterium, and Micrococcus. Then, the strains were compared based on the quantity and nature of calcium carbonate they produced using thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy with energy dispersive spectroscopy. Bacillus sp. dominated the cultured isolates and, along with Lysinibacillus sp., exhibited the highest CaCO3 conversion (up to 80%). On the other hand, Exiguobacterium and Micrococcus genera showed the poor ability to MICP (21.3 and 20.3%, respectively). Calcite and vaterite were the dominant carbonate polymorphs, with varying proportions. Concrete aggregates have proven to be a source of microorganisms capable of producing stable calcium carbonates with a high conversion rate. This indicates the feasibility of using microorganisms derived from local sources for application in construction materials as a sustainable way to enhance their characteristics.
Subject(s)
Calcium Carbonate , Calcium Carbonate/chemistry , Bacteria/metabolism , Bacillus/metabolism , Construction Materials/microbiology , Recycling , Microscopy, Electron, Scanning , X-Ray DiffractionABSTRACT
Objetivo: Desenvolver um aplicativo móvel de auxílio à captação de materiais recicláveis. Métodos: Estudo metodológico, de desenvolvimento tecnológica centrado no usuário, realizado entre março e dezembro de 2020, a partir de cinco fases sequenciais: reconhecimento do contexto; idealização; prototipação; teste de usabilidade, complementado por um processo de validação e implementação. Participaram dessa produção tecnológica pesquisadores, desenvolvedores e integrantes de uma Associação de Materiais Recicláveis de Santa Maria, RS, Brasil. Resultados: As três fases iniciais resultaram num protótipo de aplicativo móvel. Na fase do teste de usabilidade verificouse, por meio de simulação intuitiva do protótipo, que o aplicativo é de manejo acessível, rápido e prático, podendo ser acessado por qualquer cidadão que dispõem de celular. Constatou-se, no processo de validação, que o dispositivo possui os requisitos necessários para o adequado funcionamento e interlocução entre doadores e associações receptoras de materiais recicláveis. Está disponível online após obter registro no Instituto Nacional da Propriedade Industrial. Conclusão: Revela-se que o desenvolvimento centrado no usuário é uma estratégia que amplia a difusão de conhecimento, possibilita a inclusão social e favorece o empoderamento. Como tecnologia social, o dispositivo móvel é capaz de potencializar melhores condições de trabalho e renda às associações de reciclagem. (AU)
Objective: To develop a mobile application to help the collection of recyclable materials. Methods: This is a methodological study, of user-oriented technological production, carried out between March and December 2020, from five phases: context recognition; idealization; prototyping; usability testing, complemented by a process of validation and implementation. Researchers, developers, and members of a Recyclable Materials Association in Santa Maria, RS, Brazil, participated in the collaborative production. Results: The three initial phases resulted in a prototype mobile application. In the usability test phase it was verified, through intuitive simulation of the prototype, that the application is accessible, fast and practical, and can be accessed by any citizen with a cell phone. It was verified, in the validation process, that the device has the necessary requirements for the proper functioning and dialogue between donors and associations that receive recyclable materials. It is available online after being registered with the National Institute of Industrial Property. Conclusion: It is revealed that user-centered development is a strategy that expands the dissemination of knowledge, enables social inclusion, and favors empowerment. As a social technology, the mobile device is capable of potentiating better work and income conditions for recycling associations. (AU)
Objetivo: Desarrollar una aplicación móvil para ayudar a capturar materiales reciclables. Métodos: Consiste en un estudio metodológico de producción tecnológica orientada hacia el usuario, ocurrido entre marzo y diciembre de 2020, basado en cinco fases: reconocimiento del contexto; idealización; creación de prototipos; prueba de usabilidad, complementada un proceso de validación e implementación. Participaron en la producción colaborativa investigadores, desarrolladores y miembros de una Asociación de Materiales Reciclables de Santa María, RS, Brasil. Resultados: Las tres fases iniciales resultaron en un prototipo de aplicación móvil. En la fase de prueba de usabilidad, se verificó, por medio de una simulación intuitiva del prototipo, que la aplicación es de uso accesible, rápida y práctica, y puede ser accedida por cualquier ciudadano que disponga de un teléfono celular. Se constató, en el proceso de validación, que el dispositivo cuenta con los requisitos necesarios para el correcto funcionamiento y diálogo entre donantes y asociaciones receptoras de materiales reciclables. Está disponible en línea tras obtener el registro en el Instituto Nacional de Propiedad Industrial. Conclusión: Resulta que el desarrollo centrado en el usuario es una estrategia que amplía la difusión del conocimiento, posibilita la inclusión social y favorece el empoderamiento. Como tecnología social, el dispositivo móvil es capaz de mejorar las condiciones laborales y los ingresos de las asociaciones de reciclaje. (AU)
Subject(s)
Mobile Applications , Public Health , Nursing , Recycling , Culturally Appropriate TechnologyABSTRACT
The transition towards Circular Economy (CE) is a promising approach to sustainable development that may cause significant social impacts. Despite the benefits of CE initiatives, key players such as informal recyclers face serious social issues such as poverty, lack of social security, and discrimination. Although evaluating social impacts remains a considerable challenge, Social Life Cycle Assessment (SLCA) is recognized as a suitable methodology with a life cycle perspective. While most SLCA experiences are conducted in the formal sector, it is important to consider the informal sector, which plays a crucial role in developing countries. This article presents an analysis of SLCA studies in informal recycling settings in order to identify the challenges and adjustments required for informal settings. The analysis is based on a literature review and a documentary review of a pilot application of SLCA in the informal recycling system in Cuenca, Ecuador. The results show that SLCA requires adaptation to be applied in informal settings. There are particular challenges in delineating boundaries due to the fuzzy nature and variability of informal activities. Tasks such as establishing specific indicators, developing reference scales and data collection, require careful planning and active stakeholder participation. For instance, indicators regarding Fair Salary or Working hours were adapted based on best practices. Furthermore, tasks such as verifying and disseminating results should be included in interpretation phases to generate long-term impacts and influence behaviors. The study underscores SLCA's multidimensional view but highlights the need for further standardization and adaptation for informal sectors.
Subject(s)
Recycling , Recycling/methods , Humans , Ecuador , Informal Sector , Waste Management/methods , Sustainable DevelopmentSubject(s)
Crops, Agricultural , Droughts , Glass , Soil , Crops, Agricultural/growth & development , Glass/chemistry , Recycling , Grenada , Soil/chemistryABSTRACT
The significant growth of the cruise ship industry has resulted in economic benefits, but there are also waste management-related challenges. The aim of this case study was to contribute to the research of cruise ship waste management at the Port of Rio de Janeiro. A3 methodology, applied for the first time in this context, was used to create questionnaires to assess the stakeholders involved, revealing that institutional bureaucracy has a negative effect on waste management. In addition, secondary data on unloaded waste, obtained from the transport manifests, showed that 56 % contained reliable information. The main wastes were plastics (57 %), glass (17 %), metal (9 %), and others. With respect to destinations, 41 % were sent to landfills, 55 % recycled and 4 % thermally treated. Only 5 % of cruise ship moorings removed waste at the Port of Rio de Janeiro, attributed to factors such as high costs.