Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.171
Filter
1.
Exp Physiol ; 109(5): 779-790, 2024 May.
Article in English | MEDLINE | ID: mdl-38445814

ABSTRACT

Endothelial dysfunction develops with age and may precede cardiovascular disease. Animal data suggest that T-type calcium channels play an important role in endothelial function, but data from humans are lacking. This study included 15 healthy, sedentary, elderly males for a double blinded, randomized controlled trial. For 8 weeks, they were given 40 mg/day of either efonidipine (L- and T-type calcium channel blocker (CCB)) or nifedipine (L-type CCB). Vascular function was evaluated by graded femoral arterial infusions of acetylcholine (ACh; endothelium-dependent vasodilator) and sodium nitroprusside (endothelium-independent vasodilator) both with and without co-infusion of N-acetylcysteine (NAC; antioxidant). We measured leg blood flow and mean arterial pressure and calculated leg vascular conductance to evaluate the leg vascular responses. Despite no significant change in blood pressure in either group, we observed higher leg blood flow responses (Δ 0.43 ± 0.45 l/min, P = 0.006) and leg vascular conductance (Δ 5.38 ± 5.67 ml/min/mmHg, P = 0.005) to intra-arterial ACh after efonidipine, whereas there was no change in the nifedipine group, and no differences between groups. We found no upregulation of endothelial nitric oxide synthase in vastus lateralis muscle biopsies within or between groups. Smooth muscle cell responsiveness was unaltered by efonidipine or nifedipine. Intravenous co-infusion of NAC did not affect endothelium-dependent vasodilatation in either of the CCB groups. These results suggest that 8 weeks' inhibition of T- and L-type calcium channels augments endothelium-dependent vasodilatory function in healthy elderly males. Further studies are required to elucidate if T-type calcium channel inhibition can counteract endothelial dysfunction.


Subject(s)
Calcium Channel Blockers , Calcium Channels, T-Type , Endothelium, Vascular , Nifedipine , Nitrophenols , Humans , Male , Calcium Channels, T-Type/metabolism , Calcium Channels, T-Type/drug effects , Aged , Calcium Channel Blockers/pharmacology , Nifedipine/pharmacology , Pilot Projects , Double-Blind Method , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Dihydropyridines/pharmacology , Vasodilation/drug effects , Vasodilation/physiology , Vasodilator Agents/pharmacology , Blood Pressure/drug effects , Blood Pressure/physiology , Regional Blood Flow/drug effects , Regional Blood Flow/physiology , Organophosphorus Compounds/pharmacology , Acetylcholine/pharmacology , Leg/blood supply , Nitroprusside/pharmacology , Middle Aged
2.
Kurume Med J ; 69(3.4): 167-174, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38233183

ABSTRACT

OBJECTIVE: Oxidative damage is observed in the ischemic limbs of patients with arteriosclerosis obliterans. We investigated whether pemafibrate, a selective peroxisome proliferator-activated receptor alpha modulator, reduced oxidative stress in ischemic limbs and consequently rescued limb damage in model mice. MATERIALS AND METHODS: We surgically induced hind-limb ischemia in mice and orally administered pemafibrate solution (P-05 group, 0.5 mg/kg/day; P-10 group, 1.0 mg/kg/day) or control solution (control group). Seven days after the surgery, differences in reactive oxygen species (ROS) contents, antioxidative enzyme and transcription factor expression, blood flow, and capillary density in ischemic limbs were assessed. RESULTS: Tissue ROS levels were lower in the P-05 and P-10 groups compared with those in the control group. Although the tissue expression levels of nuclear factor-erythroid 2-related factor 2 increased in the P-10 group compared with that in the control group, no corresponding changes were observed in the tissue expression of four antioxidative enzymes. The limb salvage rates and capillary densities in ischemic limbs were higher in the P-05 and P-10 groups than that in the control group. CONCLUSION: Pemafibrate treatment reduced oxidative stress and augmented angiogenesis in ischemic limbs, contributing to prevention of limb damage in mice.


Subject(s)
Benzoxazoles , Butyrates , Disease Models, Animal , Hindlimb , Ischemia , Neovascularization, Physiologic , Oxidative Stress , Reactive Oxygen Species , Animals , Oxidative Stress/drug effects , Benzoxazoles/pharmacology , Benzoxazoles/therapeutic use , Ischemia/drug therapy , Ischemia/metabolism , Neovascularization, Physiologic/drug effects , Male , Hindlimb/blood supply , Reactive Oxygen Species/metabolism , Butyrates/pharmacology , Butyrates/therapeutic use , Mice , Antioxidants/pharmacology , NF-E2-Related Factor 2/metabolism , Regional Blood Flow/drug effects , PPAR alpha/metabolism , Limb Salvage , Angiogenesis
3.
Endocrinology ; 163(3)2022 03 01.
Article in English | MEDLINE | ID: mdl-35084435

ABSTRACT

Skeletal muscle insulin resistance is a hallmark of individuals with type 2 diabetes mellitus (T2D). In healthy individuals insulin stimulates vasodilation, which is markedly blunted in T2D; however, the mechanism(s) remain incompletely understood. Investigations in rodents indicate augmented endothelin-1 (ET-1) action as a major contributor. Human studies have been limited to young obese participants and focused exclusively on the ET-1 A (ETA) receptor. Herein, we have hypothesized that ETA receptor antagonism would improve insulin-stimulated vasodilation and glucose uptake in T2D, with further improvements observed during concurrent ETA + ET-1 B (ETB) antagonism. Arterial pressure (arterial line), leg blood flow (LBF; Doppler), and leg glucose uptake (LGU) were measured at rest, during hyperinsulinemia alone, and hyperinsulinemia with (1) femoral artery infusion of BQ-123, the selective ETA receptor antagonist (n = 10 control, n = 9 T2D) and then (2) addition of BQ-788 (selective ETB antagonist) for blockade of ETA and ETB receptors (n = 7 each). The LBF responses to hyperinsulinemia alone tended to be lower in T2D (controls: ∆161 ±â€…160 mL/minute; T2D: ∆58 ±â€…43 mL/minute, P = .08). BQ-123 during hyperinsulinemia augmented LBF to a greater extent in T2D (% change: controls: 14 ±â€…23%; T2D: 38 ±â€…21%, P = .029). LGU following BQ-123 increased similarly between groups (P = .85). Concurrent ETA + ETB antagonism did not further increase LBF or LGU in either group. Collectively, these findings suggest that during hyperinsulinemia ETA receptor activation restrains vasodilation more in T2D than controls while limiting glucose uptake similarly in both groups, with no further effect of ETB receptors (NCT04907838).


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Endothelin Receptor Antagonists/pharmacology , Glucose/metabolism , Hyperinsulinism/metabolism , Leg/blood supply , Receptor, Endothelin A/metabolism , Regional Blood Flow/drug effects , Blood Pressure/drug effects , Endothelin B Receptor Antagonists/pharmacology , Female , Humans , Male , Middle Aged , Oligopeptides/pharmacology , Peptides, Cyclic/pharmacology , Piperidines/pharmacology , Regional Blood Flow/physiology , Vasodilation/drug effects
4.
Toxicol Appl Pharmacol ; 435: 115851, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34971666

ABSTRACT

There has been a significant research interest in nanocrystals as a promising technology for improving the therapeutic efficacy of poorly water-soluble drugs, such as resveratrol. Little is known about the interaction of nanocrystals with biological tissue. The aim of this study was to investigate the potential use of resveratrol (RSV) and its nanocrystals (NANO-RSV) as antitumor agents in Ehrlich ascites tumour (EAT)-bearing mice and the interaction of nanocrystals with biological tissue through biochemical and histological changes of kidney, liver and EAT cells. After intraperitoneal injection of 2.5 × 106 cells into the abdominal cavity of mice, treatment of animals was started next day by injecting RSV or NANO-RSV at a dose of either 25 or 50 mg/kg every other day for 14 days. The results show that the administration of resveratrol and its nanocrystals lead to significant reductions in the proliferation of tumour cells in the abdominal cavity, and a reduction of the number of blood vessels in the peritoneum, with low systemic toxicity. In histopathological examinations, greater hepatocellular necrosis and apoptosis, hepatic fibrosis around the central vein and degeneration with minor fatty change were observed with RSV than with NANO-RSV. Inflammation with proximal tubular necrosis and renal glomerulus swelling were also observed, together with slight elevation of several biochemical parameters in both the RSV and NANO-RSV groups. In order to increase the beneficial effects and reduce risks associated with resveratrol nanocrystals, additional factors such as dose, genetic factors, health status, and the nature of the target cells should also be considered.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Nanoparticles/therapeutic use , Resveratrol/therapeutic use , Abdominal Cavity/pathology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/toxicity , Antioxidants/pharmacology , Carcinoma, Ehrlich Tumor/drug therapy , Cell Line , Cell Proliferation/drug effects , Humans , Inflammation/chemically induced , Inflammation/pathology , Injections, Intraperitoneal , Male , Mice , Nanoparticles/chemistry , Nanoparticles/toxicity , Particle Size , Peritoneum/blood supply , Regional Blood Flow/drug effects , Resveratrol/chemistry , Resveratrol/toxicity , Xenograft Model Antitumor Assays
5.
Pharmacol Res ; 175: 105905, 2022 01.
Article in English | MEDLINE | ID: mdl-34798267

ABSTRACT

The objective of this systematic review and meta-analysis of controlled trials was to assess the long-term effect of grape seed extract (GSE) supplementation on flow-mediated dilation (FMD), systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate (HR) in adults. Web of Science, Scopus, Medline, Cochrane Library, and Google Scholar were searched up to May 24, 2021. Nineteen trials were included in this study. Weighted mean difference (WMD) and 95% confidence interval (CI) were calculated using a random-effects model. GSE supplementation significantly reduced DBP (WMD: -2.20 mmHg, 95% CI: -3.79 to -0.60, I2 = 88.8%) and HR (WMD: -1.25 bpm, 95% CI: -2.32 to -0.19, I2 = 59.5%) but had no significant effects on FMD (WMD: 1.02%, 95% CI: -0.62 to 2.66, I2 = 92.0%) and SBP (WMD: -3.55 mmHg, 95% CI: -7.59 to 0.49, I2 = 97.4%). Subgroup analysis revealed that the dose and duration of GSE administration and the characteristics of study participants could be sources of between-study heterogeneity. Significant non-linear relationships were found between DBP and the duration of GSE supplementation (P = 0.044) and its dose (P = 0.007). In conclusion, GSE may be beneficial for individuals with or at risk of cardiovascular disease because it may have hypotensive and HR-lowering properties.


Subject(s)
Blood Pressure/drug effects , Heart Rate/drug effects , Plant Extracts/administration & dosage , Vitis , Brachial Artery/drug effects , Brachial Artery/physiology , Dose-Response Relationship, Drug , Humans , Randomized Controlled Trials as Topic , Regional Blood Flow/drug effects , Seeds , Vasodilation/drug effects
7.
Cancer Lett ; 523: 1-9, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34530049

ABSTRACT

Pancreatic cancer is one of the common malignant tumors of the digestive system, and its clinical treatment is still very challenging. Most of the pancreatic cancer chemotherapeutic drugs have poor plasma stability, low cell uptake efficiency, and are prone to developing drug resistance and toxic side effects. Besides, pancreatic cancer often has a dense extracellular matrix, which consists of collagens, hyaluronic acid, and other proteoglycans. Among them, hyaluronic acid is a key component of the dense matrix, which results in vascular compression and insufficient perfusion, and hinders the delivery of chemotherapeutic drugs. In this study, we explore using hyaluronidase in tumor-bearing mice to eliminate the hyaluronic acid barrier, to reduce blood vessel compression and reshape the tumor microenvironment. In addition, we evaluate using doxorubicin-loaded nanoprobes to improve the stability and local tumor-killing effect of the drug. The nanoprobes have the characteristics of near-infrared optical imaging, which are used to monitor the tumor size in real-time during the treatment process, and dynamically observe the tumor inhibitory effect. The results show that elimination of the hyaluronic acid barrier combined with the doxorubicin-loaded nanoprobes can greatly increase drug penetration into tumor tissue and improve the effectiveness of chemotherapy drugs. This study provides a novel strategy for the treatment of pancreatic cancer.


Subject(s)
Doxorubicin/administration & dosage , Drug Delivery Systems , Hyaluronic Acid/pharmacokinetics , Hyaluronoglucosaminidase/administration & dosage , Pancreatic Neoplasms/drug therapy , Animals , Blood Pressure/drug effects , Cell Line, Tumor , Humans , Male , Mice , Mice, Inbred BALB C , Nanotubes, Carbon , Pancreatic Neoplasms/diagnostic imaging , Regional Blood Flow/drug effects , Spectroscopy, Near-Infrared/methods , Tumor Microenvironment/drug effects
8.
Biomolecules ; 11(9)2021 09 16.
Article in English | MEDLINE | ID: mdl-34572583

ABSTRACT

Acute renal failure (ARF) is a clinical critical syndrome with rapid and severe decline of renal function. Complications of ARF, especially its cardiac complications (cardiorenal syndrome type 3, CRS-3), are the main causes of death in patients with ARF. However, the shortage and limited efficacy of therapeutic drugs make it significant to establish new large-scale drug screening models. Based on the Nitroreductase/Metronidazole (NTR/MTZ) cell ablation system, we constructed a Tg(cdh17:Dendra2-NTR) transgenic zebrafish line, which can specifically ablate renal tubular epithelial cells. The absence of renal tubular epithelial cells can lead to ARF in zebrafish larvae. The ARF symptoms, such as heart enlargement, slow heart rate and blood stasis, are similar to the clinical manifestations of human CRS-3. Furthermore, two therapeutic drugs (digoxin and enalapril) commonly used in the clinical treatment of heart failure were also effective in alleviating the symptoms of CRS-3 in zebrafish, which proved the effectiveness of this model. Drug screening further discovered a potential drug candidate, α-lipoic acid, which can effectively alleviate the symptoms of CRS-3 through its antioxidant function. Accordingly, we established a new ARF model of zebrafish, which laid a foundation for large-scale screening of new therapeutic drugs for its complications.


Subject(s)
Acute Kidney Injury/complications , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology , Drug Evaluation, Preclinical , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Animals , Animals, Genetically Modified , Cardio-Renal Syndrome/drug therapy , Cardio-Renal Syndrome/etiology , Cardiovascular Diseases/pathology , Digoxin/pharmacology , Digoxin/therapeutic use , Disease Models, Animal , Enalapril/pharmacology , Enalapril/therapeutic use , Epithelial Cells/pathology , Humans , Kidney Tubules/pathology , Kidney Tubules/physiopathology , Larva/physiology , Metronidazole , Regional Blood Flow/drug effects , Thioctic Acid/pharmacology , Thioctic Acid/therapeutic use , Treatment Outcome , Zebrafish
9.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R385-R395, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34259041

ABSTRACT

Exercise intolerance is a hallmark symptom of cardiovascular disease and likely occurs via enhanced activation of muscle metaboreflex-induced vasoconstriction of the heart and active skeletal muscle which, thereby limits cardiac output and peripheral blood flow. Muscle metaboreflex vasoconstrictor responses occur via activation of metabolite-sensitive afferent fibers located in ischemic active skeletal muscle, some of which express transient receptor potential vanilloid 1 (TRPV1) cation channels. Local cardiac and intrathecal administration of an ultrapotent noncompetitive, dominant negative agonist resiniferatoxin (RTX) can ablate these TRPV1-sensitive afferents. This technique has been used to attenuate cardiac sympathetic afferents and nociceptive pain. We investigated whether intrathecal administration (L4-L6) of RTX (2 µg/kg) could chronically attenuate subsequent muscle metaboreflex responses elicited by reductions in hindlimb blood flow during mild exercise (3.2 km/h) in chronically instrumented conscious canines. RTX significantly attenuated metaboreflex-induced increases in mean arterial pressure (27 ± 5.0 mmHg vs. 6 ± 8.2 mmHg), cardiac output (1.40 ± 0.2 L/min vs. 0.28 ± 0.1 L/min), and stroke work (2.27 ± 0.2 L·mmHg vs. 1.01 ± 0.2 L·mmHg). Effects were maintained until 78 ± 14 days post-RTX at which point the efficacy of RTX injection was tested by intra-arterial administration of capsaicin (20 µg/kg). A significant reduction in the mean arterial pressure response (+45.7 ± 6.5 mmHg pre-RTX vs. +19.7 ± 3.1 mmHg post-RTX) was observed. We conclude that intrathecal administration of RTX can chronically attenuate the muscle metaboreflex and could potentially alleviate enhanced sympatho-activation observed in cardiovascular disease states.


Subject(s)
Cardiac Output/drug effects , Diterpenes/pharmacology , Hindlimb/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Animals , Arterial Pressure/drug effects , Cardiac Output/physiology , Diterpenes/administration & dosage , Dogs , Heart/drug effects , Heart/physiopathology , Hindlimb/physiopathology , Ischemia/physiopathology , Muscle Contraction/drug effects , Muscle Contraction/physiology , Regional Blood Flow/drug effects , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology , Vasoconstriction/physiology
11.
PLoS One ; 16(7): e0254980, 2021.
Article in English | MEDLINE | ID: mdl-34283877

ABSTRACT

This study aimed to evaluate whether long-term insulin treatment is associated with abnormalities in retinal circulation in type 2 diabetic patients. We evaluated 19 eyes of nondiabetic individuals and 68 eyes of type 2 diabetic patients. The eyes of diabetic patients were classified into two groups according to the presence or absence of long-term insulin therapy. We used a Doppler optical coherence tomography flowmeter to measure diameter, velocity, and blood flow in the major temporal retinal artery. The pulsatility ratio (PR) and resistance index (RI), indices of vascular rigidity, were calculated from the blood velocity profile. PR and RI were significantly elevated in type 2 diabetic patients compared with nondiabetic subjects (P < 0.05). In type 2 diabetes patients, PR and RI were significantly higher in patients receiving long-term insulin treatment than in those without (P < 0.01). There was a significant difference in velocity (P < 0.05), but not diameter and blood flow, between nondiabetic subjects and type 2 diabetes patients. No significant difference in diameter, velocity, or blood flow was observed between the groups with and without long-term insulin treatment. Long-term insulin treatment can affect PR and RI, which might be associated with vascular rigidity of the retinal artery in patients with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Insulin/metabolism , Retinal Artery/drug effects , Adult , Aged , Blood Circulation/physiology , Blood Flow Velocity/drug effects , Blood Glucose , Diabetes Mellitus, Type 2/drug therapy , Eye/physiopathology , Female , Hemodynamics/drug effects , Humans , Insulin/therapeutic use , Male , Middle Aged , Regional Blood Flow/drug effects , Retinal Artery/metabolism , Tomography, Optical Coherence/methods , Vascular Resistance/drug effects , Vascular Resistance/physiology
12.
PLoS One ; 16(6): e0253306, 2021.
Article in English | MEDLINE | ID: mdl-34138957

ABSTRACT

BACKGROUND: Delayed umbilical cord clamping (UCC) after birth is thought to cause placental to infant blood transfusion, but the mechanisms are unknown. It has been suggested that uterine contractions force blood out of the placenta and into the infant during delayed cord clamping. We have investigated the effect of uterine contractions, induced by maternal oxytocin administration, on umbilical artery (UA) and venous (UV) blood flows before and after ventilation onset to determine whether uterine contractions cause placental transfusion in preterm lambs. METHODS AND FINDINGS: At ~128 days of gestation, UA and UV blood flows, pulmonary arterial blood flow (PBF) and carotid arterial (CA) pressures and blood flows were measured in three groups of fetal sheep during delayed UCC; maternal oxytocin following mifepristone, mifepristone alone, and saline controls. Each successive uterine contraction significantly (p<0.05) decreased UV (26.2±6.0 to 14.1±4.5 mL.min-1.kg-1) and UA (41.2±6.3 to 20.7 ± 4.0 mL.min-1.kg-1) flows and increased CA pressure and flow (47.1±3.4 to 52.8±3.5 mmHg and 29.4±2.6 to 37.3±3.4 mL.min-1.kg-1). These flows and pressures were partially restored between contractions, but did not return to pre-oxytocin administration levels. Ventilation onset during DCC increased the effects of uterine contractions on UA and UV flows, with retrograde UA flow (away from the placenta) commonly occurring during diastole. CONCLUSIONS: We found no evidence that amplification of uterine contractions with oxytocin increase placental transfusion during DCC. Instead they decreased both UA and UV flow and caused a net loss of blood from the lamb. Uterine contractions did, however, have significant cardiovascular effects and reduced systemic and cerebral oxygenation.


Subject(s)
Oxytocics/administration & dosage , Oxytocin/administration & dosage , Regional Blood Flow/drug effects , Umbilical Arteries/drug effects , Umbilical Veins/drug effects , Uterine Contraction/drug effects , Animals , Animals, Newborn , Female , Mifepristone/pharmacology , Pregnancy , Sheep
13.
Plast Reconstr Surg ; 148(1): 100-107, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34014864

ABSTRACT

BACKGROUND: Near-infrared spectroscopy can detect changes in tissue oxygenation postoperatively that predict flap necrosis. The authors hypothesized that this technology can be applied along with topical nitroglycerin to measure an improvement in tissue oxygenation that correlates with tissue salvage. METHODS: Dorsal, random pattern flaps measuring 10 × 3 cm were raised using Sprague-Dawley rats. Tissue oxygenation was measured after flap elevation in 10 locations using the ViOptix Intra.Ox. Animals were divided into three groups that received 30 mg of topical nitroglycerin daily, twice-daily, or not at all. Oxygenation measurements were repeated on postoperative day 1 and animals were euthanized on day 7 and evaluated for tissue necrosis. RESULTS: Tissue necrosis was greatest in controls (51.3 mm) compared to daily (28.8 mm) and twice-daily nitroglycerin (18.8 mm; p = 0.035). Three flap perfusion zones were identified: healthy (proximal, 50 mm), necrotic (distal, 20 mm), and watershed. Immediate postoperative tissue oxygenation was highest in healthy tissue (57.2 percent) and decreased to 33.0 and 19.3 percent in the watershed and necrotic zones, respectively (p < 0.001). One day after treatment with nitroglycerin, oxygenation in the healthy zone did not increase significantly (mean difference, -1.5 percent). The watershed (17.8 percent; p < 0.001) and necrotic zones (16.3 percent; p <0.001) did exhibit significant improvements that were greater than those measured in control tissues (7.9 percent; both p < 0.001). CONCLUSIONS: Serial perfusion assessment using the ViOptix Intra.Ox measured a significant improvement in flap oxygenation after treatment with topical nitroglycerin. Within the watershed area of the flap, this increase in tissue oxygenation was associated with the salvage of ischemic tissue.


Subject(s)
Graft Survival/drug effects , Nitroglycerin/administration & dosage , Postoperative Complications/drug therapy , Salvage Therapy/methods , Surgical Flaps/blood supply , Animals , Disease Models, Animal , Humans , Necrosis/diagnosis , Necrosis/drug therapy , Necrosis/etiology , Oxygen/analysis , Oxygen/metabolism , Postoperative Complications/diagnosis , Postoperative Complications/etiology , Rats , Regional Blood Flow/drug effects , Spectroscopy, Near-Infrared , Surgical Flaps/pathology , Surgical Flaps/transplantation
14.
Clin Transl Sci ; 14(5): 1945-1954, 2021 09.
Article in English | MEDLINE | ID: mdl-34058071

ABSTRACT

GDC-0334 is a novel small molecule inhibitor of transient receptor potential cation channel member A1 (TRPA1), a promising therapeutic target for many nervous system and respiratory diseases. The pharmacokinetic (PK) profile and pharmacodynamic (PD) effects of GDC-0334 were evaluated in this first-in-human (FIH) study. A starting single dose of 25 mg was selected based on integrated preclinical PK, PD, and toxicology data following oral administration of GDC-0334 in guinea pigs, rats, dogs, and monkeys. Human PK and PK-PD of GDC-0334 were characterized after single and multiple oral dosing using a population modeling approach. The ability of GDC-0334 to inhibit dermal blood flow (DBF) induced by topical administration of allyl isothiocyanate (AITC) was evaluated as a target-engagement biomarker. Quantitative models were developed iteratively to refine the parameter estimates of the dose-concentration-effect relationships through stepwise estimation and extrapolation. Human PK analyses revealed that bioavailability, absorption rate constant, and lag time increase when GDC-0334 was administered with food. The inhibitory effect of GDC-0334 on the AITC-induced DBF biomarker exhibited a clear sigmoid-Emax relationship with GDC-0334 plasma concentrations in humans. This study leveraged emerging preclinical and clinical data to enable iterative refinement of GDC-0334 mathematical models throughout the FIH study for dose selection in subsequent cohorts throughout the study. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? GDC-0334 is a novel, small molecule TRPA1 inhibitor and a pharmacokinetic-pharmacodynamic (PK-PD) modeling strategy could be implemented in a systematic and step-wise manner to build and learn from emerging data for early clinical development. WHAT QUESTION DID THIS STUDY ADDRESS? Can noncompartmental and population-based analyses be used to describe the PK and PD characteristics of GDC-0334 in preclinical and clinical studies? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? GDC-0334 exposure generally increased with dose in rats, dogs, and monkeys. The starting dose (25 mg) in the clinical study was determined based on the preclinical data. GDC-0334 exhibited linear PK in humans and the bioavailability was increased with food. The inhibitory effect of GDC-0334 on dermal blood flow induced by the TRPA1 agonist allyl isothiocyanate in humans indicates a clear PK-PD relationship. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? The models developed based on TRPA1 agonist-induced dermal blood flow inhibition data can be used to predict PK-PD relationships in future preclinical and clinical studies evaluating new drug entities that target TRPA1.


Subject(s)
Models, Biological , Pyridines/pharmacokinetics , Pyrimidines/pharmacokinetics , Regional Blood Flow/drug effects , TRPA1 Cation Channel/antagonists & inhibitors , Administration, Intravenous , Adult , Animals , Biological Availability , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Gastrointestinal Absorption , Healthy Volunteers , Humans , Isothiocyanates/administration & dosage , Macaca fascicularis , Male , Middle Aged , Pyridines/administration & dosage , Pyridines/adverse effects , Pyrimidines/administration & dosage , Pyrimidines/adverse effects , Rats , Skin/blood supply , Translational Research, Biomedical , Young Adult
15.
J Physiol Sci ; 71(1): 16, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34049480

ABSTRACT

Functional magnetic resonance imaging (fMRI) of the spinal cord relies on the integrity of neurovascular coupling (NVC) to infer neuronal activity from hemodynamic changes. Astrocytes are a key component of cerebral NVC, but their role in spinal NVC is unclear. The objective of this study was to examine whether inhibition of astrocyte metabolism by fluorocitrate alters spinal NVC. In 14 rats, local field potential (LFP) and spinal cord blood flow (SCBF) were recorded simultaneously in the lumbosacral enlargement during noxious stimulation of the sciatic nerve before and after a local administration of fluorocitrate (N = 7) or saline (N = 7). Fluorocitrate significantly reduced SCBF responses (p < 0.001) but not LFP amplitude (p = 0.22) compared with saline. Accordingly, NVC was altered by fluorocitrate compared with saline (p < 0.01). These results support the role of astrocytes in spinal NVC and have implications for spinal cord imaging with fMRI for conditions in which astrocyte metabolism may be altered.


Subject(s)
Astrocytes/physiology , Neurovascular Coupling , Spinal Cord/physiology , Animals , Citrates/pharmacology , Electric Stimulation , Magnetic Resonance Imaging , Male , Neurovascular Coupling/physiology , Rats , Rats, Wistar , Regional Blood Flow/drug effects , Regional Blood Flow/physiology , Sciatic Nerve/physiology , Spinal Cord/anatomy & histology , Spinal Cord/blood supply , Spinal Cord/diagnostic imaging
16.
Neurosci Lett ; 755: 135904, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33894332

ABSTRACT

Cranial parasympathetic activation produces vasodilation in the head and neck region, but little is known about its central and peripheral mechanisms. This study was conducted to examine whether external and internal carotid-vasodilation origin sites triggered by chemical stimulation are distributed topographically in the parasympathetic brainstems of anesthetized rats, and to examine the effects of peripheral receptors on vasodilation. Microinjection of the neuromodulator candidate l-cysteine revealed that external and internal carotid vasodilation-triggering sites were distributed non-topographically along the full extent of the parasympathetic parvocellular reticular formation (PcRt). Intravenous injection of a muscarinic blocker and a nitric oxide synthase inhibitor abolished external carotid vasodilation, suggesting the peripheral involvement of muscarinic and nitric oxide receptors. Further work is needed to fully understand the PcRt mechanisms underlying timely and appropriate vasodilation to support various cranial functions.


Subject(s)
Brain Stem/physiology , Carotid Artery, External/physiology , Carotid Artery, Internal/physiology , Parasympathetic Nervous System/physiology , Regional Blood Flow/physiology , Vasodilation/physiology , Animals , Brain Stem/blood supply , Brain Stem/drug effects , Carotid Artery, External/drug effects , Carotid Artery, Internal/drug effects , Cysteine/administration & dosage , Male , Microinjections , Parasympathetic Nervous System/drug effects , Rats , Rats, Wistar , Regional Blood Flow/drug effects , Vasodilation/drug effects
17.
J Am Heart Assoc ; 10(8): e020548, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33821682

ABSTRACT

Background Pulmonary arterial hypertension (PAH) manifests with progressive right ventricular (RV) dysfunction, which eventually impairs the left ventricular function. We hypothesized that 4-dimensional-flow magnetic resonance imaging can detect flow hemodynamic changes associated with efficient intracardiac flow during noninvasive inhaled nitric oxide (iNO) challenge in children with PAH. Methods and Results Children with PAH (n=10) underwent 2 same-day separate iNO challenge tests using: (1) 4-dimensional-flow magnetic resonance imaging and (2) standard catheterization hemodynamics. Intracardiac flow was evaluated using the particle tracking 4-flow component analysis technique evaluating the direct flow, retained inflow, delayed ejection flow, and residual volume. Respective flow hemodynamic changes were compared with the corresponding catheterization iNO challenge results. The RV analysis revealed decreased direct flow in patients with PAH when compared with controls (P<0.001) and increase in residual volume (P<0.001). Similarly, the left ventricular analysis revealed decreased direct flow in patients with PAH when compared with controls (P=0.004) and increased proportion of the residual volume (P=0.014). There was an increase in the RV direct flow during iNO delivery (P=0.009), with parallel decrease in the residual volume (P=0.008). Conclusions Children with PAH have abnormal biventricular flow associated with impaired diastolic filling. The flow efficiency is significantly improved in the RV on iNO administration with no change in the left ventricle. The changes in the RV flow have occurred despite the minimal change in catheterization hemodynamics, suggesting that flow hemodynamic evaluation might provide more quantitative insights into vasoreactivity testing in PAH.


Subject(s)
Heart Ventricles/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine/methods , Nitric Oxide/administration & dosage , Pulmonary Arterial Hypertension/drug therapy , Regional Blood Flow/drug effects , Ventricular Function, Right/drug effects , Administration, Inhalation , Adolescent , Child , Child, Preschool , Endothelium-Dependent Relaxing Factors/administration & dosage , Female , Follow-Up Studies , Heart Ventricles/physiopathology , Hemodynamics/drug effects , Humans , Infant , Male , Prospective Studies , Pulmonary Arterial Hypertension/diagnosis , Pulmonary Arterial Hypertension/physiopathology , Time Factors
18.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R771-R779, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33851554

ABSTRACT

Herein we report in a sample of healthy young men (n = 14) and women (n = 12) that hyperinsulinemia induces time-dependent decreases in total peripheral resistance and its contribution to the maintenance of blood pressure. In the same participants, we observe profound vasodilatory effects of insulin in the lower limb despite concomitant activation of the sympathetic nervous system. We hypothesized that this prominent peripheral vasodilation is possibly due to the ability of the leg vasculature to escape sympathetic vasoconstriction during systemic insulin stimulation. Consistent with this notion, we demonstrate in a subset of healthy men (n = 9) and women (n = 7) that systemic infusion of insulin blunts sympathetically mediated leg vasoconstriction evoked by a cold pressor test, a well-established sympathoexcitatory stimulus. Further substantiating this observation, we show in mouse aortic rings that insulin exposure suppresses epinephrine and norepinephrine-induced vasoconstriction. Notably, we found that such insulin-suppressing effects on catecholamine-induced constriction are diminished following ß-adrenergic receptor blockade. In accordance, we also reveal that insulin augments ß-adrenergic-mediated vasorelaxation in isolated arteries. Collectively, these findings support the idea that sympathetic vasoconstriction can be attenuated during systemic hyperinsulinemia in the leg vasculature of both men and women and that this phenomenon may be in part mediated by potentiation of ß-adrenergic vasodilation neutralizing α-adrenergic vasoconstriction.


Subject(s)
Adrenergic Agents/pharmacology , Hyperinsulinism/drug therapy , Sympathetic Nervous System/drug effects , Vasoconstriction/drug effects , Adult , Blood Pressure/drug effects , Female , Humans , Male , Norepinephrine/pharmacology , Regional Blood Flow/drug effects , Regional Blood Flow/physiology , Sympathetic Nervous System/physiology , Vascular Resistance/drug effects
19.
J Biomed Mater Res A ; 109(10): 2017-2026, 2021 10.
Article in English | MEDLINE | ID: mdl-33811797

ABSTRACT

Magnetic iron oxide nanoparticles (IONP) present the promising instrument for broad-spectrum of clinical applications, for example, targeted drug delivery. Reactivity of nanoparticles depends on their surface area and material. In the blood plasma IONP are getting covered with an albumin crown, so it was decided to test this shell for biocompatibility. Male Wistar rats were anesthetized and underwent laparotomy. Abdominal aorta was connected to external hemodynamic loop with regulated blood flow. Hind body quarter got step-like blood flow changing from 30 to 150 mmHg and back. This was followed with i.v. injection of IONP, albumin solution or albumin-covered IONP and consequent similar flow changes. Central hemodynamics-heart rate and mean arterial pressure were registered throughout the experiment and no significant changes in these parameters were observed. Hind paw microcirculation level had the same dynamic in all groups under changing blood flow conditions. At the end, venous blood was collected for endothelin-1 and NO evaluation that showed similar changes and no endothelial damage. Mesenteric arteries and femoral artery reactivity were evaluated with wire myography. Mesenteric arteries had the most relaxing function preservation after albumin-covered IONP injection. Given data reveal advantage of albumin-coated IONP so this can be used for further investigations as a vascular-safe vehicle.


Subject(s)
Albumins/chemistry , Endothelial Cells/metabolism , Magnetic Iron Oxide Nanoparticles/administration & dosage , Acetylcholine/pharmacology , Animals , Area Under Curve , Arterial Pressure/drug effects , Biomarkers/metabolism , Endothelial Cells/drug effects , Endothelin-1/metabolism , Femoral Artery/drug effects , Femoral Artery/physiology , Heart Rate/drug effects , Hemodynamics/drug effects , Injections, Intravenous , Male , Mesenteric Arteries/drug effects , Mesenteric Arteries/physiology , Microcirculation/drug effects , Nitric Oxide/metabolism , Phenylephrine/pharmacology , Rats, Wistar , Regional Blood Flow/drug effects
20.
Clin Exp Hypertens ; 43(5): 392-401, 2021 Jul 04.
Article in English | MEDLINE | ID: mdl-33687310

ABSTRACT

Background: Chymase generates angiotensin II (ANG II) independently of angiotensin-converting enzyme in tissues and it contributes to vascular remodeling and development of hypertension, however the exact mechanism of its action is unclear. Methods: Hence, the effects of chymase inhibition were examined in anesthetized spontaneously hypertensive rats (SHR) in two stages of the disease development, ie. pre-hypertensive (SHR7) and with established hypertension (SHR16). Chymostatin, a commercial chymase inhibitor, was infused intravenously alone or in subsequent groups co-infused with captopril. Results: Mean blood pressure (MBP), total renal blood flow (RBF) and ANG II content (plasma and tissues) were measured. In SHR16 chymase blockade significantly decreased MBP (-6%) and plasma (-38%), kidney (-71%) and heart (-52%) ANG II levels. In SHR7 chymostatin did not influence MBP or RBF, but significantly decreased heart ANG II level. Conclusion: Jointly, functional studies and ANG II determinations support the evidence that in SHR chymase can raise plasma ANG II and contribute to blood pressure elevation. We propose that addition of chymase blockade to ACE inhibition could be a promising approach in the treatment of hypertensive patients resistant to therapy with ACE-inhibitors alone.


Subject(s)
Angiotensin II/blood , Blood Pressure/physiology , Chymases/metabolism , Hemodynamics , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Blood Pressure/drug effects , Chymases/antagonists & inhibitors , Glomerular Filtration Rate/drug effects , Hemodynamics/drug effects , Hypertension/physiopathology , Ilium/blood supply , Ilium/drug effects , Kidney/blood supply , Kidney/drug effects , Kidney/physiopathology , Male , Oligopeptides , Perfusion , Potassium/metabolism , Rats, Inbred SHR , Rats, Inbred WKY , Regional Blood Flow/drug effects , Sodium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...