Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 273
Filter
1.
Eur Rev Med Pharmacol Sci ; 28(9): 3313-3317, 2024 May.
Article in English | MEDLINE | ID: mdl-38766789

ABSTRACT

BACKGROUND: This case report presents a history of familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC). The patient was admitted to the hospital with hypertensive encephalopathy. FHHNC is a rare autosomal recessive disease caused by mutations in CLDN16 or CLDN19, resulting in insufficient magnesium and calcium kidney reabsorption. FHHNC manifestation starts in childhood, and over the years, its development leads to nephrocalcinosis and, consequently, chronic kidney disease (CKD), which is not slowed by routine administration of magnesium and thiazide diuretics. Ultimately, all FHHNC patients need kidney replacement therapy (KRT). CASE PRESENTATION: The patient was a 28-year-old male diagnosed with FHHNC and admitted to the emergency room due to hypertensive encephalopathy. The current situation was the patient's second hospitalization related to a hypertensive emergency caused by under-dialysis. Despite the signs of insufficient functioning of peritoneal dialysis (PD) (the primary chosen form of KRT), the patient refused the proposed conversion to hemodialysis (HD). Symptoms observed upon admission included disorientation, anxiety, and severe hypertension, reaching 213/123 mmHg. Due to his clinical condition, the patient was transferred to the intensive care unit (ICU), where the introduction of continuous veno-venous hemodiafiltration and hypotensive therapy stabilized blood pressure. Within the next few days, his state improved, followed by discharge from ICU. Eventually, the patient agreed to transition from PD to in-center HD. At the time, he was qualified for kidney transplantation, waiting for a compatible donation. CKD and dialysis are factors that significantly affect a patient's quality of life, especially in young patients with congenital diseases like FHHNC. CONCLUSIONS: For the aforementioned reasons, appropriate education and psychological support should be ensured to avoid the harmful effects of therapy non-compliance. Graphical Abstract: https://www.europeanreview.org/wp/wp-content/uploads/Graphical-abstract-1.pdf.


Subject(s)
Hypercalciuria , Hypertension , Nephrocalcinosis , Humans , Male , Adult , Nephrocalcinosis/therapy , Nephrocalcinosis/diagnosis , Hypercalciuria/therapy , Hypercalciuria/diagnosis , Renal Dialysis , Renal Tubular Transport, Inborn Errors/genetics , Renal Tubular Transport, Inborn Errors/therapy , Renal Tubular Transport, Inborn Errors/diagnosis , Hypertensive Crisis
3.
Neuromuscul Disord ; 34: 49-53, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38150892

ABSTRACT

Acute rhabdomyolysis (AR) leading to acute kidney injury has many underlying etiologies, however, when the primary trigger is exercise, the most usual underlying cause is either a genetic muscle disorder or unaccustomed intense exercise in a healthy individual. Three adult men presented with a history of exercise intolerance and episodes of acute renal impairment following intense exercise, thought to be due to AR in the case of two, and dehydration in one. The baseline serum CK was mildly raised between attacks in all three patients and acutely raised during attacks in two of the three patients. Following referral to a specialized neuromuscular centre, further investigation identified very low serum urate (<12 umol/L). In all three men, genetic studies confirmed homozygous mutations in SLC2A9, which encodes for facilitated glucose transporter member 9 (GLUT9), a major regulator of urate homeostasis. Hereditary hypouricaemia should be considered in people presenting with acute kidney injury related to intense exercise. Serum urate evaluation is a useful screening test best undertaken after recovery.


Subject(s)
Acute Kidney Injury , Renal Tubular Transport, Inborn Errors , Rhabdomyolysis , Urinary Calculi , Male , Adult , Humans , Uric Acid , Urinary Calculi/genetics , Urinary Calculi/complications , Urinary Calculi/diagnosis , Renal Tubular Transport, Inborn Errors/genetics , Renal Tubular Transport, Inborn Errors/complications , Renal Tubular Transport, Inborn Errors/diagnosis , Glucose Transport Proteins, Facilitative/genetics , Acute Kidney Injury/genetics , Mutation , Rhabdomyolysis/genetics , Rhabdomyolysis/complications
4.
Genes (Basel) ; 14(9)2023 09 20.
Article in English | MEDLINE | ID: mdl-37761963

ABSTRACT

Renal hypouricemia (RHUC) is a rare hereditary disorder caused by loss-of-function mutations in the SLC22A12 (RHUC type 1) or SLC2A9 (RHUC type 2) genes, encoding urate transporters URAT1 and GLUT9, respectively, that reabsorb urate in the renal proximal tubule. The characteristics of this disorder are low serum urate levels, high renal fractional excretion of urate, and occasional severe complications such as nephrolithiasis and exercise-induced acute renal failure. In this study, we report two Spanish (Caucasian) siblings and a Pakistani boy with clinical characteristics compatible with RHUC. Whole-exome sequencing (WES) analysis identified two homozygous variants: a novel pathogenic SLC22A12 variant, c.1523G>A; p.(S508N), in the two Caucasian siblings and a previously reported SLC2A9 variant, c.646G>A; p.(G216R), in the Pakistani boy. Our findings suggest that these two mutations cause RHUC through loss of urate reabsorption and extend the SLC22A12 mutation spectrum. In addition, this work further emphasizes the importance of WES analysis in clinical settings.


Subject(s)
Organic Anion Transporters , Renal Tubular Transport, Inborn Errors , Male , Humans , Exome Sequencing , Uric Acid , Renal Tubular Transport, Inborn Errors/genetics , Computational Biology , Rare Diseases , Organic Anion Transporters/genetics , Organic Cation Transport Proteins/genetics , Glucose Transport Proteins, Facilitative/genetics
5.
Pediatr Nephrol ; 38(9): 3017-3025, 2023 09.
Article in English | MEDLINE | ID: mdl-37000195

ABSTRACT

BACKGROUND: Although hyperuricemia is a widely studied condition with well-known effects on the kidneys, hypouricemia is usually considered a biochemical abnormality of no clinical significance despite the fact that it can be a sign or major finding of serious metabolic or genetic diseases affecting kidney health. In this study, we aimed to investigate and emphasize the clinical significance of hypouricemia. METHODS: Patients were evaluated retrospectively for persistent hypouricemia defined as serum uric acid concentrations of < 2 mg/dL on at least 3 different occasions. According to the blood and urine uric acid (UA) levels, the patients were classified as having hypouricemia due to UA underproduction vs. overexcretion. Demographic, clinical, and genetic characteristics were noted for analysis. RESULTS: Fourteen patients (n = 14; M/F 8/6) with persistent hypouricemia were identified. Hypouricemia due to underproduction was the cause of 42.8% of these cases. All of the patients with a uric acid level of 0 mg/dL (n = 4) had hypouricemia due to underproduction. The median serum uric acid level was 0.85 (0-1.6) mg/dL. Isolated hypouricemia and hypouricemia with metabolic acidosis were equally distributed. Among the patients with hypouricemia due to underproduction, the final diagnoses were xanthine dehydrogenase deficiency (n = 5) and alkaptonuria (n = 1). In the overexcretion group, the final diagnoses were nephropathic cystinosis (n = 6), distal renal tubular acidosis (n = 1), and hereditary renal hypouricemia (n = 1). The diagnostic lag was longer for patients with isolated hypouricemia compared to other patients (p = 0.001). CONCLUSIONS: Hypouricemia may reflect underlying genetic or metabolic diseases, early diagnosis of which could help preserve kidney function. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Acidosis, Renal Tubular , Azotemia , Metabolism, Inborn Errors , Renal Tubular Transport, Inborn Errors , Humans , Child , Adolescent , Uric Acid , Retrospective Studies , Renal Tubular Transport, Inborn Errors/diagnosis , Renal Tubular Transport, Inborn Errors/genetics
6.
Rheumatology (Oxford) ; 61(3): 1276-1281, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34255816

ABSTRACT

OBJECTIVES: Up to 0.3% of Japanese have hypouricaemia. Most cases appear to result from a hereditary disease, renal hypouricaemia (RHUC), which causes exercise-induced acute kidney injury and urolithiasis. However, to what extent RHUC accounts for hypouricaemia is not known. We therefore investigated its frequency and evaluated its risks by genotyping a general Japanese population. METHODS: A cohort of 4993 Japanese was examined by genotyping the non-functional variants R90H (rs121907896) and W258X (rs121907892) of URAT1/SLC22A12, the two most common causative variants of RHUC in Japanese. RESULTS: Participants' fractional excretion of uric acid and risk allele frequencies markedly increased at lower serum uric acid (SUA) levels. Ten participants (0.200%) had an SUA level ≤2.0 mg/dl and nine had R90H or W258X and were likely to have RHUC. Logistic regression analysis revealed these URAT1 variants to be significantly and independently associated with the risk of hypouricaemia and mild hypouricaemia (SUA ≤3.0 mg/dl) as well as sex, age and BMI, but these URAT1 variants were the only risks in the hypouricaemia population (SUA ≤2.0 mg/dl). W258X was only a risk in males with SUA ≤3.0 mg/dl. CONCLUSION: Our study accurately reveals the prevalence of RHUC and provides genetic evidence for its definition (SUA ≤2.0 mg/dl). We also show that individuals with SUA ≤3.0 mg/dl, especially males, are prone to RHUC. Our findings will help to promote a better epidemiological understanding of RHUC as well as more accurate diagnosis, especially in males with mild hypouricaemia.


Subject(s)
Organic Anion Transporters/genetics , Organic Cation Transport Proteins/genetics , Renal Tubular Transport, Inborn Errors/genetics , Urinary Calculi/genetics , Female , Genetic Variation , Genotype , Humans , Japan/epidemiology , Male , Renal Tubular Transport, Inborn Errors/epidemiology , Urinary Calculi/epidemiology
7.
Am J Physiol Renal Physiol ; 322(1): F14-F26, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34747197

ABSTRACT

The multiligand receptors megalin (Lrp2) and cubilin (Cubn) and their endocytic adaptor protein Dab2 (Dab2) play essential roles in maintaining the integrity of the apical endocytic pathway of proximal tubule (PT) cells and have complex and poorly understood roles in the development of chronic kidney disease. Here, we used RNA-sequencing and CRISPR/Cas9 knockout (KO) technology in a well-differentiated cell culture model to identify PT-specific transcriptional changes that are directly consequent to the loss of megalin, cubilin, or Dab2 expression. KO of Lrp2 had the greatest transcriptional effect, and nearly all genes whose expression was affected in Cubn KO and Dab2 KO cells were also changed in Lrp2 KO cells. Pathway analysis and more granular inspection of the altered gene profiles suggested changes in pathways with immunomodulatory functions that might trigger the pathological changes observed in KO mice and patients with Donnai-Barrow syndrome. In addition, differences in transcription patterns between Lrp2 and Dab2 KO cells suggested the possibility that altered spatial signaling by aberrantly localized receptors contributes to transcriptional changes upon the disruption of PT endocytic function. A reduction in transcripts encoding sodium-glucose cotransporter isoform 2 was confirmed in Lrp2 KO mouse kidney lysates by quantitative PCR analysis. Our results highlight the role of megalin as a master regulator and coordinator of ion transport, metabolism, and endocytosis in the PT. Compared with the studies in animal models, this approach provides a means to identify PT-specific transcriptional changes that are directly consequent to the loss of these target genes.NEW & NOTEWORTHY Megalin and cubilin receptors together with their adaptor protein Dab2 represent major components of the endocytic machinery responsible for efficient uptake of filtered proteins by the proximal tubule (PT). Dab2 and megalin expression have been implicated as both positive and negative modulators of kidney disease. We used RNA sequencing to knock out CRISPR/Cas9 cubilin, megalin, and Dab2 in highly differentiated PT cells to identify PT-specific changes that are directly consequent to knockout of each component.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Gene Knockout Techniques , Kidney Tubules, Proximal/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Receptors, Cell Surface/metabolism , Transcription, Genetic , Adaptor Proteins, Signal Transducing/genetics , Agenesis of Corpus Callosum/genetics , Agenesis of Corpus Callosum/metabolism , Agenesis of Corpus Callosum/pathology , Animals , Apoptosis Regulatory Proteins/genetics , Cells, Cultured , Databases, Genetic , Gene Regulatory Networks , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/metabolism , Hearing Loss, Sensorineural/pathology , Hernias, Diaphragmatic, Congenital/genetics , Hernias, Diaphragmatic, Congenital/metabolism , Hernias, Diaphragmatic, Congenital/pathology , Humans , Kidney Tubules, Proximal/pathology , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Male , Mice, Knockout , Monodelphis , Myopia/genetics , Myopia/metabolism , Myopia/pathology , Proteinuria/genetics , Proteinuria/metabolism , Proteinuria/pathology , Receptors, Cell Surface/genetics , Renal Tubular Transport, Inborn Errors/genetics , Renal Tubular Transport, Inborn Errors/metabolism , Renal Tubular Transport, Inborn Errors/pathology
9.
J Pharmacol Sci ; 148(1): 14-18, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34924118

ABSTRACT

Cyclin M (CNNM) and its prokaryotic ortholog CorC belong to a family of proteins that function as Mg2+-extruding transporters by stimulating Na+/Mg2+ exchange, and thereby control intracellular Mg2+ levels. The Mg2+-extruding function of CNNM is inhibited by the direct binding of an oncogenic protein, phosphatase of regenerating liver (PRL), and this inhibition is responsible for the PRL-driven malignant progression of cancers. Studies with mouse strains deficient for the CNNM gene family revealed the importance of CNNM4 and CNNM2 in maintaining organismal Mg2+ homeostasis by participating in intestinal Mg2+ absorption and renal reabsorption, respectively. Moreover, CNNM proteins are involved in various diseases, and gene mutations in CNNM2 and CNNM4 cause dominant familial hypomagnesemia and Jalili syndrome, respectively. Genome wide association studies have also revealed the importance of CNNM2 in multiple major diseases, such as hypertension and schizophrenia. Collectively, the molecular and biological characterizations of CNNM/CorC show that they are an intriguing therapeutic target; the current status of drug development targeting these proteins is also discussed.


Subject(s)
Cation Transport Proteins/genetics , Cation Transport Proteins/physiology , Genome-Wide Association Study , Magnesium/metabolism , Molecular Targeted Therapy , Neoplasms/genetics , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/therapy , Animals , Cation Transport Proteins/metabolism , Cone-Rod Dystrophies/genetics , Cone-Rod Dystrophies/therapy , Homeostasis/genetics , Humans , Hypercalciuria/genetics , Hypercalciuria/therapy , Hypertension/genetics , Hypertension/therapy , Kidney/metabolism , Mice , Mutation , Neoplasms/therapy , Nephrocalcinosis/genetics , Nephrocalcinosis/therapy , Protein Binding , Protein Tyrosine Phosphatases/metabolism , Renal Tubular Transport, Inborn Errors/genetics , Renal Tubular Transport, Inborn Errors/therapy , Schizophrenia/genetics , Schizophrenia/therapy
10.
J Am Soc Nephrol ; 32(11): 2885-2899, 2021 11.
Article in English | MEDLINE | ID: mdl-34607910

ABSTRACT

BACKGROUND: Over the last decade, advances in genetic techniques have resulted in the identification of rare hereditary disorders of renal magnesium and salt handling. Nevertheless, approximately 20% of all patients with tubulopathy lack a genetic diagnosis. METHODS: We performed whole-exome and -genome sequencing of a patient cohort with a novel, inherited, salt-losing tubulopathy; hypomagnesemia; and dilated cardiomyopathy. We also conducted subsequent in vitro functional analyses of identified variants of RRAGD, a gene that encodes a small Rag guanosine triphosphatase (GTPase). RESULTS: In eight children from unrelated families with a tubulopathy characterized by hypomagnesemia, hypokalemia, salt wasting, and nephrocalcinosis, we identified heterozygous missense variants in RRAGD that mostly occurred de novo. Six of these patients also had dilated cardiomyopathy and three underwent heart transplantation. We identified a heterozygous variant in RRAGD that segregated with the phenotype in eight members of a large family with similar kidney manifestations. The GTPase RagD, encoded by RRAGD, plays a role in mediating amino acid signaling to the mechanistic target of rapamycin complex 1 (mTORC1). RagD expression along the mammalian nephron included the thick ascending limb and the distal convoluted tubule. The identified RRAGD variants were shown to induce a constitutive activation of mTOR signaling in vitro. CONCLUSIONS: Our findings establish a novel disease, which we call autosomal dominant kidney hypomagnesemia (ADKH-RRAGD), that combines an electrolyte-losing tubulopathy and dilated cardiomyopathy. The condition is caused by variants in the RRAGD gene, which encodes Rag GTPase D; these variants lead to an activation of mTOR signaling, suggesting a critical role of Rag GTPase D for renal electrolyte handling and cardiac function.


Subject(s)
Cardiomyopathy, Dilated/genetics , Hypercalciuria/genetics , Kidney Diseases/genetics , Monomeric GTP-Binding Proteins/genetics , Mutation, Missense , Nephrocalcinosis/genetics , Renal Tubular Transport, Inborn Errors/genetics , TOR Serine-Threonine Kinases/metabolism , Cardiomyopathy, Dilated/metabolism , Female , HEK293 Cells , Humans , Hypercalciuria/metabolism , Kidney Diseases/metabolism , Kidney Tubules, Distal/metabolism , Male , Models, Molecular , Natriuresis/genetics , Nephrocalcinosis/metabolism , Pedigree , Protein Conformation , Renal Tubular Transport, Inborn Errors/metabolism , Seizures/genetics , Seizures/metabolism , Signal Transduction , Exome Sequencing , Whole Genome Sequencing
11.
Nephron ; 145(6): 717-720, 2021.
Article in English | MEDLINE | ID: mdl-34515155

ABSTRACT

Neurological disorders, including seizures, migraine, depression, and intellectual disability, are frequently associated with hypomagnesemia. Specifically, magnesium (Mg2+) channel transient receptor potential melastatin (TRPM) 6 and TRPM7 are essential for brain function and development. Both channels are also localized in renal and intestinal epithelia and are crucial for Mg2+(re)absorption. Cyclin M2 (CNNM2) is located on the basolateral side of the distal convoluted tubule. In addition, it plays a role in the maintenance of plasma Mg2+ levels along with TRPM6, which is present at the apical level. The CNNM2 gene is crucial for renal magnesium handling, brain development, and neurological functioning. Here, we identified a novel mutation in the CNNM2 gene causing a cognitive delay in a girl with hypomagnesemia. We suggest testing for CNNM2 mutation in patients with neurological impairment and hypomagnesemia.


Subject(s)
Feeding and Eating Disorders/diagnosis , Intellectual Disability/complications , Renal Tubular Transport, Inborn Errors/diagnosis , Adolescent , Cation Transport Proteins/genetics , Feeding and Eating Disorders/genetics , Female , Humans , Intellectual Disability/genetics , Renal Tubular Transport, Inborn Errors/complications , Renal Tubular Transport, Inborn Errors/genetics
12.
J AAPOS ; 25(5): 316-318, 2021 10.
Article in English | MEDLINE | ID: mdl-34425238

ABSTRACT

We report 2 consecutive siblings who presented with unilateral and bilateral macular scars, respectively (initially presumed in the older sibling to be from congenital toxoplasmosis), who also developed chronic kidney disease. Both underwent genetic testing and were positive for a mutation in CLDN19, confirming the diagnosis of familial hypomagnesemia with hypercalciuria and nephrocalcinosis with severe ocular involvement. One of our patients had the unique finding of mild foveal hypoplasia, which is not typically associated with CLDN19 mutations.


Subject(s)
Cicatrix/congenital , Claudins , Eye Diseases, Hereditary/diagnosis , Macula Lutea/pathology , Renal Tubular Transport, Inborn Errors/diagnosis , Claudins/genetics , Eye Diseases, Hereditary/genetics , Humans , Mutation , Renal Tubular Transport, Inborn Errors/genetics , Siblings
13.
Eur J Med Genet ; 64(9): 104264, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34161864

ABSTRACT

BACKGROUND: Maturity onset diabetes of the young (MODY) is the most commonly reported form of monogenic diabetes in the pediatric population. Only a few cases of digenic MODY have been reported up to now. CASE REPORT: A female patient was diagnosed with diabetes at the age of 7 years and was treated with insulin. A strong family history of diabetes was present in the maternal side of the family. The patient also presented hypomagnesemia, glomerulocystic kidney disease and a bicornuate uterus. Genetic testing of the patient revealed that she was a double heterozygous carrier of HNF1A gene variant c.685C > T; (p.Arg229Ter) and a whole gene deletion of the HNF1B gene. Her mother was a carrier of the same HNF1A variant. CONCLUSION: Digenic inheritance of MODY pathogenic variants is probably more common than currently reported in literature. The use of Next Generation Sequencing panels in testing strategies for MODY could unmask such cases that would otherwise remain undiagnosed.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-beta/genetics , Kidney Diseases, Cystic/genetics , Kidney Diseases/genetics , Renal Tubular Transport, Inborn Errors/genetics , Child , Diabetes Mellitus, Type 2/pathology , Female , Heterozygote , Humans , Kidney Diseases/pathology , Kidney Diseases, Cystic/pathology , Mutation , Phenotype , Renal Tubular Transport, Inborn Errors/pathology , Uterus/abnormalities
15.
PLoS One ; 15(9): e0239965, 2020.
Article in English | MEDLINE | ID: mdl-32997713

ABSTRACT

The maintenance of magnesium (Mg2+) homeostasis is essential for human life. The Cystathionine-ß-synthase (CBS)-pair domain divalent metal cation transport mediators (CNNMs) have been described to be involved in maintaining Mg2+ homeostasis. Among these CNNMs, CNNM2 is expressed in the basolateral membrane of the kidney tubules where it is involved in Mg2+ reabsorption. A total of four patients, two of them with a suspected disorder of calcium metabolism, and two patients with a clinical diagnosis of primary tubulopathy were screened for mutations by Next-Generation Sequencing (NGS). We found one novel likely pathogenic variant in the heterozygous state (c.2384C>A; p.(Ser795*)) in the CNNM2 gene in a family with a suspected disorder of calcium metabolism. In this family, hypomagnesemia was indirectly discovered. Moreover, we observed three novel variants of uncertain significance in heterozygous state in the other three patients (c.557G>C; p.(Ser186Thr), c.778A>T; p.(Ile260Phe), and c.1003G>A; p.(Asp335Asn)). Our study shows the utility of Next-Generation Sequencing in unravelling the genetic origin of rare diseases. In clinical practice, serum Mg2+ should be determined in calcium and PTH-related disorders.


Subject(s)
Cation Transport Proteins/genetics , Magnesium/blood , Renal Tubular Transport, Inborn Errors/diagnosis , Adolescent , Adult , Cation Transport Proteins/chemistry , Codon, Nonsense , Female , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Polymorphism, Single Nucleotide , Renal Tubular Transport, Inborn Errors/genetics , Sequence Analysis, DNA
16.
BMC Nephrol ; 21(1): 282, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32677916

ABSTRACT

BACKGROUND: Renal hypouricemia (RHUC) is a genetic disorder caused by mutations in the SLC22A12 gene, which encodes the major uric acid (UA) transporter, URAT1. The clinical course of related, living donor-derived RHUC in patients undergoing kidney transplantation is poorly understood. Here, we report a case of kidney transplantation from a living relative who had an SLC22A12 mutation. After the transplantation, the recipient's fractional excretion of UA (FEUA) decreased, and chimeric tubular epithelium was observed. CASE PRESENTATION: A 40-year-old man underwent kidney transplantation. His sister was the kidney donor. Three weeks after the transplantation, he had low serum-UA, 148.7 µmol/L, and elevated FEUA, 20.8% (normal: < 10%). The patient's sister had low serum-UA (101.1 µmol/L) and high FEUA (15.8%) before transplant. Suspecting RHUC, we performed next-generation sequencing on a gene panel containing RHUC-associated genes. A heterozygous missense mutation in the SLC22A12 gene was detected in the donor, but not in the recipient. The recipient's serum-UA level increased from 148.7 µmol/L to 231.9 µmol/L 3 months after transplantation and was 226.0 µmol/L 1 year after transplantation. His FEUA decreased from 20.8 to 11.7% 3 months after transplantation and was 12.4% 1 year after transplantation. Fluorescence in situ hybridization of allograft biopsies performed 3 months and 1 year after transplantation showed the presence of Y chromosomes in the tubular epithelial cells, suggesting the recipient's elevated serum-UA levels were owing to a chimeric tubular epithelium. CONCLUSIONS: We reported on a kidney transplant recipient that developed RHUC owing to his donor possessing a heterozygous mutation in the SLC22A12 (URAT1) gene. Despite this mutation, the clinical course was not problematic. Thus, the presence of donor-recipient chimerism in the tubular epithelium might positively affect the clinical course, at least in the short-term.


Subject(s)
Kidney Transplantation , Kidney Tubules/metabolism , Living Donors , Organic Anion Transporters/genetics , Organic Cation Transport Proteins/genetics , Renal Tubular Transport, Inborn Errors/genetics , Uric Acid/metabolism , Urinary Calculi/genetics , Adult , Chimerism , Female , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation, Missense , Renal Elimination/genetics , Renal Tubular Transport, Inborn Errors/metabolism , Siblings , Urinary Calculi/metabolism
17.
Calcif Tissue Int ; 107(4): 403-408, 2020 10.
Article in English | MEDLINE | ID: mdl-32710267

ABSTRACT

Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is a rare autosomal recessive disease caused by mutations in the CLDN16 or CLDN19 gene; however, few cases develop classical amelogenesis imperfecta. Herein, we report the case of a boy with early clinical renal manifestations that started at 1 year of age and presenting with dental hypoplasia and growth delay. The patient presented with vomiting, polyuria, and polydipsia. Apart from recurrent sterile leukocyturia, erroneously treated as infectious, he was normal, except for short stature and amelogenesis imperfecta with gradually discolored teeth. Laboratory tests revealed hyperparathyroidism, hypomagnesemia, severe hypercalciuria, and hypermagnesuria on 24-h urine testing. Helical computed tomography confirmed nephrocalcinosis. We performed whole-exome sequencing (WES) to test the hypothesis of FHHNC and oligogenic inheritance of amelogenesis. Analysis of the WES binary sequence alignment/map file revealed the presence of exon 1 of the CLDN16 and absence of the other exons [c.325_c918*? (E2_E5del)]. We confirmed a CLDN16 E2_E5 homozygous deletion by multiplex ligation-dependent probe amplification and polymerase chain reaction assays. Although most mutations causing FHHNC are missense and nonsense mutations in the CLDN16 or CLDN19 gene, large deletions occur and may be misled by WES, which is generally used for genetic screening of oligogenic disorders. The patient received cholecalciferol, magnesium oxide and potassium citrate. Later, the combination with hydrochlorothiazide plus amiloride was prescribed, with a good response during follow-up. Our report broadens the phenotype of FHHNC, including severe early-onset amelogenesis and short stature, and reinforces the phenotype-genotype correlation of the large deletion found in CLDN16.


Subject(s)
Amelogenesis Imperfecta , Claudins/genetics , Hypercalciuria/genetics , Nephrocalcinosis/genetics , Renal Tubular Transport, Inborn Errors/genetics , Amelogenesis Imperfecta/genetics , Body Height , Child , Homozygote , Humans , Male , Sequence Deletion
18.
BMC Med Genet ; 21(1): 91, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32375679

ABSTRACT

BACKGROUND: Renal hypouricemia (RHUC) is a hereditary disorder where mutations in SLC22A12 gene and SLC2A9 gene cause RHUC type 1 (RHUC1) and RHUC type 2 (RHUC2), respectively. These genes regulate renal tubular reabsorption of urates while there exist other genes counterbalancing the net excretion of urates including ABCG2 and SLC17A1. Urate metabolism is tightly interconnected with glucose metabolism, and SLC2A9 gene may be involved in insulin secretion from pancreatic ß-cells. On the other hand, a myriad of genes are responsible for the impaired insulin secretion independently of urate metabolism. CASE PRESENTATION: We describe a 67 year-old Japanese man who manifested severe hypouricemia (0.7 mg/dl (3.8-7.0 mg/dl), 41.6 µmol/l (226-416 µmol/l)) and diabetes with impaired insulin secretion. His high urinary fractional excretion of urate (65.5%) and low urinary C-peptide excretion (25.7 µg/day) were compatible with the diagnosis of RHUC and impaired insulin secretion, respectively. Considering the fact that metabolic pathways regulating urates and glucose are closely interconnected, we attempted to delineate the genetic basis of the hypouricemia and the insulin secretion defect observed in this patient using whole exome sequencing. Intriguingly, we found homozygous Trp258* mutations in SLC22A12 gene causing RHUC1 while concurrent mutations reported to be associated with hyperuricemia were also discovered including ABCG2 (Gln141Lys) and SLC17A1 (Thr269Ile). SLC2A9, that also facilitates glucose transport, has been implicated to enhance insulin secretion, however, the non-synonymous mutations found in SLC2A9 gene of this patient were not dysfunctional variants. Therefore, we embarked on a search for causal mutations for his impaired insulin secretion, resulting in identification of multiple mutations in HNF1A gene (MODY3) as well as other genes that play roles in pancreatic ß-cells. Among them, the Leu80fs in the homeobox gene NKX6.1 was an unreported mutation. CONCLUSION: We found a case of RHUC1 carrying mutations in SLC22A12 gene accompanied with compensatory mutations associated with hyperuricemia, representing the first report showing coexistence of the mutations with opposed potential to regulate urate concentrations. On the other hand, independent gene mutations may be responsible for his impaired insulin secretion, which contains novel mutations in key genes in the pancreatic ß-cell functions that deserve further scrutiny.


Subject(s)
Diabetes Complications/genetics , Glucose Transport Proteins, Facilitative/genetics , Organic Anion Transporters/genetics , Organic Cation Transport Proteins/genetics , Renal Tubular Transport, Inborn Errors/genetics , Urinary Calculi/genetics , Aged , Diabetes Complications/complications , Diabetes Complications/pathology , Glucose/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Heterozygote , Homeodomain Proteins/genetics , Homozygote , Humans , Insulin/biosynthesis , Insulin/genetics , Insulin Secretion/genetics , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Male , Mutation/genetics , Renal Tubular Transport, Inborn Errors/complications , Renal Tubular Transport, Inborn Errors/pathology , Uric Acid/metabolism , Urinary Calculi/complications , Urinary Calculi/pathology , Exome Sequencing
19.
Eur J Med Genet ; 63(6): 103923, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32240828

ABSTRACT

Intrauterine infections with the pathogens, including toxoplasmosis, other (syphilis, varicella, mumps, parvovirus, and HIV), rubella, cytomegalovirus, and herpes simplex (TORCH) in susceptible individuals during pregnancy, result in microcephaly, white matter disease, cerebral atrophy, and calcifications in the fetus. Pseudo-TORCH syndrome is an umbrella term, consisting of several syndromes, resultant from different genetic alterations and pathogenetic mechanisms. Band-like calcification with simplified gyration and polymicrogyria (BLC-PMG) is one of these conditions, resultant from biallelic mutations in the OCLN gene, located in the chromosome 5q13.2. OCLN gene encodes occludin, a tight junction protein, which is expressed in the endothelia. The absence of occludin in the developing brain subsequently results in abnormal blood-brain barrier, thus immune-cell mediated tissue damage and cortical malformation. Herein, we present a pediatric patient who had progressive microcephaly, spasticity, multi-drug resistant epilepsy, PMG and intracranial band-type calcifications, accompanied by central diabetes insipidus and renal dysfunction. Whole exome sequencing revealed a homozygote W58Ffs*10 (c.173_194del) frameshift mutation in the OCLN gene. Of 34 BLC-PMG cases with demonstrable OCLN mutations, only three had renal manifestations, which is responsible for the majority of the demises. This is the first case diagnosed as having central diabetes insipidus and responded to desmopressin treatment to the best of our knowledge, however, this clinical improvement could not prevent the patient from renal dysfunction. The patient deceased at four years of age from sepsis, therefore early diagnosis, optimal follow-up for renal involvement and infection prevention measures are necessary for the patients with BLC-PMG.


Subject(s)
Autoimmune Diseases of the Nervous System/genetics , Diabetes Insipidus, Neurogenic/genetics , Nervous System Malformations/genetics , Occludin/genetics , Phenotype , Renal Tubular Transport, Inborn Errors/genetics , Autoimmune Diseases of the Nervous System/pathology , Diabetes Insipidus, Neurogenic/pathology , Female , Frameshift Mutation , Homozygote , Humans , Infant , Nervous System Malformations/pathology , Renal Tubular Transport, Inborn Errors/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...