Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
J Am Chem Soc ; 146(20): 13875-13885, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718165

ABSTRACT

Bioluminescence is a fascinating natural phenomenon, wherein organisms produce light through specific biochemical reactions. Among these organisms, Renilla luciferase (RLuc) derived from the sea pansy Renilla reniformis is notable for its blue light emission and has potential applications in bioluminescent tagging. Our study focuses on RLuc8, a variant of RLuc with eight amino acid substitutions. Recent studies have shown that the luminescent emitter coelenteramide can adopt multiple protonation states, which may be influenced by nearby residues at the enzyme's active site, demonstrating a complex interplay between protein structure and bioluminescence. Herein, using the quantum mechanical consistent force field method and the semimacroscopic protein dipole-Langevin dipole method with linear response approximation, we show that the phenolate state of coelenteramide in RLuc8 is the primary light-emitting species in agreement with experimental results. Our calculations also suggest that the proton transfer (PT) from neutral coelenteramide to Asp162 plays a crucial role in the bioluminescence process. Additionally, we reproduced the observed emission maximum for the amide anion in RLuc8-D120A and the pyrazine anion in the presence of a Na+ counterion in RLuc8-D162A, suggesting that these are the primary emitters. Furthermore, our calculations on the neutral emitter in the engineered AncFT-D160A enzyme, structurally akin to RLuc8-D162A but with a considerably blue-shifted emission peak, aligned with the observed data, possibly explaining the variance in emission peaks. Overall, this study demonstrates an effective approach to investigate chromophores' bimolecular states while incorporating the PT process in emission spectra calculations, contributing valuable insights for future studies of PT in photoproteins.


Subject(s)
Pyrazines , Quantum Theory , Pyrazines/chemistry , Pyrazines/metabolism , Renilla/enzymology , Luciferases/chemistry , Luciferases/metabolism , Luminescence , Animals , Imidazoles/chemistry , Benzeneacetamides
2.
Int J Mol Sci ; 24(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36768474

ABSTRACT

Ca2+-triggered coelenterazine-binding protein (CBP) is a natural form of the luciferase substrate involved in the Renilla bioluminescence reaction. It is a stable complex of coelenterazine and apoprotein that, unlike coelenterazine, is soluble and stable in an aquatic environment and yields a significantly higher bioluminescent signal. This makes CBP a convenient substrate for luciferase-based in vitro assay. In search of a similar substrate form for the luciferase NanoLuc, a furimazine-apoCBP complex was prepared and verified against furimazine, coelenterazine, and CBP. Furimazine-apoCBP is relatively stable in solution and in a frozen or lyophilized state, but as distinct from CBP, its bioluminescence reaction with NanoLuc is independent of Ca2+. NanoLuc turned out to utilize all the four substrates under consideration. The pairs of CBP-NanoLuc and coelenterazine-NanoLuc generate bioluminescence with close efficiency. As for furimazine-apoCBP-NanoLuc pair, the efficiency with which it generates bioluminescence is almost twice lower than that of the furimazine-NanoLuc. The integral signal of the CBP-NanoLuc pair is only 22% lower than that of furimazine-NanoLuc. Thus, along with furimazine as the most effective NanoLuc substrate, CBP can also be recommended as a substrate for in vitro analytical application in view of its water solubility, stability, and Ca2+-triggering "character".


Subject(s)
Carrier Proteins , Luminescent Measurements , Animals , Carrier Proteins/metabolism , Luciferases/metabolism , Renilla , Calcium/metabolism
3.
PLoS One ; 17(10): e0276315, 2022.
Article in English | MEDLINE | ID: mdl-36251663

ABSTRACT

The luciferin sulfokinase (coelenterazine sulfotransferase) of Renilla was previously reported to activate the storage form, luciferyl sulfate (coelenterazine sulfate) to luciferin (coelenterazine), the substrate for the luciferase bioluminescence reaction. The gene coding for the coelenterazine sulfotransferase has not been identified. Here we used a combined proteomic/transcriptomic approach to identify and clone the sulfotransferase cDNA. Multiple isoforms of coelenterazine sulfotransferase were identified from the anthozoan Renilla muelleri by intersecting its transcriptome with the LC-MS/MS derived peptide sequences of coelenterazine sulfotransferase purified from Renilla. Two of the isoforms were expressed in E. coli, purified, and partially characterized. The encoded enzymes display sulfotransferase activity that is comparable to that of the native sulfotransferase isolated from Renilla reniformis that was reported in 1970. The bioluminescent assay for sensitive detection of 3'-phosphoadenosine 5'-phosphate (PAP) using the recombinant sulfotransferase is demonstrated.


Subject(s)
Escherichia coli , Proteomics , Animals , Arylsulfotransferase , Chromatography, Liquid , DNA, Complementary , Escherichia coli/genetics , Imidazoles , Luciferases/genetics , Luminescent Measurements , Pyrazines , Renilla/genetics , Sulfates , Sulfotransferases/genetics , Tandem Mass Spectrometry
4.
Biochem Biophys Res Commun ; 587: 24-28, 2022 01 08.
Article in English | MEDLINE | ID: mdl-34864391

ABSTRACT

Coelenterazine (CTZ) is known as luciferin (a substrate) for the luminescence reaction with luciferase (an enzyme) in marine organisms and is unstable in aqueous solutions. The dehydrogenated form of CTZ (dehydrocoelenterazine, dCTZ) is stable and thought to be a storage form of CTZ and a recycling intermediate from the condensation reaction of coelenteramine and 4-hydroxyphenylpyruvic acid to CTZ. In this study, the enzymatic conversion of dCTZ to CTZ was successfully achieved using NAD(P)H:FMN oxidoreductase from the bioluminescent bacterium Vibrio fischeri ATCC 7744 (FRase) in the presence of NADH (the FRase-NADH reaction). CTZ reduced from dCTZ in the FRase-NADH reaction was identified by HPLC and LC/ESI-TOF-MS analyses. Thus, dCTZ can be enzymatically converted to CTZ in vitro. Furthermore, the concentration of dCTZ could be determined by the luminescence activity using the CTZ-utilizing luciferases (Gaussia luciferase or Renilla luciferase) coupled with the FRase-NADH reaction.


Subject(s)
Aliivibrio fischeri/enzymology , Bacterial Proteins/metabolism , Imidazoles/metabolism , Luciferases/metabolism , NADH, NADPH Oxidoreductases/metabolism , Pyrazines/metabolism , Renilla/enzymology , Aliivibrio fischeri/genetics , Animals , Bacterial Proteins/genetics , Biocatalysis , Biotransformation , Chromatography, High Pressure Liquid , Flavin Mononucleotide/metabolism , Gene Expression , Kinetics , Luciferases/genetics , Luminescence , Luminescent Measurements , NADH, NADPH Oxidoreductases/genetics , Phenylpyruvic Acids/metabolism , Renilla/genetics
5.
Int J Mol Sci ; 22(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374392

ABSTRACT

Two G-quadruplex forming oligonucleotides [d(TG4T)4 and d(TG6T)4] were selected as two tetramolecular quadruplex nanostructures because of their demonstrated ability to be modified with hydrophobic molecules. This allowed us to synthesize two series of G-quadruplex conjugates that differed in the number of G-tetrads, as well as in the terminal position of the lipid modification. Both solution and solid-phase syntheses were carried out to yield the corresponding lipid oligonucleotide conjugates modified at their 3'- and 5'-termini, respectively. Biophysical studies confirmed that the presence of saturated alkyl chains with different lengths did not affect the G-quadruplex integrity, but increased the stability. Next, the G-quadruplex domain was added to an 18-mer antisense oligonucleotide. Gene silencing studies confirmed the ability of such G-rich oligonucleotides to facilitate the inhibition of target Renilla luciferase without showing signs of toxicity in tumor cell lines.


Subject(s)
G-Quadruplexes , Lipids/chemistry , Nanostructures/chemistry , Oligonucleotides/genetics , Animals , Biophysics , Cell Line, Tumor , Circular Dichroism , HEK293 Cells , HeLa Cells , Humans , Luciferases/metabolism , Microscopy, Fluorescence , Nucleic Acid Conformation , Oligonucleotides/chemistry , Oligonucleotides, Antisense , Renilla/enzymology , Transfection
6.
J Photochem Photobiol B ; 210: 111980, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32745950

ABSTRACT

The three hypoxia-inducible factor (HIF) prolyl-4-hydroxylase domain (PHD) 1-3 enzymes confer oxygen sensitivity to the HIF pathway and are novel therapeutic targets for treatment of renal anemia. Inhibition of the PHDs may further be beneficial in other hypoxia-associated diseases, including ischemia and chronic inflammation. Several pharmacologic PHD inhibitors (PHIs) are available, but our understanding of their selectivity and its chemical basis is limited. We here report that the PHI JNJ-42041935 (JNJ-1935) is structurally similar to the firefly luciferase substrate D-luciferin. Our results demonstrate that JNJ-1935 is a novel inhibitor of firefly luciferase enzymatic activity. In contrast, the PHIs FG-4592 (roxadustat) and FG-2216 (ICA, BIQ, IOX3, YM 311) did not affect firefly luciferase. The JNJ-1935 mode of inhibition is competitive with a Ki of 1.36 µM. D-luciferin did not inhibit the PHDs, despite its structural similarity to JNJ-1935. This study provides insights into a previously unknown JNJ-1935 off-target effect as well as into the chemical requirements for firefly luciferase and PHD inhibitors and may inform the development of novel compounds targeting these enzymes.


Subject(s)
Luciferases, Firefly/metabolism , Prolyl-Hydroxylase Inhibitors/chemistry , Animals , Benzothiazoles/metabolism , Binding, Competitive , Fireflies/enzymology , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/metabolism , Isoquinolines/chemistry , Isoquinolines/metabolism , Kinetics , Luciferases, Firefly/antagonists & inhibitors , Luciferases, Firefly/genetics , Prolyl-Hydroxylase Inhibitors/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Renilla/enzymology
7.
Toxicology ; 439: 152476, 2020 06.
Article in English | MEDLINE | ID: mdl-32335162

ABSTRACT

Two non-animal test methods, KeratinoSens™ and LuSens, have been approved by the Organization of Economic Cooperation and Development (OECD) test guidelines for evaluating the sensitization potential of chemicals, and been positioned as a method for appraising key event (KE)-2, namely, the keratinocyte response component of the Adverse Outcome Pathway (AOP) in sensitization process. However, these two methods require separate cytotoxicity tests to determine the concentrations to be tested in the main test. Therefore, we developed a simple and highly accurate KE-2 test method named α-Sens that uses the dual luciferase assay system and attempted a further application of luciferase-based determination of cell viability to calculate the normalized Antioxidant response element (ARE)-mediated transcriptional activity, named normalized ARE Activity (nAA), to evaluate the sensitizing potential of chemicals. A cell line carrying the ARE-inducible Firefly luciferase reporter gene and Thymidine kinase (TK) promoter-driven Renilla luciferase gene was established and used for the α-Sens. A total of 28 chemicals, consisting of 19 skin sensitizers and nine non-skin sensitizers were tested by this assay system. The α-Sens yielded an accuracy (%), sensitivity (%), and specificity (%) against corresponding values for local lymph node assay of 96.4 %, 95.0 %, and 100 %, respectively, and for human data of 100 % for all. The α-Sens gave clear positive results for phenyl benzoate and eugenol, chemicals for which KeratinoSens™ or LuSens yielded false-negative results, using a new parameter. Our results suggest that better prediction capacity could be achieved by using nAA as a classifier compared to other existing KE-2 test methods. In conclusion, the α-Sens is promising as a simple and highly accurate in vitro skin sensitization test method for evaluation of KE-2.


Subject(s)
Antioxidant Response Elements/drug effects , Dermatitis, Allergic Contact/pathology , Drug Evaluation, Preclinical/methods , NF-E2-Related Factor 2/drug effects , Transcription, Genetic/drug effects , Animal Testing Alternatives , Animals , Cell Survival/drug effects , Humans , Keratinocytes/drug effects , Local Lymph Node Assay , Luciferases/metabolism , Renilla/enzymology , Sensitivity and Specificity , Skin Tests , Thymidine Kinase/metabolism
8.
Pharm Dev Technol ; 25(7): 855-864, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32188321

ABSTRACT

G protein-coupled receptor (GPCR) 87, is overexpressed in various cancer cells especially pancreatic cancer and plays a critical role in tumor cell survival. Nano-particles (NP) have become the essential vehicles for nucleotide internalization to the cell, due to the negative charge of nucleotides and their poor stability in blood circulation. In this study, the HEK293T cell linewas transfected with GPR87-plasmid after which the double-stranded RNA molecules targeting the GPR87 gene were prepared and purified. 1.1B4 cancer cell lines were used as model pancreatic cancer cells. Produced siRNA molecules were encapsulated in Poly(Lactic-Co-Glycolic Acid) (PLGA) nano-micelles using three different methods, two of which were according to literature with (siR-PLGA-S) or without (siR-PLGA-V) sonication. However, a new method was suggested to overcome problems such as poly-dispersity and large sizes of siR-PLGA-S and siR-PLGA-V. The new method consists of encapsulating siRNA using mild agitation to the pre-made PLGA NPs. The latter method provided mono-dispersed particles (siR-P-PLGA) with 92 nm size and desired Encapsulation Efficiency (EE%). siR-P-PLGA was able to silence the GPR-87 gene in a ratio of 83.9%, almost 41 times more effective than siR-PLGA-S and siR-PLGA-V in HEK 293 T cells. siR-P-PLGA was able to show a mild cytotoxic effect on 1.1B4 pancreatic cancer cells within 48 h.


Subject(s)
Gene Targeting/methods , Nanoparticles , Pancreatic Neoplasms/genetics , Polylactic Acid-Polyglycolic Acid Copolymer , RNA, Small Interfering/genetics , Receptors, Lysophosphatidic Acid/genetics , Animals , Cell Line, Tumor , Gene Silencing/physiology , Genetic Engineering/methods , HEK293 Cells , Humans , Nanoparticles/administration & dosage , Pancreatic Neoplasms/therapy , Polylactic Acid-Polyglycolic Acid Copolymer/administration & dosage , RNA, Small Interfering/administration & dosage , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Renilla
9.
Carbohydr Polym ; 229: 115451, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31826509

ABSTRACT

Oil-in-water nano-emulsions have been obtained in the HEPES 20 mM buffer solution / [Alkylamidoammonium:Kolliphor EL = 1:1] / [6 wt% ethylcellulose in ethyl acetate] system over a wide oil-to-surfactant range and above 35 wt% aqueous component at 25 °C. The nano-emulsion with an oil-to-surfactant ratio of 70/30 and 95 wt% aqueous component was used for nanoparticles preparation. These nanoparticles (mean diameter around 90 nm and zeta potential of +22 mV) were non-toxic to HeLa cells up to a concentration of 3 mM of cationic species. Successful complexation with an antisense phosphorothioate oligonucleotide targeting Renilla luciferase mRNA was achieved at cationic/anionic charge ratios above 16, as confirmed by zeta potential measurements and an electrophoretic mobility shift assay, provided that no Fetal Bovine Serum is present in the cell culture medium. Importantly, Renilla luciferase gene inhibition shows an optimum efficiency (40%) for the cationic/anionic ratio 28, which makes these complexes promising for "in vitro" cell transfection.


Subject(s)
Cellulose/analogs & derivatives , Nanoparticles/chemistry , Oligonucleotides, Antisense/genetics , Animals , Cattle , Cellulose/chemistry , Cellulose/toxicity , Gene Silencing , Gene Transfer Techniques , HeLa Cells , Humans , Luciferases/antagonists & inhibitors , Luciferases/genetics , Nanoparticles/toxicity , RNA, Messenger/genetics , Renilla/enzymology , Serum Albumin, Bovine/chemistry , Static Electricity
10.
Arch Toxicol ; 93(11): 3141-3152, 2019 11.
Article in English | MEDLINE | ID: mdl-31515601

ABSTRACT

The chemical warfare agent sulfur mustard (SM) alkylates a multitude of biomacromolecules including DNA and proteins. Cysteine residues and nucleophilic nitrogen atoms in purine DNA bases are typical targets of SM but potentially every nucleophilic structure may be alkylated by SM. In the present study, we analyzed potential SM-induced alkylation of glucocorticoid (GC) hormones and functional consequences thereof. Hydrocortisone (HC), the synthetic betamethasone (BM) and dexamethasone (DEX) were chosen as representative GCs. Structural modifications were assessed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. The hypothesized alkylation was verified and structurally allocated to the OH-group of the C21 atom. The biological function of SM-alkylated GCs was investigated using GC-regulated dual-luciferase reporter gene assays and an ex vivo GC responsiveness assay coupled with real-time quantitative polymerase chain reaction (RT-qPCR). For the reporter gene assays, HEK293-cells were transiently transfected with a dual-luciferase reporter gene that is transcriptional regulated by a GC-response element. These cells were then incubated either with untreated or SM-derivatized HC, BM or DEX. Firefly-luciferase (Fluc) activity was determined 24 h after stimulation. Fluc-activity significantly decreased after stimulation with SM-pre-exposed GC dependent on the SM concentration. The ex vivo RT-qPCR-based assay for human peripheral leukocyte responsiveness to DEX revealed a transcriptional dysregulation of GC-regulated genes (FKBP5, IL1R2, and GILZ) after stimulation with SM-alkylated DEX. Our results present GCs as new biological targets of SM associated with a disturbance of hormone function.


Subject(s)
Alkylating Agents/toxicity , Chemical Warfare Agents/toxicity , Gene Expression Regulation/drug effects , Glucocorticoids/metabolism , Mustard Gas/toxicity , Animals , Betamethasone/pharmacology , Cotinine/analogs & derivatives , Cotinine/pharmacology , Dexamethasone/pharmacology , Genes, Reporter , Glucocorticoids/genetics , HEK293 Cells , Humans , Luciferases/genetics , Renilla , Transfection
11.
J Virol ; 93(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31511391

ABSTRACT

The nonstructural protein NS5A of hepatitis C virus (HCV) is a phosphorylated protein that is indispensable for viral replication and assembly. We previously showed that NS5A undergoes sequential serine S232/S235/S238 phosphorylation resulting in NS5A transition from a hypo- to a hyperphosphorylated state. Here, we studied functions of S229 with a newly generated antibody specific to S229 phosphorylation. In contrast to S232, S235, or S238 phosphorylation detected only in the hyperphosphorylated NS5A, S229 phosphorylation was found in both hypo- and hyperphosphorylated NS5A, suggesting that S229 phosphorylation initiates NS5A sequential phosphorylation. Immunoblotting showed an inverse relationship between S229 phosphorylation and S235 phosphorylation. When S235 was phosphorylated as in the wild-type NS5A, the S229 phosphorylation level was low; when S235 could not be phosphorylated as in the S235A mutant NS5A, the S229 phosphorylation level was high. These results suggest an intrinsic feedback regulation between S229 phosphorylation and S235 phosphorylation. It has been known that NS5A distributes in large static and small dynamic intracellular structures and that both structures are required for the HCV life cycle. We found that S229A or S229D mutation was lethal to the virus and that both increased NS5A in large intracellular structures. Similarly, the lethal S235A mutation also increased NS5A in large structures. Likewise, the replication-compromised S235D mutation also increased NS5A in large structures, albeit to a lesser extent. Our data suggest that S229 probably cycles through phosphorylation and dephosphorylation to maintain a delicate balance of NS5A between hypo- and hyperphosphorylated states and the intracellular distribution necessary for the HCV life cycle.IMPORTANCE This study joins our previous efforts to elucidate how NS5A transits between hypo- and hyperphosphorylated states via phosphorylation on a series of highly conserved serine residues. Of the serine residues, serine 229 is the most interesting since phosphorylation-mimicking and phosphorylation-ablating mutations at this serine residue are both lethal. With a new high-quality antibody specific to serine 229 phosphorylation, we concluded that serine 229 must remain wild type so that it can dynamically cycle through phosphorylation and dephosphorylation that govern NS5A between hypo- and hyperphosphorylated states. Both are required for the HCV life cycle. When phosphorylated, serine 229 signals phosphorylation on serine 232 and 235 in a sequential manner, leading NS5A to the hyperphosphorylated state. As serine 235 phosphorylation is reached, serine 229 is dephosphorylated, stopping signal for hyperphosphorylation. This balances NS5A between two phosphorylation states and in intracellular structures that warrant a productive HCV life cycle.


Subject(s)
Hepacivirus/metabolism , Serine/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , HEK293 Cells , Hepatitis C/virology , Humans , Phosphorylation , Protein Kinases/metabolism , Proteomics , Renilla , Viral Nonstructural Proteins/chemistry , Virus Replication/physiology
12.
Gigascience ; 8(4)2019 04 01.
Article in English | MEDLINE | ID: mdl-30942866

ABSTRACT

BACKGROUND: More than 3,000 species of octocorals (Cnidaria, Anthozoa) inhabit an expansive range of environments, from shallow tropical seas to the deep-ocean floor. They are important foundation species that create coral "forests," which provide unique niches and 3-dimensional living space for other organisms. The octocoral genus Renilla inhabits sandy, continental shelves in the subtropical and tropical Atlantic and eastern Pacific Oceans. Renilla is especially interesting because it produces secondary metabolites for defense, exhibits bioluminescence, and produces a luciferase that is widely used in dual-reporter assays in molecular biology. Although several anthozoan genomes are currently available, the majority of these are hexacorals. Here, we present a de novo assembly of an azooxanthellate shallow-water octocoral, Renilla muelleri. FINDINGS: We generated a hybrid de novo assembly using MaSuRCA v.3.2.6. The final assembly included 4,825 scaffolds and a haploid genome size of 172 megabases (Mb). A BUSCO assessment found 88% of metazoan orthologs present in the genome. An Augustus ab initio gene prediction found 23,660 genes, of which 66% (15,635) had detectable similarity to annotated genes from the starlet sea anemone, Nematostella vectensis, or to the Uniprot database. Although the R. muelleri genome may be smaller (172 Mb minimum size) than other publicly available coral genomes (256-448 Mb), the R. muelleri genome is similar to other coral genomes in terms of the number of complete metazoan BUSCOs and predicted gene models. CONCLUSIONS: The R. muelleri hybrid genome provides a novel resource for researchers to investigate the evolution of genes and gene families within Octocorallia and more widely across Anthozoa. It will be a key resource for future comparative genomics with other corals and for understanding the genomic basis of coral diversity.


Subject(s)
Genome , Genomics , Renilla/genetics , Animals , Computational Biology/methods , Genomics/methods , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation
13.
Nat Protoc ; 14(4): 1084-1107, 2019 04.
Article in English | MEDLINE | ID: mdl-30911173

ABSTRACT

Bioluminescence resonance energy transfer (BRET) is a transfer of energy between a luminescence donor and a fluorescence acceptor. Because BRET occurs when the distance between the donor and acceptor is <10 nm, and its efficiency is inversely proportional to the sixth power of distance, it has gained popularity as a proximity-based assay to monitor protein-protein interactions and conformational rearrangements in live cells. In such assays, one protein of interest is fused to a bioluminescent energy donor (luciferases from Renilla reniformis or Oplophorus gracilirostris), and the other protein is fused to a fluorescent energy acceptor (such as GFP or YFP). Because the BRET donor does not require an external light source, it does not lead to phototoxicity or autofluorescence. It therefore represents an interesting alternative to fluorescence-based imaging such as FRET. However, the low signal output of BRET energy donors has limited the spatiotemporal resolution of BRET imaging. Here, we describe how recent improvements in detection devices and BRET probes can be used to markedly improve the resolution of BRET imaging, thus widening the field of BRET imaging applications. The protocol described herein involves three main stages. First, cell preparation and transfection require 3 d, including cell culture time. Second, image acquisition takes 10-120 min per sample, after an initial 60 min for microscope setup. Finally, image analysis typically takes 1-2 h. The choices of energy donor, acceptor, luminescent substrates, cameras and microscope setup, as well as acquisition modes to be used for different applications, are also discussed.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Luminescent Measurements/methods , Optical Imaging/methods , Protein Interaction Mapping/methods , Recombinant Fusion Proteins/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Benzeneacetamides/metabolism , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Imidazoles/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Plasmids/chemistry , Plasmids/metabolism , Pyrazines/metabolism , Receptors, Vasopressin/genetics , Receptors, Vasopressin/metabolism , Recombinant Fusion Proteins/metabolism , Renilla , Transfection , beta-Arrestin 2/genetics , beta-Arrestin 2/metabolism
16.
Anal Chem ; 90(21): 12986-12993, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30234965

ABSTRACT

Sensitive and selective quantification of individual sugars in complex media is technically challenging and usually requires HPLC separation. Accurate measurement without the need for separation would be highly desirable. The measurement of trace levels of lactose in lactose-reduced milk exemplifies the problem, with the added challenge that trace lactose must be measured in the presence of ≈140 mM glucose and galactose, the products of lactase digestion of lactose. Biosensing is an alternative to HPLC, but current biosensing methods, based on coupled-enzyme assays, tend to have poor sensitivity and complex biochemistry and can be time-consuming. We explored a fundamentally different approach, based on identifying a lactose-specific binding protein compatible with photonic transduction. We identified the BgaR transcriptional regulator of Clostridium perfringens, which is highly selective for lactose, as a suitable ligand binding domain and combined it with a bioluminescence energy resonance transfer transduction system. This BRET-based biosensor showed a 27% decrease in the BRET ratio in the presence of saturating (1 mM) lactose. Using a 5 min assay, the half maximal effective concentration (EC50) for lactose in phosphate-buffered saline (PBS) was 12 µM. The biosensor was 200 times more sensitive to lactose than to glucose or galactose. Sensitivity and selectivity were not significantly affected by the presence of 10% (v/v) dialyzed milk. The biosensor is suitable for direct determination of residual lactose in lactase-treated milk, with a limit of detection of 0.2 µM, 100 times below the most stringent lactose-free standard and without the need to remove fat or protein from the sample.


Subject(s)
Bacterial Proteins/chemistry , Biosensing Techniques/methods , Lactose/analysis , Milk/chemistry , Transcription Factors/chemistry , Agrobacterium tumefaciens/chemistry , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Clostridium perfringens/chemistry , Energy Transfer , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Lactose/metabolism , Ligands , Limit of Detection , Luminescence , Protein Binding , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Renilla/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Nat Commun ; 9(1): 3104, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082832

ABSTRACT

Dendritic cells use a specialized pathway called cross-presentation to activate CD8+ T cells by presenting peptides from exogenous protein antigens on major histocompatibility complex class I molecules. Considerable evidence suggests that internalized antigens cross endocytic membranes to access cytosolic proteasomes for processing. The mechanism of protein dislocation represents a major unsolved problem. Here we describe the development of a sensitive reporter substrate, an N-glycosylated variant of Renilla luciferase fused to the Fc region of human IgG1. The luciferase variant is designed to be enzymatically inactive when glycosylated, but active after the asparagine to aspartic acid conversion that occurs upon deglycosylation by the cytosolic enzyme N-glycanase-1. The generation of cytosolic luminescence depends on internalization, deglycosylation, the cytosolic AAA-ATPase VCP/p97, and the cytosolic chaperone HSP90. By incorporating a T cell epitope into the fusion protein, we demonstrate that antigen dislocation into the cytosol is the rate limiting step in cross-presentation.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Cross-Priming , Cytosol/metabolism , Immunoglobulin G/metabolism , Animals , Antigen Presentation , Antigens/metabolism , Dendritic Cells/immunology , Endocytosis , Epitopes/chemistry , Glycosylation , HEK293 Cells , HSP90 Heat-Shock Proteins/metabolism , Histocompatibility Antigens Class I/immunology , Humans , Luciferases/metabolism , Molecular Chaperones/metabolism , Protein Binding , Protein Transport , Renilla
18.
Chembiochem ; 19(13): 1409-1413, 2018 07 04.
Article in English | MEDLINE | ID: mdl-29656613

ABSTRACT

(2'S)-2'-Deoxy-2'-C-methyluridine and (2'R)-2'-deoxy-2'-C-methyluridine were incorporated in the 3'-overhang region of the sense and antisense strands and in positions 2 and 5 of the seed region of siRNA duplexes directed against Renilla luciferase, whereas (2'S)-2'-deoxy-2'-C-methylcytidine was incorporated in the 6-position of the seed region of the same constructions. A dual luciferase reporter assay in transfected HeLa cells was used as a model system to measure the IC50 values of 24 different modified duplexes. The best results were obtained by the substitution of one thymidine unit in the antisense 3'-overhang region by (2'S)- or (2'R)-2'-deoxy-2'-C-methyluridine, reducing IC50 to half of the value observed for the natural control. The selectivity of the modified siRNA was measured, it being found that modifications in positions 5 and 6 of the seed region had a positive effect on the ON/OFF activity.


Subject(s)
RNA, Small Interfering/chemistry , Uridine/analogs & derivatives , Animals , Enzyme Assays , HeLa Cells , Humans , Inhibitory Concentration 50 , Luciferases, Renilla/genetics , RNA Stability , RNA, Small Interfering/chemical synthesis , RNA, Small Interfering/genetics , Renilla/enzymology , Stereoisomerism , Temperature , Uridine/chemistry
19.
Protein Expr Purif ; 145: 39-44, 2018 05.
Article in English | MEDLINE | ID: mdl-29288731

ABSTRACT

Luciferase from Renilla reniformis (RLuc) is a good research tool as a reporter protein and bioimaging probes, yielding blue light using the substrate coelenterazine. However, the applications are limited since RLuc is unstable under various conditions. Therefore, an attempt was made to increase RLuc thermostability. In this study, 5 mutations reported previously [1] and one mutation obtained using site-directed mutagenesis were combined. As a result of this combination, the thermostability effect increased, with the mutant showing approximately 10 °C higher stability. Furthermore, the mutant simultaneously improved a tolerance for protease digestion, e.g. trypsin and proteinase K, and for organic solvent. Residual activity of the mutant after treatment with 10% 2-propanol, 10% DMF and 20% DMSO at 35 °C for 1 h was 29.4, 24.8 and 91.3%, respectively, whereas that of the wild type was 0.4, 0.1 and 24.3%, respectively.


Subject(s)
Hot Temperature , Luciferases, Renilla/metabolism , Mutagenesis, Site-Directed , Renilla/enzymology , Animals , Enzyme Stability , Luciferases, Renilla/chemistry , Luciferases, Renilla/genetics , Mutation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
20.
Curr Protoc Protein Sci ; 90: 30.5.1-30.5.14, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29091275

ABSTRACT

The number of intracellular protein-protein interactions (PPIs) far exceeds the total number of proteins encoded by the genome. Dynamic cellular PPI networks respond to external stimuli and endogenous metabolism in order to maintain homeostasis. Many PPIs are directly involved in disease pathogenesis and/or resistance to therapeutics; they therefore represent potential drug targets. A technology generally termed 'bimolecular complementation' relies on the physical splitting of a molecular reporter (such as a fluorescent or luminescent protein) and fusion of the resulting two fragments to a pair of interacting proteins. When these proteins interact, they effectively reconstitute the activity of the molecular reporter (typically leading to increased fluorescence or luminescence). This unit describes the selection and development of bimolecular luminescence complementation (BiLC) assays for reporting intracellular PPIs, and provides examples in which BiLC was used to identify small molecules that can modulate PPIs. © 2017 by John Wiley & Sons, Inc.


Subject(s)
Luciferases/genetics , Luminescent Measurements/methods , Protein Interaction Mapping/methods , Recombinant Fusion Proteins/genetics , Amino Acid Sequence , Animals , Cell Line, Tumor , Fireflies/chemistry , Genes, Reporter , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Luciferases/metabolism , Luminescence , Luminescent Measurements/standards , Recombinant Fusion Proteins/metabolism , Renilla/chemistry , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...