Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 338
Filter
1.
Virulence ; 15(1): 2350775, 2024 12.
Article in English | MEDLINE | ID: mdl-38736041

ABSTRACT

OBJECTIVES: The translocation of intestinal flora has been linked to the colonization of diverse and heavy lower respiratory flora in patients with septic ARDS, and is considered a critical prognostic factor for patients. METHODS: On the first and third days of ICU admission, BALF, throat swab, and anal swab were collected, resulting in a total of 288 samples. These samples were analyzed using 16S rRNA analysis and the traceability analysis of new generation technology. RESULTS: On the first day, among the top five microbiota species in abundance, four species were found to be identical in BALF and throat samples. Similarly, on the third day, three microbiota species were found to be identical in abundance in both BALF and throat samples. On the first day, 85.16% of microorganisms originated from the throat, 5.79% from the intestines, and 9.05% were unknown. On the third day, 83.52% of microorganisms came from the throat, 4.67% from the intestines, and 11.81% were unknown. Additionally, when regrouping the 46 patients, the results revealed a significant predominance of throat microorganisms in BALF on both the first and third day. Furthermore, as the disease progressed, the proportion of intestinal flora in BALF increased in patients with enterogenic ARDS. CONCLUSIONS: In patients with septic ARDS, the main source of lung microbiota is primarily from the throat. Furthermore, the dynamic trend of the microbiota on the first and third day is essentially consistent.It is important to note that the origin of the intestinal flora does not exclude the possibility of its origin from the throat.


Subject(s)
Bacteria , Bronchoalveolar Lavage Fluid , Microbiota , Pharynx , RNA, Ribosomal, 16S , Respiratory Distress Syndrome , Sepsis , Humans , Male , Female , Respiratory Distress Syndrome/microbiology , Middle Aged , Pharynx/microbiology , RNA, Ribosomal, 16S/genetics , Bronchoalveolar Lavage Fluid/microbiology , Aged , Sepsis/microbiology , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Pulmonary Alveoli/microbiology , Adult , Intensive Care Units , Gastrointestinal Microbiome
2.
Crit Care ; 28(1): 133, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38649970

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is responsible for 400,000 deaths annually worldwide. Few improvements have been made despite five decades of research, partially because ARDS is a highly heterogeneous syndrome including various types of aetiologies. Lower airway microbiota is involved in chronic inflammatory diseases and recent data suggest that it could also play a role in ARDS. Nevertheless, whether the lower airway microbiota composition varies between the aetiologies of ARDS remain unknown. The aim of this study is to compare lower airway microbiota composition between ARDS aetiologies, i.e. pulmonary ARDS due to influenza, SARS-CoV-2 or bacterial infection. METHODS: Consecutive ARDS patients according to Berlin's classification requiring invasive ventilation with PCR-confirmed influenza or SARS-CoV-2 infections and bacterial infections (> 105 CFU/mL on endotracheal aspirate) were included. Endotracheal aspirate was collected at admission, V3-V4 and ITS2 regions amplified by PCR, deep-sequencing performed on MiSeq sequencer (Illumina®) and data analysed using DADA2 pipeline. RESULTS: Fifty-three patients were included, 24 COVID-19, 18 influenza, and 11 bacterial CAP-related ARDS. The lower airway bacteriobiota and mycobiota compositions (ß-diversity) were dissimilar between the three groups (p = 0.05 and p = 0.01, respectively). The bacterial α-diversity was significantly lower in the bacterial CAP-related ARDS group compared to the COVID-19 ARDS group (p = 0.04). In contrast, influenza-related ARDS patients had higher lung mycobiota α-diversity than the COVID-19-related ARDS (p = 0 < 01). CONCLUSION: Composition of lower airway microbiota (both microbiota and mycobiota) differs between influenza, COVID-19 and bacterial CAP-related ARDS. Future studies investigating the role of lung microbiota in ARDS pathophysiology should take aetiology into account.


Subject(s)
COVID-19 , Influenza, Human , Microbiota , Respiratory Distress Syndrome , Humans , COVID-19/microbiology , COVID-19/complications , COVID-19/physiopathology , Respiratory Distress Syndrome/microbiology , Respiratory Distress Syndrome/virology , Respiratory Distress Syndrome/physiopathology , Male , Female , Middle Aged , Influenza, Human/microbiology , Influenza, Human/physiopathology , Influenza, Human/complications , Microbiota/physiology , Aged , Bacterial Infections/microbiology
3.
J Neuroinflammation ; 20(1): 166, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37454113

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a respiratory failure syndrome that can cause many complications, impacting patients' quality of life. Behavioral and cognitive disorders have attracted increasing attention in patients with ARDS, but its potential mechanisms are still elusive. METHODS: Herein we transferred the faecal microbiota from patients with ARDS caused by community-acquired pneumonia (CAP) to antibiotics-treated recipient male mice to explore the microbiota-gut-brain mechanisms. Behavioral functions of mice were evaluated by the open field test, Morris water maze and Y-maze test. The structure and composition of the gut microbiota were analyzed by using 16S rRNA sequencing analysis. Microglia, astrocyte and neuron in the cortex and hippocampus were examined via immunofluorescent staining. RESULTS: We found that the major characteristic of the intestinal flora in ARDS/CAP patients was higher abundances of Gram-negative bacteria than normal controls. The gut microbiota derived from ARDS/CAP patients promoted neuroinflammation and behavioral dysfunctions in mice. Mice who underwent fecal transplant from ARDS/CAP patients had increased systemic lipopolysaccharide (LPS), systemic inflammation, and increased colonic barrier permeability. This may adversely impact blood barrier permeability and facilitate microglia activation, astrocyte proliferation, and loss of neurons. CONCLUSIONS: Our study proposes the role of the microbiota-gut-brain crosstalk on ARDS/CAP-associated behavioral impairments and suggests the gut microbiota as a potential target for the protection of brain health in ARDS patients in clinical practice.


Subject(s)
Cognitive Dysfunction , Gastrointestinal Microbiome , Pneumonia , Respiratory Distress Syndrome , Male , Mice , Animals , Gastrointestinal Microbiome/physiology , Neuroinflammatory Diseases , RNA, Ribosomal, 16S/genetics , Quality of Life , Respiratory Distress Syndrome/microbiology , Mice, Inbred C57BL
4.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(11): 1154-1160, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36567558

ABSTRACT

OBJECTIVE: To analyze the differentially expressed gene (DEG) in rats with sepsis-induced exogenous acute respiratory distress syndrome (ARDS) and explore the early diagnosis and protective mechanism of sepsis-induced ARDS at the transcriptome level. METHODS: Twelve 6 to 8 weeks old male Sprague-Dawley (SD) rats were randomly divided into lipopolysaccharide (LPS) induced sepsis-induced ARDS model group (model group, intraperitoneal injection of LPS 15 mg/kg) and control group (intraperitoneal injection of the same volume of normal saline), with 6 rats in each group. RNA was extracted from the left lung tissue of the two groups, and the paired-end sequencing mode of the illumina Hiseq sequencing platform was used for high-throughput sequencing. The DESeq2 software was used to screen DEG with |log2 (fold change, FC)| ≥ 3 and P < 0.001. Gene ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on DEG. STRING and CytoScape software were used to construct a protein-protein interaction (PPI) network and screen key genes. The peripheral blood mononuclear cell (PBMC) of 20 septic patients admitted to the emergency and critical care medical department of Lianyungang First People's Hospital from March to November 2021 and 20 age-matched healthy people in the same period were isolated and extracted, and the key genes were verified by real-time fluorescent quantitative polymerase chain reaction (RT-qPCR). RESULTS: A total of 286 DEG were screened, including 202 up-regulated genes and 84 down-regulated genes. GO enrichment analysis showed that DEG was mainly involved in biological processes such as neutrophil chemotaxis migration, antibacterial humoral response, host immune response, and humoral immune response. KEGG analysis showed that DEG mainly played a biological role through interleukin-17 (IL-17) signaling pathway, tumor necrosis factor (TNF) signaling pathway, and chemokine signaling pathway. In PPI analysis, a total of 262 node proteins were screened, and the interaction relationship was 852 edges. The first 15 key genes were IL-6, TNF, IL-10, IL-1ß, chemokine ligand 1 (CXCL1), CXCL10, chemokine receptor 3 (CXCR3), CXCR2, CXCL9, chemokine ligand 7 (CCL7), CXCL11, CCL1, CXCL13, CCL12, and CCL22. Five representative key genes were performed on PBMC of blood samples from septic ARDS patients and healthy controls by RT-qPCR. The results showed that their expression was significantly higher than that in the healthy controls [IL-6 mRNA (2-ΔΔCt): 2.803±1.081 vs. 0.951±0.359, TNF mRNA (2-ΔΔCt): 2.376±0.799 vs. 1.150±0.504, CXCL10 mRNA (2-ΔΔCt): 2.500±0.815 vs. 1.107±0.515, CXCR3 mRNA (2-ΔΔCt): 1.655±0.628 vs. 0.720±0.388, CCL22 mRNA (2-ΔΔCt): 1.804±0.878 vs. 1.010±0.850, all P < 0.05], and the trends were consistent with the RNA-Seq results. CONCLUSIONS: Biological processes such as chemotactic migration and degranulation of inflammatory cells, cytokine immune response, and signal pathways such as CXCL10/CXCR3 and IL-17 play important roles in the occurrence and development of sepsis-related exogenous ARDS, which would provide new ideas and targets for further study of lung injury mechanisms and clinical prevention and treatment.


Subject(s)
Gene Expression Regulation , Respiratory Distress Syndrome , Sepsis , Animals , Male , Rats , Gene Expression Profiling , Interleukin-17/genetics , Interleukin-6/genetics , Leukocytes, Mononuclear/metabolism , Ligands , Lipopolysaccharides , Rats, Sprague-Dawley , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/microbiology , RNA, Messenger/metabolism , Sepsis/complications , Signal Transduction/genetics , Transcriptome
5.
Cell Rep Med ; 3(2): 100522, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35233546

ABSTRACT

The molecular mechanisms underlying the clinical manifestations of coronavirus disease 2019 (COVID-19), and what distinguishes them from common seasonal influenza virus and other lung injury states such as acute respiratory distress syndrome, remain poorly understood. To address these challenges, we combine transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues to define body-wide transcriptome changes in response to COVID-19. We then match these data with spatial protein and expression profiling across 357 tissue sections from 16 representative patient lung samples and identify tissue-compartment-specific damage wrought by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, evident as a function of varying viral loads during the clinical course of infection and tissue-type-specific expression states. Overall, our findings reveal a systemic disruption of canonical cellular and transcriptional pathways across all tissues, which can inform subsequent studies to combat the mortality of COVID-19 and to better understand the molecular dynamics of lethal SARS-CoV-2 and other respiratory infections.


Subject(s)
COVID-19/genetics , COVID-19/pathology , Lung/pathology , SARS-CoV-2 , Transcriptome/genetics , Adult , Aged , Aged, 80 and over , COVID-19/metabolism , COVID-19/virology , Case-Control Studies , Cohort Studies , Female , Gene Expression Regulation , Humans , Influenza, Human/genetics , Influenza, Human/pathology , Influenza, Human/virology , Lung/metabolism , Male , Middle Aged , Orthomyxoviridae , RNA-Seq/methods , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/microbiology , Respiratory Distress Syndrome/pathology , Viral Load
6.
Biochem Biophys Res Commun ; 594: 81-87, 2022 02 26.
Article in English | MEDLINE | ID: mdl-35078111

ABSTRACT

Mycoplasma pneumoniae (Mp) is one of the most common causes of bacterial community-acquired pneumonia in humans. Because of the frequent epidemics and the emergence of antibiotic-resistant Mp, vaccines for Mp are urgently needed to ameliorate the pneumonia and secondary complications. The community-acquired respiratory distress syndrome (CARDS) toxin produced by Mp is a pathogenic factor that induces severe inflammatory responses in lung. Although blocking CARDS toxin is expected to mitigate the severity of Mp pneumonia, the potential of CARDS toxin as a vaccine antigen has not been assessed. Here, we examined the effectiveness of vaccine using recombinant CARDS toxin (rCARDS toxin) as an antigen in mice. Immunization with rCARDS toxin induced both rCARDS toxin- and Mp-specific antibody responses, indicating that CARDS toxin is located on the surface of Mp. In addition, immunization with rCARDS toxin decreased not only lung injury, neutrophil infiltration, and the production of inflammatory cytokines but also the persistence of Mp in lung after Mp challenge. Furthermore, we elucidated that the CARDS toxin on the surface of Mp facilitates the adherence of Mp to epithelial cells. In conclusion, we have demonstrated the potential of rCARDS toxin as a vaccine antigen to ameliorate Mp pneumonia by suppressing the inflammatory responses induced by Mp and the persistence of Mp in lung. These data support the development of novel vaccines for Mp pneumonia.


Subject(s)
Bacterial Proteins , Bacterial Toxins , Bacterial Vaccines , Mycoplasma pneumoniae , Pneumonia, Mycoplasma/microbiology , Pneumonia, Mycoplasma/prevention & control , Respiratory Distress Syndrome/microbiology , Respiratory Distress Syndrome/prevention & control , A549 Cells , Animals , Antigens, Bacterial , Bronchoalveolar Lavage Fluid , Community-Acquired Infections , Humans , Inflammation , Lung/pathology , Male , Mice , Mice, Inbred BALB C , Recombinant Proteins
7.
Cells ; 10(12)2021 11 25.
Article in English | MEDLINE | ID: mdl-34943813

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a serious lung condition characterized by severe hypoxemia leading to limitations of oxygen needed for lung function. In this study, we investigated the effect of anandamide (AEA), an endogenous cannabinoid, on Staphylococcal enterotoxin B (SEB)-mediated ARDS in female mice. Single-cell RNA sequencing data showed that the lung epithelial cells from AEA-treated mice showed increased levels of antimicrobial peptides (AMPs) and tight junction proteins. MiSeq sequencing data on 16S RNA and LEfSe analysis demonstrated that SEB caused significant alterations in the microbiota, with increases in pathogenic bacteria in both the lungs and the gut, while treatment with AEA reversed this effect and induced beneficial bacteria. AEA treatment suppressed inflammation both in the lungs as well as gut-associated mesenteric lymph nodes (MLNs). AEA triggered several bacterial species that produced increased levels of short-chain fatty acids (SCFAs), including butyrate. Furthermore, administration of butyrate alone could attenuate SEB-mediated ARDS. Taken together, our data indicate that AEA treatment attenuates SEB-mediated ARDS by suppressing inflammation and preventing dysbiosis, both in the lungs and the gut, through the induction of AMPs, tight junction proteins, and SCFAs that stabilize the gut-lung microbial axis driving immune homeostasis.


Subject(s)
Arachidonic Acids/therapeutic use , Endocannabinoids/therapeutic use , Gastrointestinal Microbiome , Gastrointestinal Tract/pathology , Lung/pathology , Polyunsaturated Alkamides/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/microbiology , Animals , Antimicrobial Peptides/metabolism , Arachidonic Acids/pharmacology , Butyrates/metabolism , Cecum/pathology , Cell Separation , Colon/drug effects , Colon/pathology , Discriminant Analysis , Dysbiosis/complications , Dysbiosis/microbiology , Endocannabinoids/pharmacology , Enterotoxins , Female , Gastrointestinal Tract/drug effects , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymphocyte Activation/drug effects , Mice, Inbred C57BL , Pneumonia/drug therapy , Pneumonia/microbiology , Polyunsaturated Alkamides/pharmacology , Respiratory Distress Syndrome/complications , T-Lymphocytes/drug effects
9.
Am J Physiol Lung Cell Mol Physiol ; 321(5): L827-L836, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34524905

ABSTRACT

We previously reported that extracellular vesicles (EVs) released during Escherichia coli (E. coli) bacterial pneumonia were inflammatory, and administration of high molecular weight hyaluronic acid (HMW HA) suppressed several indices of acute lung injury (ALI) from E. coli pneumonia by binding to these inflammatory EVs. The current study was undertaken to study the therapeutic effects of HMW HA in ex vivo perfused human lungs injured with Pseudomonas aeruginosa (PA)103 bacterial pneumonia. For lungs with baseline alveolar fluid clearance (AFC) <10%/h, HMW HA 1 or 2 mg was injected intravenously after 1 h (n = 4-9), and EVs released during PA pneumonia were collected from the perfusate over 6 h. For lungs with baseline AFC > 10%/h, HMW HA 2 mg was injected intravenously after 1 h (n = 6). In vitro experiments were conducted to evaluate the effects of HA on inflammation and bacterial phagocytosis. For lungs with AFC < 10%/h, administration of HMW HA intravenously significantly restored AFC and numerically decreased protein permeability and alveolar inflammation from PA103 pneumonia but had no effect on bacterial counts at 6 h. However, HMW HA improved bacterial phagocytosis by human monocytes and neutrophils and suppressed the inflammatory properties of EVs released during pneumonia on monocytes. For lungs with AFC > 10%/h, administration of HMW HA intravenously improved AFC from PA103 pneumonia but had no significant effects on protein permeability, inflammation, or bacterial counts. In the presence of impaired alveolar epithelial transport capacity, administration of HMW HA improved the resolution of pulmonary edema from Pseudomonas PA103 bacterial pneumonia.


Subject(s)
Acute Lung Injury/drug therapy , Hyaluronic Acid/pharmacology , Pneumonia, Bacterial/drug therapy , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Pulmonary Edema/drug therapy , Acute Lung Injury/microbiology , Acute Lung Injury/pathology , Adult , Extracellular Vesicles/pathology , Female , Humans , Lung/drug effects , Lung/microbiology , Lung/pathology , Male , Middle Aged , Monocytes/immunology , Neutrophils/immunology , Organ Culture Techniques , Phagocytosis/drug effects , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/pathology , Pulmonary Edema/microbiology , Pulmonary Edema/pathology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/microbiology , Respiratory Distress Syndrome/pathology
10.
Eur J Med Res ; 26(1): 100, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34454624

ABSTRACT

OBJECTIVE: This study aimed to present the case of a boy with acute distress syndrome (ARDS) treated with low-dose umbilical cord blood (UCB) therapy and explore the underlying possible mechanism. METHODS: A 7-year-old boy with severe Pneumocystis carinii pneumonia and severe ARDS was treated with allogeneic UCB as salvage therapy. RESULTS: The patient did not improve after being treated with lung protective ventilation, pulmonary surfactant replacement, and extracorporeal membrane oxygenation (ECMO) for 30 days. However, his disease reversed 5 days after allogeneic UCB infusion, and he weaned from ECMO after 7 days of infusion. Bioinformatics confirmed that his Toll-like receptor (TLR) was abnormal before UCB infusion. However, after the infusion, his immune system was activated and repaired, and the TLR4/MyD88/NF-κB signaling pathway was recovered. CONCLUSION: Allogenic UCB could treat ARDS by repairing the TLR4/MyD88/NF-κB signaling pathway, thereby achieving stability of the immune system.


Subject(s)
Cord Blood Stem Cell Transplantation/methods , Extracorporeal Membrane Oxygenation/methods , Fetal Blood/cytology , Pneumocystis carinii/isolation & purification , Pneumonia, Pneumocystis/complications , Respiratory Distress Syndrome/therapy , Child , Humans , Male , Pneumonia, Pneumocystis/microbiology , Prognosis , Respiration, Artificial , Respiratory Distress Syndrome/microbiology , Transplantation, Homologous
11.
BMC Pulm Med ; 21(1): 264, 2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34391407

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a clinical syndrome characterized by acute hypoxaemia, and few studies have reported the incidence of deep vein thrombosis (DVT) in direct ARDS caused by bacterial pneumonia. We performed a study to evaluate the prevalence, risk factors, prognosis and potential thromboprophylaxis strategies of DVT in these patients. METHODS: Ninety patients were included. Demographic, and clinical data, laboratory data and outcome variables were obtained, and comparisons were made between the DVT and non-DVT groups. RESULTS: Of the 90 patients, 40 (44.4%) developed lower extremity DVT. Compared with non-DVT patients, DVT patients had higher systemic inflammatory response syndrome (SIRS) scores, lower serum creatinine levels, higher D-dimer levels, and higher rates of sedative therapy and invasive mechanical ventilation (IMV). Multivariate analysis showed an association between the SIRS score (OR 3.803, P = 0.027), level of serum creatinine (OR 0.988, P = 0.001), IMV (OR 5.822, P = 0.002) and DVT. The combination of SIRS score, serum creatinine level and IMV has a sensitivity of 80.0% and a specificity of 74.0% for screening for DVT. The survival rate within 28 days after ARDS in the DVT group was significantly lower than that in the non-DVT group (P = 0.003). There was no difference in the prevalence of DVT between the 41 patients who received thromboprophylaxis and the 49 patients who did not receive thromboprophylaxis (41.5% vs 46.9%; P = 0.603). CONCLUSIONS: The prevalence of DVT is high in hospitalized patients with direct ARDS caused by bacterial pneumonia and may be associated with adverse outcomes. The current thromboprophylaxis strategies may need to be further optimized.


Subject(s)
Pneumonia, Bacterial/complications , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/microbiology , Venous Thrombosis/etiology , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Prevalence , Prognosis , Retrospective Studies , Risk Factors , Venous Thrombosis/epidemiology , Venous Thrombosis/prevention & control
12.
Medicine (Baltimore) ; 100(33): e26969, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34414967

ABSTRACT

ABSTRACT: Although pulmonary mycobacterial infection is associated with acute respiratory distress syndrome (ARDS) in critically ill patients, its clinical implication on patients with ARDS has not been clearly elucidated. The aim of study was to investigate the clinical significance of pulmonary mycobacterial infection in patients with ARDS.Between January 2014 and April 2019, medical records of 229 patients with ARDS who met the Berlin criteria and received invasive mechanical ventilation in medical intensive care unit were reviewed. Clinical characteristics and the rate of mortality between patients with and without pulmonary mycobacterial infection were compared. Factors associated with a 28-day mortality were analyzed statistically.Twenty two (9.6%) patients were infected with pulmonary mycobacteria (18 with tuberculosis and 4 with non-tuberculous mycobacteria). There were no differences in baseline characteristics, the severity of illness scores. Other than a higher rate of renal replacement therapy required in those without pulmonary mycobacterial infection, the use of adjunctive therapy did not differ between the groups. The 28- day mortality rate was significantly higher in patients with pulmonary mycobacterial infection (81.8% vs 58%, P = .019). Pulmonary mycobacterial infection was significantly associated with 28-day mortality (hazard ratio 1.852, 95% confidence interval 1.108-3.095, P = .019).Pulmonary mycobacterial infection was associated with increased 28-day mortality in patients with ARDS.


Subject(s)
Mycobacterium Infections/complications , Pneumonia, Bacterial/complications , Respiratory Distress Syndrome/complications , Aged , Female , Humans , Male , Middle Aged , Mycobacterium Infections/microbiology , Mycobacterium Infections/mortality , Mycobacterium Infections, Nontuberculous/complications , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/mortality , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/mortality , Respiratory Distress Syndrome/microbiology , Respiratory Distress Syndrome/mortality , Retrospective Studies , Tuberculosis, Pulmonary/complications , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/mortality
13.
Mycoses ; 64(10): 1238-1252, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34096653

ABSTRACT

PURPOSE: The aim of the study was to report clinical features, contributing factors and outcome of patients with coronavirus disease 2019 (COVID-19)-associated mucormycosis (CAM). METHODS: A cross-sectional descriptive multicentre study was conducted on patients with biopsy-proven mucormycosis with RT-PCR-confirmed COVID-19 from April to September 2020. Demographics, the time interval between COVID-19 and mucormycosis, underlying systemic diseases, clinical features, course of disease and outcomes were collected and analysed. RESULTS: Fifteen patients with COVID-19 and rhino-orbital mucormycosis were observed. The median age of patients was 52 years (range 14-71), and 66% were male. The median interval time between COVID-19 disease and diagnosis of mucormycosis was seven (range: 1-37) days. Among all, 13 patients (86%) had diabetes mellitus, while 7 (46.6%) previously received intravenous corticosteroid therapy. Five patients (33%) underwent orbital exenteration, while seven (47%) patients died from mucormycosis. Six patients (40%) received combined antifungal therapy and none that received combined antifungal therapy died. CONCLUSION: Clinicians should be aware that mucormycosis may be complication of COVID-19 in high-risk patients. Poor control of diabetes mellitus is an important predisposing factor for CAM. Systematic surveillance for control of diabetes mellitus and educating physician about the early diagnosis of CAM are suggested.


Subject(s)
Antifungal Agents/therapeutic use , COVID-19/complications , Coinfection , Mucormycosis/drug therapy , Mucormycosis/mortality , Respiratory Distress Syndrome/mortality , Adolescent , Adult , Aged , Amphotericin B/therapeutic use , COVID-19/pathology , Caspofungin/therapeutic use , Comorbidity , Cross-Sectional Studies , Diabetes Complications/microbiology , Diabetes Complications/mortality , Diabetes Mellitus/pathology , Drug Therapy, Combination , Female , Humans , Iran , Male , Middle Aged , Mucormycosis/pathology , Respiratory Distress Syndrome/microbiology , Respiratory Distress Syndrome/pathology , Triazoles/therapeutic use , Young Adult , COVID-19 Drug Treatment
15.
Physiol Rep ; 9(9): e14871, 2021 05.
Article in English | MEDLINE | ID: mdl-33991456

ABSTRACT

To date, existing animal models of the acute respiratory distress syndrome (ARDS) have failed to translate preclinical discoveries into effective pharmacotherapy or diagnostic biomarkers. To address this translational gap, we developed a high-fidelity swine model of ARDS utilizing clinically relevant lung injury exposures. Fourteen male swine were anesthetized, mechanically ventilated, and surgically instrumented for hemodynamic monitoring, blood, and tissue sampling. Animals were allocated to one of three groups: (1) Indirect lung injury only: animals were inoculated by direct injection of Escherichia coli into the kidney parenchyma, provoking systemic inflammation and distributive shock physiology; (2) Direct lung injury only: animals received volutrauma, hyperoxia, and bronchoscope-delivered gastric particles; (3) Combined indirect and direct lung injury: animals were administered both above-described indirect and direct lung injury exposures. Animals were monitored for up to 12 h, with serial collection of physiologic data, blood samples, and radiographic imaging. Lung tissue was acquired postmortem for pathological examination. In contrast to indirect lung injury only and direct lung injury only groups, animals in the combined indirect and direct lung injury group exhibited all of the physiological, radiographic, and histopathologic hallmarks of human ARDS: impaired gas exchange (mean PaO2 /FiO2 ratio 124.8 ± 63.8), diffuse bilateral opacities on chest radiographs, and extensive pathologic evidence of diffuse alveolar damage. Our novel porcine model of ARDS, built on clinically relevant lung injury exposures, faithfully recapitulates the physiologic, radiographic, and histopathologic features of human ARDS and fills a crucial gap in the translational study of human lung injury.


Subject(s)
Disease Models, Animal , Respiratory Distress Syndrome/pathology , Animals , Escherichia coli/pathogenicity , Lung/microbiology , Lung/pathology , Lung/physiopathology , Male , Pulmonary Gas Exchange , Respiratory Distress Syndrome/microbiology , Respiratory Distress Syndrome/physiopathology , Swine
16.
Pharmacol Res ; 167: 105548, 2021 05.
Article in English | MEDLINE | ID: mdl-33722710

ABSTRACT

Acute Respiratory Distress Syndrome (ARDS) is triggered by a variety of agents, including Staphylococcal Enterotoxin B (SEB). Interestingly, a significant proportion of patients with COVID-19, also develop ARDS. In the absence of effective treatments, ARDS results in almost 40% mortality. Previous studies from our laboratory demonstrated that resveratrol (RES), a stilbenoid, with potent anti-inflammatory properties can attenuate SEB-induced ARDS. In the current study, we investigated the role of RES-induced alterations in the gut and lung microbiota in the regulation of ARDS. Our studies revealed that SEB administration induced inflammatory cytokines, ARDS, and 100% mortality in C3H/HeJ mice. Additionally, SEB caused a significant increase in pathogenic Proteobacteria phylum and Propionibacterium acnes species in the lungs. In contrast, RES treatment attenuated SEB-mediated ARDS and mortality in mice, and significantly increased probiotic Actinobacteria phylum, Tenericutes phylum, and Lactobacillus reuteri species in both the colon and lungs. Colonic Microbiota Transplantation (CMT) from SEB-injected mice that were treated with RES as well as the transfer of L. reuteri into recipient mice inhibited the production of SEB-mediated induction of pro-inflammatory cytokines such as IFN-γ and IL-17 but increased that of anti-inflammatory IL-10. Additionally, such CMT and L. reuteri recipient mice exposed to SEB, showed a decrease in lung-infiltrating mononuclear cells, cytotoxic CD8+ T cells, NKT cells, Th1 cells, and Th17 cells, but an increase in the population of regulatory T cells (Tregs) and Th3 cells, and increase in the survival of mice from SEB-mediated ARDS. Together, the current study demonstrates that ARDS induced by SEB triggers dysbiosis in the lungs and gut and that attenuation of ARDS by RES may be mediated, at least in part, by alterations in microbiota in the lungs and the gut, especially through the induction of beneficial bacteria such as L. reuteri.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Colon/drug effects , Enterotoxins , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/drug effects , Lung/drug effects , Respiratory Distress Syndrome/prevention & control , Resveratrol/pharmacology , Superantigens , Animals , Cell Line , Colon/immunology , Colon/metabolism , Colon/microbiology , Cytokines/metabolism , Disease Models, Animal , Dysbiosis , Female , Inflammation Mediators/metabolism , Limosilactobacillus reuteri/drug effects , Limosilactobacillus reuteri/growth & development , Lung/immunology , Lung/metabolism , Lung/microbiology , Mice, Inbred C3H , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/microbiology
17.
Physiol Rep ; 9(3): e14693, 2021 02.
Article in English | MEDLINE | ID: mdl-33547768

ABSTRACT

Biological subphenotypes have been identified in acute respiratory distress syndrome (ARDS) based on two parsimonious models: the "uninflamed" and "reactive" subphenotype (cluster-model) and "hypo-inflammatory" and "hyper-inflammatory" (latent class analysis (LCA) model). The distinction between the subphenotypes is mainly driven by inflammatory and coagulation markers in plasma. However, systemic inflammation is not specific for ARDS and it is unknown whether these subphenotypes also reflect differences in the alveolar compartment. Alveolar inflammation and dysbiosis of the lung microbiome have shown to be important mediators in the development of lung injury. This study aimed to determine whether the "reactive" or "hyper-inflammatory" biological subphenotype also had higher concentrations of inflammatory mediators and enrichment of gut-associated bacteria in the lung. Levels of alveolar inflammatory mediators myeloperoxidase (MPO), surfactant protein D (SPD), interleukin (IL)-1b, IL-6, IL-10, IL-8, interferon gamma (IFN-Æ´), and tumor necrosis factor-alpha (TNFα) were determined in the mini-BAL fluid. Key features of the lung microbiome were measured: bacterial burden (16S rRNA gene copies/ml), community diversity (Shannon Diversity Index), and community composition. No statistically significant differences between the "uninflamed" and "reactive" ARDS subphenotypes were found in a selected set of alveolar inflammatory mediators and key features of the lung microbiome. LCA-derived subphenotypes and stratification based on cause of ARDS (direct vs. indirect) showed similar profiles, suggesting that current subphenotypes may not reflect the alveolar host response. It is important for future research to elucidate the pulmonary biology within each subphenotype properly, which is arguably a target for intervention.


Subject(s)
Bacteria/pathogenicity , Bacterial Translocation , Gastrointestinal Microbiome , Inflammation Mediators/blood , Pulmonary Alveoli/metabolism , Respiratory Distress Syndrome/blood , Aged , Bacteria/genetics , Biomarkers/blood , Blood Coagulation , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/microbiology , Female , Host-Pathogen Interactions , Humans , Intensive Care Units , Male , Middle Aged , Models, Biological , Phenotype , Pulmonary Alveoli/immunology , Pulmonary Alveoli/microbiology , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/microbiology , Ribotyping
18.
Am J Respir Cell Mol Biol ; 64(5): 569-578, 2021 05.
Article in English | MEDLINE | ID: mdl-33571420

ABSTRACT

Pneumonia-induced lung injury and acute respiratory distress syndrome can develop because of an inappropriate inflammatory response to acute infections, leading to a compromised alveolar barrier. Recent work suggests that hospitalized patients with allergies/asthma are less likely to die of pulmonary infections and that there is a correlation between survival from acute respiratory distress syndrome and higher eosinophil counts; thus, we hypothesized that eosinophils associated with a type 2 immune response may protect against pneumonia-induced acute lung injury. To test this hypothesis, mice were treated with the type 2-initiating cytokine IL-33 intratracheally 3 days before induction of pneumonia with airway administration of a lethal dose of Staphylococcus aureus. Interestingly, IL-33 pretreatment promoted survival by inhibiting acute lung injury: amount of BAL fluid proinflammatory cytokines and pulmonary edema were both reduced, with an associated increase in oxygen saturation. Pulmonary neutrophilia was also reduced, whereas eosinophilia was strongly increased. This eosinophilia was key to protection; eosinophil reduction eliminated both IL-33-mediated protection against mortality and inhibition of neutrophilia and pulmonary edema. Together, these data reveal a novel role for eosinophils in protection against lung injury and suggest that modulation of pulmonary type 2 immunity may represent a novel therapeutic strategy.


Subject(s)
Acute Lung Injury/immunology , Eosinophils/immunology , Interleukin-33/immunology , Pneumonia, Staphylococcal/immunology , Pulmonary Edema/immunology , Respiratory Distress Syndrome/immunology , Staphylococcus aureus/pathogenicity , Acute Lung Injury/etiology , Acute Lung Injury/microbiology , Acute Lung Injury/prevention & control , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Diphtheria Toxin/pharmacology , Disease Models, Animal , Eosinophils/drug effects , Female , Gene Expression , Humans , Interleukin-33/genetics , Interleukin-33/pharmacology , Interleukin-5/deficiency , Interleukin-5/genetics , Interleukin-5/immunology , Leukocyte Count , Leukocyte Reduction Procedures , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/drug effects , Neutrophils/immunology , Pneumonia, Staphylococcal/complications , Pneumonia, Staphylococcal/microbiology , Pneumonia, Staphylococcal/mortality , Pulmonary Edema/complications , Pulmonary Edema/microbiology , Pulmonary Edema/mortality , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/microbiology , Respiratory Distress Syndrome/prevention & control , Staphylococcus aureus/immunology , Survival Analysis
19.
Pediatr Infect Dis J ; 40(4): e154-e156, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33427801

ABSTRACT

ABSTRACT: Mycoplasma pneumoniae (MP) is an atypical bacterial pathogen that typically causes mild respiratory symptoms. Rarely, MP is associated with acute respiratory distress syndrome, a condition marked by widespread inflammation in the lungs that often requires invasive support. We report a case of severe acute respiratory distress syndrome requiring veno-venous extracorporeal membrane oxygenation in an otherwise healthy adolescent because of MP.


Subject(s)
Extracorporeal Membrane Oxygenation/methods , Mycoplasma pneumoniae/drug effects , Pneumonia, Mycoplasma/therapy , Respiratory Distress Syndrome/microbiology , Respiratory Distress Syndrome/therapy , Anti-Bacterial Agents/therapeutic use , Child , Healthy Volunteers , Humans , Male , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/pathogenicity , Pneumonia, Mycoplasma/diagnostic imaging , Pneumonia, Mycoplasma/drug therapy , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/drug therapy , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...