Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.936
Filter
1.
Immun Inflamm Dis ; 12(4): e1253, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38629734

ABSTRACT

BACKGROUND: Asthma is widely recognized as an inflammatory disorder. In the context of this inflammatory microenvironment, the involvement of hypoxia and its impact on related pathways have drawn considerable attention. However, the exact role of hypoxia, a prevalent environmental factor, in the development and progression of asthma remains poorly understood. METHODS: Mice were treated with house dust mite (HDM) extracts for 23 days to induce asthma. Mice were divided into room air (RA) group and intermittent hypoxic (IH) group by exposing to different conditions and IH preconditioning (IHP) were underwent to the above groups before the hypoxic regimen. Airway inflammation in mice was evaluated by airway hyperresponsiveness, excessive mucus secretion, and recruitment of inflammatory cells. Immunohistochemistry was employed to quantify the expression levels of NF-κB. Subsequently, the dose of allergen was modified to investigate whether the impact of hypoxia on asthma is affected by different doses of allergens. RESULT: Compared to the RA and IH groups, HDM-treated mice in the IHP group exhibited aggravated inflammatory cell infiltration and airway hyperresponsiveness (p<.05). Moreover, there was an increased release of inflammatory mediators and higher expression levels of NF-κB (p<.05). Importantly, the impact ia on asthma was found to be influenced by high dose of allergen (p<.05). CONCLUSION: IHP treatment potentially exacerbates HDM-induced airway inflammation in asthma, with the involvement of NF-κB, particularly under high-dose allergen stimulation.


Subject(s)
Asthma , Respiratory Hypersensitivity , Mice , Animals , Pyroglyphidae , NF-kappa B , Asthma/drug therapy , Dermatophagoides pteronyssinus , Allergens/therapeutic use , Inflammation , Hypoxia
2.
Eur Respir Rev ; 33(172)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38657996

ABSTRACT

Common airborne allergens (pollen, animal dander and those from fungi and insects) are the main triggers of type I allergic disorder in the respiratory system and are associated with allergic rhinitis, allergic asthma, as well as immunoglobulin E (IgE)-mediated allergic bronchopulmonary aspergillosis. These allergens promote IgE crosslinking, vasodilation, infiltration of inflammatory cells, mucosal barrier dysfunction, extracellular matrix deposition and smooth muscle spasm, which collectively cause remodelling of the airways. Fungus and insect (house dust mite and cockroaches) indoor allergens are particularly rich in proteases. Indeed, more than 40 different types of aeroallergen proteases, which have both IgE-neutralising and tissue-destructive activities, have been documented in the Allergen Nomenclature database. Of all the inhaled protease allergens, 85% are classed as serine protease activities and include trypsin-like, chymotrypsin-like and collagenolytic serine proteases. In this article, we review and compare the allergenicity and proteolytic effect of allergen serine proteases as listed in the Allergen Nomenclature and MEROPS databases and highlight their contribution to allergic sensitisation, disruption of the epithelial barrier and activation of innate immunity in allergic airways disease. The utility of small-molecule inhibitors of allergen serine proteases as a potential treatment strategy for allergic airways disease will also be discussed.


Subject(s)
Allergens , Immunity, Innate , Serine Proteases , Humans , Allergens/immunology , Serine Proteases/metabolism , Serine Proteases/immunology , Animals , Air Pollution, Indoor/adverse effects , Serine Proteinase Inhibitors/therapeutic use , Inhalation Exposure/adverse effects , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/enzymology
3.
Eur J Pharmacol ; 972: 176560, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38604543

ABSTRACT

Obese asthma is a unique asthma phenotype that decreases sensitivity to inhaled corticosteroids, and currently lacks efficient therapeutic medication. Celastrol, a powerful bioactive substance obtained naturally from the roots of Tripterygium wilfordii, has been reported to possess the potential effect of weight loss in obese individuals. However, its role in the treatment of obese asthma is not fully elucidated. In the present study, diet-induced obesity (DIO) mice were used with or without ovalbumin (OVA) sensitization, the therapeutic effects of celastrol on airway hyperresponsiveness (AHR) and airway inflammation were examined. We found celastrol significantly decreased methacholine-induced AHR in obese asthma, as well as reducing the infiltration of inflammatory cells and goblet cell hyperplasia in the airways. This effect was likely due to the inhibition of M1-type alveolar macrophages (AMs) polarization and the promotion of M2-type macrophage polarization. In vitro, celastrol yielded equivalent outcomes in Lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells, featuring a reduction in the expression of M1 macrophage makers (iNOS, IL-1ß, TNF-α) and heightened M2 macrophage makers (Arg-1, IL-10). Mechanistically, the PI3K/AKT signaling pathway has been implicated in these processes. In conclusion, we demonstrated that celastrol assisted in mitigating various parameters of obese asthma by regulating the balance of M1/M2 AMs polarization.


Subject(s)
Asthma , Macrophages, Alveolar , Obesity , Pentacyclic Triterpenes , Triterpenes , Animals , Asthma/drug therapy , Pentacyclic Triterpenes/pharmacology , Obesity/drug therapy , Obesity/complications , Mice , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Triterpenes/pharmacology , Triterpenes/therapeutic use , RAW 264.7 Cells , Inflammation/drug therapy , Inflammation/pathology , Proto-Oncogene Proteins c-akt/metabolism , Respiratory Hypersensitivity/drug therapy , Signal Transduction/drug effects , Male , Phosphatidylinositol 3-Kinases/metabolism , Mice, Inbred C57BL , Ovalbumin , Cell Polarity/drug effects
4.
Int J Immunopathol Pharmacol ; 38: 3946320241246713, 2024.
Article in English | MEDLINE | ID: mdl-38649141

ABSTRACT

Purpose: This retrospective study investigates the influence of overweight and obesity status on pulmonary function, airway inflammatory markers, and airway responsiveness in elderly asthma patients. Methods: Patients with asthma older than 65 years old who completed a bronchial provocation test (BPT) or bronchial dilation test (BDT) and a fractional exhaled nitric oxide (FeNO) test between December 2015 and June 2020 were identified retrospectively for this study. All of the patients were categorized into overweight/obesity and non-obesity groups based on their BMI. Pulmonary function test (PFT) and FeNO measurements were accomplished according to the 2014 recommendations of the Chinese National Guidelines of Pulmonary Function Test and American Thoracic Society/European Respiratory Society recommendations, respectively. Results: A total of 136 patients with an average age of 71.2 ± 5.40 years were identified. The average BMI was 23.8 ± 3.63, while the value of FeNO was 42.3 ± 38.4 parts per billion (ppb). In contrast to the non-obesity group, which had a value of 48.8 ± 43.1 ppb for FeNO, the overweight/obesity group had a significant lower value of 35.4 ± 31.4 ppb. There was no significant difference in the proportion of individuals with high airway hyperresponsiveness between the overweight/obesity and non-obesity groups (96 patients in total). Multiple linear regression analysis established an inverse correlation between FeNO and Provocation concentration causing a 20% fall in FEV1(PC20) but excluded significant relationships with age and BMI. The model's R is 0.289, and its p value is 0.045. Conclusion: The elderly Chinese Han asthmatics with overweight/obesity had lower FeNO levels than those with non-obese according to our findings. In addition, the FeNO level was inversely correlated between FeNO levels and PC20 in elderly asthmatics.


Subject(s)
Asthma , Nitric Oxide , Obesity , Overweight , Humans , Asthma/physiopathology , Asthma/metabolism , Asthma/diagnosis , Aged , Male , Female , Retrospective Studies , Obesity/physiopathology , Obesity/metabolism , Overweight/physiopathology , Overweight/metabolism , Nitric Oxide/metabolism , Nitric Oxide/analysis , Respiratory Function Tests , Fractional Exhaled Nitric Oxide Testing , China/epidemiology , Bronchial Provocation Tests , Body Mass Index , Asian People , Respiratory Hypersensitivity/physiopathology , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/diagnosis , Breath Tests
5.
J Biol Chem ; 300(4): 107127, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432633

ABSTRACT

Regulators of G protein signaling (RGS) proteins constrain G protein-coupled receptor (GPCR)-mediated and other responses throughout the body primarily, but not exclusively, through their GTPase-activating protein activity. Asthma is a highly prevalent condition characterized by airway hyper-responsiveness (AHR) to environmental stimuli resulting in part from amplified GPCR-mediated airway smooth muscle contraction. Rgs2 or Rgs5 gene deletion in mice enhances AHR and airway smooth muscle contraction, whereas RGS4 KO mice unexpectedly have decreased AHR because of increased production of the bronchodilator prostaglandin E2 (PGE2) by lung epithelial cells. Here, we found that knockin mice harboring Rgs4 alleles encoding a point mutation (N128A) that sharply curtails RGS4 GTPase-activating protein activity had increased AHR, reduced airway PGE2 levels, and augmented GPCR-induced bronchoconstriction compared with either RGS4 KO mice or WT controls. RGS4 interacted with the p85α subunit of PI3K and inhibited PI3K-dependent PGE2 secretion elicited by transforming growth factor beta in airway epithelial cells. Together, these findings suggest that RGS4 affects asthma severity in part by regulating the airway inflammatory milieu in a G protein-independent manner.


Subject(s)
Asthma , RGS Proteins , Animals , Humans , Mice , Asthma/metabolism , Asthma/genetics , Asthma/pathology , Bronchoconstriction/genetics , Dinoprostone/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Mice, Knockout , Phosphatidylinositol 3-Kinases/metabolism , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/genetics , Respiratory Hypersensitivity/pathology , RGS Proteins/metabolism , RGS Proteins/genetics , Cell Line
6.
Biomed Pharmacother ; 174: 116510, 2024 May.
Article in English | MEDLINE | ID: mdl-38554528

ABSTRACT

BACKGROUND: CpG oligodeoxynucleotide (CpG-ODN; CpG, in short) has been employed as an adjuvant in allergen specific immunotherapy (AIT) to treat allergic diseases. The underlying mechanism needs to be further explained. The aim of this study is to examine the mechanism by which CpG and dust mite extracts (DME, a specific antigen) alleviate experimental airway allergy. METHODS: DME was used as the specific allergen to establish an airway allergy mouse model. The mice were directly exposed to DME and CpG through nasal instillations (the CpG.DME therapy). The response of DCs and allergic responses in the airways were assessed using immunological approaches. RESULTS: The airway allergy reaction was effectively suppressed by CpG.DME therapy. The administration of CpG or DME alone did not have any significant suppressive effects on the airway allergic response. Direct exposure to CpG.DME induced type 1 DCs (DC1s) and plasmacytoid DCs (pDCs), while CpG alone induced DC1s and DME alone induced DC2s in the airway tissues. Both DC1s and pDCs were required for the induction of type 1 regulatory T cells in the airway tissues by CpG.DME therapy. Depletion of either pDCs or DC1s abolished the induction of Tr1 cells, and abolished the suppressive effects on airway allergic response by the CpG.DME therapy. CONCLUSIONS: Direct exposure to CpG.DME induces DC1s and pDCs in the airway tissues. DC1s in synergy with pDCs induce type 1 regulatory T cells. The CpG.DME therapy is effective in suppressing allergic responses in mice with airway allergy.


Subject(s)
Dendritic Cells , Mice, Inbred BALB C , Oligodeoxyribonucleotides , Respiratory Hypersensitivity , Animals , Dendritic Cells/immunology , Dendritic Cells/drug effects , Oligodeoxyribonucleotides/pharmacology , Mice , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/therapy , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Female , Adjuvants, Immunologic/pharmacology , Allergens/immunology , Antigens, Dermatophagoides/immunology , Hypersensitivity/immunology , Mice, Inbred C57BL , Disease Models, Animal , Pyroglyphidae/immunology
7.
Allergol. immunopatol ; 52(2): 80-82, mar. 2024. tab
Article in English | IBECS | ID: ibc-231092

ABSTRACT

Background: Tezepelumab is a monoclonal antibody targeting thymic stromal lymphopoietin (TSLP), implicated in asthma pathogenesis, and that has been approved for patients with severe uncontrolled asthma in Spain in October 2023. This study evaluates our experience with Tezepelumab for those patients who received the indicated drug off-label prior to its commercialization. Methods: We conducted a real-life observational study on three patients from the Severe Asthma Unit of the Hospital Universitario de Fuenlabrada, Spain, who received Tezepelumab off-label before its official approval. We analyzed symptoms control based on ACT, exacerbations, reductions in the doses of oral corticosteroid, lung function, blood changes and safety at 3 months of treatment. Results: Tezepelumab demonstrated efficacy in improving asthma control and a notable reduction in emergency department visits. OCS use decreased, with one patient halving their prednisone dose. Lung function, particularly FEV1 and FEV1/FVC parameters, improved, but no significant changes were observed in FeNO levels, blood eosinophil counts and total IgE. The treatment exhibited a favorable safety profile with no reported adverse effects during the study period. Conclusions: In this preliminary real-world experience prior to the official approval of tezepelumab in Spain, this monoclonal antibody showed promising results and suggests its potential as a valuable alternative for the treatment of severe asthma.(AU)


Subject(s)
Humans , Male , Female , Asthma/complications , Asthma/drug therapy , Biological Products/administration & dosage , Antibodies, Monoclonal , Spain , Asthma/diagnosis , Respiratory Hypersensitivity , Allergy and Immunology
8.
Immun Inflamm Dis ; 12(3): e1225, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38533918

ABSTRACT

BACKGROUND: The dosage of ovalbumin (OVA) during the sensitization stage is considered a crucial factor in the development of airway hyperresponsiveness (AHR). However, the inconsistent dosages of sensitizing OVA used in current studies and the lack of research on their impact on AHR are notable limitations. METHODS: We examined the impact of increasing sensitizing doses of OVA in a murine asthma model, which entailed initial sensitization with OVA followed by repeated exposure to OVA aerosols. BALB/c mice were primed with doses of OVA (0, 10, 20, 50, and 100 µg) plus 1 mg Alum on Days 0 and 7, and were challenged with OVA aerosols (10 mg/mL for 30 min) between Days 14 and 17. Antigen-induced AHR to methacholine (MCh), as well as histological changes, eosinophilic infiltration, and epithelial injury were assessed. RESULTS: The result indicated that there are striking OVA dose-related differences in antigen-induced AHR to MCh. The most intense antigen-induced AHR to MCh was observed with sensitization at 50 µg, while weaker responses were seen at 10, 20, and 100 µg. Meanwhile, there was a significant increase in eosinophil count with sensitization at 50 µg. The changes of AHR were correlated with total cells count, lymphocytes count, eosinophils count, and basophils count in bronchoalveolar lavage fluid; however, it did not correlate with histological changes such as cellular infiltration into bronchovascular bundles and goblet cell hyperplasia of the bronchial epithelium. CONCLUSION: Overall, this study demonstrated that sensitization with 50 µg of OVA resulted in the most significant AHR compared to other dosages. These findings may offer valuable insights for future research on mouse asthma modeling protocols.


Subject(s)
Asthma , Bronchial Hyperreactivity , Respiratory Hypersensitivity , Animals , Mice , Ovalbumin , Respiratory Aerosols and Droplets , Asthma/pathology , Methacholine Chloride
9.
J Allergy Clin Immunol ; 153(5): 1181-1193, 2024 May.
Article in English | MEDLINE | ID: mdl-38395082

ABSTRACT

Airway hyperresponsiveness (AHR) is a key clinical feature of asthma. The presence of AHR in people with asthma provides the substrate for bronchoconstriction in response to numerous diverse stimuli, contributing to airflow limitation and symptoms including breathlessness, wheeze, and chest tightness. Dysfunctional airway smooth muscle significantly contributes to AHR and is displayed as increased sensitivity to direct pharmacologic bronchoconstrictor stimuli, such as inhaled histamine and methacholine (direct AHR), or to endogenous mediators released by activated airway cells such as mast cells (indirect AHR). Research in in vivo human models has shown that the disrupted airway epithelium plays an important role in driving inflammation that mediates indirect AHR in asthma through the release of cytokines such as thymic stromal lymphopoietin and IL-33. These cytokines upregulate type 2 cytokines promoting airway eosinophilia and induce the release of bronchoconstrictor mediators from mast cells such as histamine, prostaglandin D2, and cysteinyl leukotrienes. While bronchoconstriction is largely due to airway smooth muscle contraction, airway structural changes known as remodeling, likely mediated in part by epithelial-derived mediators, also lead to airflow obstruction and may enhance AHR. In this review, we outline the current knowledge of the role of the airway epithelium in AHR in asthma and its implications on the wider disease. Increased understanding of airway epithelial biology may contribute to better treatment options, particularly in precision medicine.


Subject(s)
Asthma , Respiratory Mucosa , Humans , Asthma/immunology , Asthma/physiopathology , Animals , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Cytokines/metabolism , Cytokines/immunology , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/physiopathology , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/physiopathology , Mast Cells/immunology , Bronchoconstriction
10.
Immunology ; 172(2): 210-225, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38366844

ABSTRACT

Numerous diseases of the immune system can be traced back to the malfunctioning of the regulatory T cells. The aetiology is unclear. Psychological stress can cause disruption to the immune regulation. The synergistic effects of psychological stress and immune response on immune regulation have yet to be fully understood. The intention of this study is to analyse the interaction between psychological stress and immune responses and how it affects the functional status of type 1 regulatory T (Tr1) cells. In this study, ovalbumin peptide T-cell receptor transgenic mice were utilised. Mice were subjected to restraint stress to induce psychological stress. An airway allergy murine model was established, in which a mouse strain with RING finger protein 20 (Rnf20)-deficient CD4+ T cells were used. The results showed that concomitant exposure to restraint stress and immune response could exacerbate endoplasmic reticulum stress in Tr1 cells. Corticosterone was responsible for the elevated expression of X-box protein-1 (XBP1) in mouse Tr1 cells after exposure to both restraint stress and immune response. XBP1 mediated the effects of corticosterone on inducing Rnf20 in Tr1 cells. The reduction of the interleukin-10 expression in Tr1 cells was facilitated by Rnf20. Inhibition of Rnf20 alleviated experimental airway allergy by restoring the immune regulatory ability of Tr1 cells. In conclusion, the functions of Tr1 cells are negatively impacted by simultaneous exposure to psychological stress and immune response. Tr1 cells' immune suppressive functions can be restored by inhibiting Rnf20, which has the translational potential for the treatment of diseases of the immune system.


Subject(s)
Interleukin-10 , Mice, Transgenic , Ovalbumin , Stress, Psychological , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Ovalbumin/immunology , Stress, Psychological/immunology , Mice , Interleukin-10/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Corticosterone/blood , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Endoplasmic Reticulum Stress/immunology , Disease Models, Animal , Restraint, Physical , Mice, Knockout , Mice, Inbred C57BL , Respiratory Hypersensitivity/immunology
11.
Eur Rev Med Pharmacol Sci ; 28(3): 1060-1065, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38375711

ABSTRACT

OBJECTIVE: Asthma is characterized by airway hyperresponsiveness due to chronic inflammation in the airways. One of the main cells involved in airway inflammation is eosinophils. In the current study, a bronchial provocation test (BPT) was performed to demonstrate airway hyperresponsiveness. We investigated the relationship between BPT and blood eosinophil count and the cut-off value of blood eosinophil count. PATIENTS AND METHODS: In this study, we retrospectively evaluated the data of 246 patients who visited our immunology and allergy clinic, a tertiary reference center, with asthma symptoms between May 2017 and March 2020 and underwent BPT with methacholine for the diagnosis of asthma. The cases were grouped according to the level of BPT positivity and negativity. RESULTS: Of 246 patients, BPT was positive in 90 (36.6%) and negative in 156 (63.4%). The blood eosinophil measurement of the BPT-positive cases was found to be statistically significantly higher than that of the BPT-negative cases (135 vs. 119 cells/µl, respectively, p=0.029). When BPT is grouped according to positivity levels, there was no statistically significant difference in blood eosinophil measurements between subgroups (p=0.174). As a result of the evaluations, the cut-off point obtained for the blood eosinophil count was determined as ≥226 cells/µl. For the blood eosinophil count, for the cut-off value of ≥226 cells/µl, sensitivity was 30.0%, specificity 87.7%, positive predictive value 58.7%, and negative predictive value 68.3%. CONCLUSIONS: This study shows that BPT positivity is associated with blood eosinophil count. The cut-off value (≥226 cells/µl) determined for blood eosinophil count may be helpful when planning BPT and evaluating the diagnosis of asthma.


Subject(s)
Asthma , Respiratory Hypersensitivity , Humans , Eosinophils , Bronchial Provocation Tests , Retrospective Studies , Leukocyte Count , Inflammation
12.
Medicine (Baltimore) ; 103(8): e37287, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394538

ABSTRACT

BACKGROUND: Allergic rhinitis (AR) and asthma (AS) are prevalent and frequently co-occurring respiratory diseases, with mutual influence on each other. They share similar etiology, pathogenesis, and pathological changes. Due to the anatomical continuity between the upper and lower respiratory tracts, allergic inflammation in the nasal cavity can readily propagate downwards, leading to bronchial inflammation and asthma. AR serves as a significant risk factor for AS by potentially inducing airway hyperresponsiveness in patients. Currently, there is a lack of reliable predictors for the progression from AR to AS. METHODS: In this exhaustive investigation, we reexamined peripheral blood single cell RNA sequencing datasets from patients with AS following AR and healthy individuals. In addition, we used the bulk RNA sequencing dataset as a validation lineup, which included AS, AR, and healthy controls. Using marker genes of related cell subtype, signatures predicting the progression of AR to AS were generated. RESULTS: We identified a subtype of immune-activating effector T cells that can distinguish patients with AS after AR. By combining specific marker genes of effector T cell subtype, we established prediction models of 16 markers. The model holds great promise for assessing AS risk in individuals with AR, providing innovative avenues for clinical diagnosis and treatment strategies. CONCLUSION: Subcluster T effector cells may play a key role in post-AR AS. Notably, ACTR3 and HSPA8 genes were significantly upregulated in the blood of AS patients compared to healthy patients.


Subject(s)
Asthma , Respiratory Hypersensitivity , Rhinitis, Allergic, Perennial , Rhinitis, Allergic , Humans , Rhinitis, Allergic, Perennial/drug therapy , Rhinitis, Allergic, Perennial/pathology , Asthma/drug therapy , Inflammation
13.
Environ Sci Technol ; 58(10): 4680-4690, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38412365

ABSTRACT

Formaldehyde (HCHO) exposures during a full year were calculated for different race/ethnicity groups living in Southeast Texas using a chemical transport model tagged to track nine emission categories. Petroleum and industrial emissions were the largest anthropogenic sources of HCHO exposure in Southeast Texas, accounting for 44% of the total HCHO population exposure. Approximately 50% of the HCHO exposures associated with petroleum and industrial sources were directly emitted (primary), while the other 50% formed in the atmosphere (secondary) from precursor emissions of reactive compounds such as ethylene and propylene. Biogenic emissions also formed secondary HCHO that accounted for 11% of the total population-weighted exposure across the study domain. Off-road equipment contributed 3.7% to total population-weighted exposure in Houston, while natural gas combustion contributed 5% in Beaumont. Mobile sources accounted for 3.7% of the total HCHO population exposure, with less than 10% secondary contribution. Exposure disparity patterns changed with the location. Hispanic and Latino residents were exposed to HCHO concentrations +1.75% above average in Houston due to petroleum and industrial sources and natural gas sources. Black and African American residents in Beaumont were exposed to HCHO concentrations +7% above average due to petroleum and industrial sources, off-road equipment, and food cooking. Asian residents in Beaumont were exposed to HCHO concentrations that were +2.5% above average due to HCHO associated with petroleum and industrial sources, off-road vehicles, and food cooking. White residents were exposed to below average HCHO concentrations in all domains because their homes were located further from primary HCHO emission sources. Given the unique features of the exposure disparities in each region, tailored solutions should be developed by local stakeholders. Potential options to consider in the development of those solutions include modifying processes to reduce emissions, installing control equipment to capture emissions, or increasing the distance between industrial sources and residential neighborhoods.


Subject(s)
Air Pollutants , Formaldehyde/adverse effects , Petroleum , Respiratory Hypersensitivity , Air Pollutants/analysis , Vehicle Emissions/analysis , Texas , Natural Gas , Environmental Monitoring , Formaldehyde/analysis
14.
Environ Pollut ; 345: 123531, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38341059

ABSTRACT

Occupational exposure to carcinogens of increasing cancer risk have been extensively suggested. A robust assessment of these evidence is needed to guide public policy and health care. We aimed to classify the strength of evidence for associations of 13 occupational carcinogens (OCs) and risk of cancers. We searched PubMed and Web of Science up to November 2022 to identify potentially relevant studies. We graded the evidence into convincing, highly suggestive, suggestive, weak, or not significant according to a standardized classification based on: random-effects p value, number of cancer cases, 95% confidence interval of largest study, heterogeneity between studies, 95% prediction interval, small study effect, excess significance bias and sensitivity analyses with credibility ceilings. The quality of meta-analysis was evaluated by AMSTAR 2. Forty-eight articles yielded 79 meta-analyses were included in current umbrella review. Evidence of associations were convincing (class I) or highly suggeastive (class II) for asbestos exposure and increasing risk of lung cancer among smokers (RR = 8.79, 95%CI: 5.81-13.25 for cohort studies and OR = 8.68, 95%CI: 5.68-13.24 for case-control studies), asbestos exposure and increasing risk of mesothelioma (RR = 4.61, 95%CI: 2.57-8.26), and formaldehyde exposure and increasing risk of sinonasal cancer (RR = 1.68, 95%CI: 1.38-2.05). Fifteen associations were supported by suggestive evidence (class III). In summary, the current umbrella review found strong associations between: asbestos exposure and increasing risk of lung cancer among smokers; asbestos exposure and increasing risk of mesothelioma; and formaldehyde exposure and higher risk of sinonasal cancer. Other associations might be genuine, but substantial uncertainty remains.


Subject(s)
Asbestos , Formaldehyde/adverse effects , Lung Neoplasms , Mesothelioma , Occupational Exposure , Respiratory Hypersensitivity , Humans , Lung Neoplasms/chemically induced , Lung Neoplasms/epidemiology , Carcinogens/toxicity , Occupational Exposure/adverse effects
15.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(2): 101-119, 2024 Feb 12.
Article in Chinese | MEDLINE | ID: mdl-38309959

ABSTRACT

The methacholine challenge test (MCT) is a standard evaluation method of assessing airway hyperresponsiveness (AHR) and its severity, and has significant clinical value in the diagnosis and treatment of bronchial asthma. A consensus working group consisting of experts from the Pulmonary Function and Clinical Respiratory Physiology Committee of the Chinese Association of Chest Physicians, the Task Force for Pulmonary Function of the Chinese Thoracic Society, and the Pulmonary Function Group of Respiratory Branch of the Chinese Geriatric Society jointly developed this consensus. Based on the "Guidelines for Pulmonary Function-Bronchial Provocation Test" published in 2014, the issues encountered in its use, and recent developments, the group has updated the Standard technical specifications of methacholine chloride (methacholine) bronchial challenge test (2023). Through an extensive collection of expert opinions, literature reviews, questionnaire surveys, and multiple rounds of online and offline discussions, the consensus addressed the eleven core issues in MCT's clinical practice, including indications, contraindications, preparation of provocative agents, test procedures and methods, quality control, safety management, interpretation of results, and reporting standards. The aim was to provide clinical pulmonary function practitioners in healthcare institutions with the tools to optimize the use of this technique to guide clinical diagnosis and treatment.Summary of recommendationsQuestion 1: Who is suitable for conducting MCT? What are contraindications for performing MCT?Patients with atypical symptoms and a clinical suspicion of asthma, patients diagnosed with asthma requiring assessment of the severity of airway hyperresponsiveness, individuals with allergic rhinitis who are at risk of developing asthma, patients in need of evaluating the effectiveness of asthma treatment, individuals in occupations with high safety risks due to airway hyperresponsiveness, patients with chronic diseases prone to airway hyperresponsiveness, others requiring assessment of airway reactivity.Absolute contraindications: (1) Patients who are allergic to methacholine (MCh) or other parasympathomimetic drugs, with allergic reactions including rash, itching/swelling (especially of the face, tongue, and throat), severe dizziness, and dyspnea; (2) Patients with a history of life-threatening asthma attacks or those who have required mechanical ventilation for asthma attacks in the past three months; (3) Patients with moderate to severe impairment of baseline pulmonary function [Forced Expiratory Volume in one second (FEV1) less than 60% of the predicted value or FEV1<1.0 L]; (4) Severe urticaria; (5) Other situations inappropriate for forced vital capacity (FVC) measurement, such as myocardial infarction or stroke in the past three months, poorly controlled hypertension, aortic aneurysm, recent eye surgery, or increased intracranial pressure.Relative contraindications: (1) Moderate or more severe impairment of baseline lung function (FEV1%pred<70%), but individuals with FEV1%pred>60% may still be considered for MCT with strict observation and adequate preparation; (2) Experiencing asthma acute exacerbation; (3) Poor cooperation with baseline lung function tests that do not meet quality control requirements; (4) Recent respiratory tract infection (<4 weeks); (5) Pregnant or lactating women; (6) Patients currently using cholinesterase inhibitors (for the treatment of myasthenia gravis); (7) Patients who have previously experienced airway spasm during pulmonary function tests, with a significant decrease in FEV1 even without the inhalation of provocative.Question 2: How to prepare and store the challenge solution for MCT?Before use, the drug must be reconstituted and then diluted into various concentrations for provocation. The dilution concentration and steps for MCh vary depending on the inhalation method and provocation protocol used. It is important to follow specific steps. Typically, a specified amount of diluent is added to the methacholine reagent bottle for reconstitution, and the mixture is shaken until the solution becomes clear. The diluent is usually physiological saline, but saline with phenol (0.4%) can also be used. Phenol can reduce the possibility of bacterial contamination, and its presence does not interfere with the provocation test. After reconstitution, other concentrations of MCh solution are prepared using the same diluent, following the dilution steps, and then stored separately in sterile containers. Preparers should carefully verify and label the concentration and preparation time of the solution and complete a preparation record form. The reconstituted and diluted MCh solution is ready for immediate use without the need for freezing. It can be stored for two weeks if refrigerated (2-8 ℃). The reconstituted solution should not be stored directly in the nebulizer reservoir to prevent crystallization from blocking the capillary opening and affecting aerosol output. The temperature of the solution can affect the production of the nebulizer and cause airway spasms in the subject upon inhaling cold droplets. Thus, refrigerated solutions should be brought to room temperature before use.Question 3: What preparation is required for subjects prior to MCT?(1) Detailed medical history inquiry and exclusion of contraindications.(2) Inquiring about factors and medications that may affect airway reactivity and assessing compliance with medication washout requirements: When the goal is to evaluate the effectiveness of asthma treatment, bronchodilators other than those used for asthma treatment do not need to be discontinued. Antihistamines and cromolyn have no effect on MCT responses, and the effects of a single dose of inhaled corticosteroids and leukotriene modifiers are minimal, thus not requiring cessation before the test. For patients routinely using corticosteroids, whether to discontinue the medication depends on the objective of the test: if assisting in the diagnosis of asthma, differential diagnosis, aiding in step-down therapy for asthma, or exploring the effect of discontinuing anti-inflammatory treatment, corticosteroids should be stopped before the provocation test; if the patient is already diagnosed with asthma and the objective is to observe the level of airway reactivity under controlled medication conditions, then discontinuation is not necessary. Medications such as IgE monoclonal antibodies, IL-4Rα monoclonal antibodies, traditional Chinese medicine, and ethnic medicines may interfere with test results, and clinicians should decide whether to discontinue these based on the specific circumstances.(3) Explaining the test procedure and potential adverse reactions, and obtaining informed consent if necessary.Question 4: What are the methods of the MCT? And which ones are recommended in current clinical practice?Commonly used methods for MCT in clinical practice include the quantitative nebulization method (APS method), Forced Oscillalion method (Astograph method), 2-minute tidal breathing method (Cockcroft method), hand-held quantitative nebulization method (Yan method), and 5-breath method (Chai 5-breath method). The APS method allows for precise dosing of inhaled Methacholine, ensuring accurate and reliable results. The Astograph method, which uses respiratory resistance as an assessment indicator, is easy for subjects to perform and is the simplest operation. These two methods are currently the most commonly used clinical practice in China.Question 5: What are the steps involved in MCT?The MCT consists of the following four steps:(1) Baseline lung function test: After a 15-minute rest period, the subjects assumes a seated position and wear a nose clip for the measurement of pulmonary function indicators [such as FEV1 or respiratory resistance (Rrs)]. FEV1 should be measured at least three times according to spirometer quality control standards, ensuring that the best two measurements differ by less than 150 ml and recording the highest value as the baseline. Usually, if FEV1%pred is below 70%, proceeding with the challenge test is not suitable, and a bronchodilation test should be considered. However, if clinical assessment of airway reactivity is necessary and FEV1%pred is between 60% and 70%, the provocation test may still be conducted under close observation, ensuring the subject's safety. If FEV1%pred is below 60%, it is an absolute contraindication for MCT.(2) Inhalation of diluent and repeat lung function test for control values: the diluent, serving as a control for the inhaled MCh, usually does not significantly impact the subject's lung function. the higher one between baseline value and the post-dilution FEV1 is used as the reference for calculating the rate of FEV1 decline. If post-inhalation FEV1 decreases, there are usually three scenarios: ①If FEV1 decreases by less than 10% compared to the baseline, the test can proceed, continue the test and administer the first dose of MCh. ②If the FEV1 decreases by≥10% and<20%, indicating a heightened airway reactivity to the diluent, proceed with the lowest concentration (dose) of the provoking if FEV1%pred has not yet reached the contraindication criteria for the MCT. if FEV1%pred<60% and the risk of continuing the challenge test is considerable, it is advisable to switch to a bronchodilation test and indicate the change in the test results report. ③If FEV1 decreases by≥20%, it can be directly classified as a positive challenge test, and the test should be discontinued, with bronchodilators administered to alleviate airway obstruction.(3) Inhalation of MCh and repeat lung function test to assess decline: prepare a series of MCh concentrations, starting from the lowest and gradually increasing the inhaled concentration (dose) using different methods. Perform pulmonaryfunction tests at 30 seconds and 90 seconds after completing nebulization, with the number of measurements limited to 3-4 times. A complete Forced Vital Capacity (FVC) measurement is unnecessary during testing; only an acceptable FEV1 measurement is required. The interval between two consecutive concentrations (doses) generally should not exceed 3 minutes. If FEV1 declines by≥10% compared to the control value, reduce the increment of methacholine concentration (dose) and adjust the inhalation protocol accordingly. If FEV1 declines by≥20% or more compared to the control value or if the maximum concentration (amount) has been inhaled, the test should be stopped. After inhaling the MCh, close observation of the subject's response is necessary. If necessary, monitor blood oxygen saturation and auscultate lung breath sounds. The test should be promptly discontinued in case of noticeable clinical symptoms or signs.(4) Inhalation of bronchodilator and repeat lung function test to assess recovery: when the bronchial challenge test shows a positive response (FEV1 decline≥20%) or suspiciously positive, the subject should receive inhaled rapid-acting bronchodilators, such as short-acting beta-agonists (SABA) or short-acting muscarinic antagonists (SAMA). Suppose the subject exhibits obvious symptoms of breathlessness, wheezing, or typical asthma manifestations, and wheezing is audible in the lungs, even if the positive criteria are not met. In that case, the challenge test should be immediately stopped, and rapid-acting bronchodilators should be administered. Taking salbutamol as an example, inhale 200-400 µg (100 µg per puff, 2-4 puffs, as determined by the physician based on the subject's condition). Reassess pulmonary function after 5-10 minutes. If FEV1 recovers to within 10% of the baseline value, the test can be concluded. However, if there is no noticeable improvement (FEV1 decline still≥10%), record the symptoms and signs and repeat the bronchodilation procedure as mentioned earlier. Alternatively, add Ipratropium bromide (SAMA) or further administer nebulized bronchodilators and corticosteroids for intensified treatment while keeping the subject under observation until FEV1 recovers to within 90% of the baseline value before allowing the subject to leave.Question 6: What are the quality control requirements for the APS and Astograph MCT equipment?(1) APS Method Equipment Quality Control: The APS method for MCT uses a nebulizing inhalation device that requires standardized flowmeters, compressed air power source pressure and flow, and nebulizer aerosol output. Specific quality control methods are as follows:a. Flow and volume calibration of the quantitative nebulization device: Connect the flowmeter, an empty nebulization chamber, and a nebulization filter in sequence, attaching the compressed air source to the bottom of the chamber to ensure airtight connections. Then, attach a 3 L calibration syringe to the subject's breathing interface and simulate the flow during nebulization (typically low flow:<2 L/s) to calibrate the flow and volume. If calibration results exceed the acceptable range of the device's technical standards, investigate and address potential issues such as air leaks or increased resistance due to a damp filter, then recalibrate. Cleaning the flowmeter or replacing the filter can change the resistance in the breathing circuit, requiring re-calibration of the flow.b. Testing the compressed air power source: Regularly test the device, connecting the components as mentioned above. Then, block the opening of the nebulization device with a stopper or hand, start the compressed air power source, and test its pressure and flow. If the test results do not meet the technical standards, professional maintenance of the equipment may be required.c. Verification of aerosol output of the nebulization chamber: Regularly verify all nebulization chambers used in provocation tests. Steps include adding a certain amount of saline to the chamber, weighing and recording the chamber's weight (including saline), connecting the nebulizer to the quantitative nebulization device, setting the nebulization time, starting nebulization, then weighing and recording the post-nebulization weight. Calculate the unit time aerosol output using the formula [(weight before nebulization-weight after nebulization)/nebulization time]. Finally, set the nebulization plan for the provocation test based on the aerosol output, considering the MCh concentration, single inhalation nebulization duration, number of nebulization, and cumulative dose to ensure precise dosing of the inhaled MCh.(2) Astograph method equipment quality control: Astograph method equipment for MCT consists of a respiratory resistance monitoring device and a nebulization medication device. Perform zero-point calibration, volume calibration, impedance verification, and nebulization chamber checks daily before tests to ensure the resistance measurement system and nebulization system function properly. Calibration is needed every time the equipment is turned on, and more frequently if there are significant changes in environmental conditions.a. Zero-point calibration: Perform zero-point calibration before testing each subject. Ensure the nebulization chamber is properly installed and plugged with no air leaks.b. Volume calibration: Use a 3 L calibration syringe to calibrate the flow sensor at a low flow rate (approximately 1 L/s).c. Resistance verification: Connect low impedance tubes (1.9-2.2 cmH2O·L-1·s-1) and high impedance tubes (10.2-10.7 cmH2O·L-1·s-1) to the device interface for verification.d. Bypass check: Start the bypass check and record the bypass value; a value>150 ml/s is normal.e. Nebulization chamber check: Check each of the 12 nebulization chambers daily, especially those containing bronchodilators, to ensure normal spraying. The software can control each nebulization chamber to produce spray automatically for a preset duration (e.g., 2 seconds). Observe the formation of water droplets on the chamber walls, indicating normal spraying. If no nebulization occurs, check for incorrect connections or blockages.Question 7: How to set up and select the APS method in MCT?The software program of the aerosol provocation system in the quantitative nebulization method can independently set the nebulizer output, concentration of the methacholine agent, administration time, and number of administrations and combine these parameters to create the challenge test process. In principle, the concentration of the methacholine agent should increase from low to high, and the dose should increase from small to large. According to the standard, a 2-fold or 4-fold incremental challenge process is generally used. In clinical practice, the dose can be simplified for subjects with good baseline lung function and no history of wheezing, such as using a recommended 2-concentration, 5-step method (25 and 50 g/L) and (6.25 and 25 g/L). Suppose FEV1 decreases by more than 10% compared to the baseline during the test to ensure subject safety. In that case, the incremental dose of the methacholine agent can be reduced, and the inhalation program can be adjusted appropriately. If the subject's baseline lung function declines or has recent daytime or nighttime symptoms such as wheezing or chest tightness, a low concentration, low dose incremental process should be selected.Question 8: What are the precautions for the operation process of the Astograph method in MCT?(1) Test equipment: The Astograph method utilizes the forced oscillation technique, applying a sinusoidal oscillating pressure at the mouthpiece during calm breathing. Subjects inhale nebulized MCh of increasing concentrations while continuous monitoring of respiratory resistance (Rrs) plots the changes, assessing airway reactivity and sensitivity. The nebulization system employs jet nebulization technology, comprising a compressed air pump and 12 nebulization cups. The first cup contains saline, cups 2 to 11 contain increasing concentrations of MCh, and the 12th cup contains a bronchodilator solution.(2) Provocation process: Prepare 10 solutions of MCh provocant with gradually increasing concentrations.(3) Operational procedure: The oscillation frequency is usually set to 3 Hz (7 Hz for children) during the test. The subject breathes calmly, inhales saline solution nebulized first, and records the baseline resistance value (if the subject's baseline resistance value is higher than 10 cmH2O·L-1·s-1, the challenge test should not be performed). Then, the subject gradually inhales increasing concentrations of methacholine solution. Each concentration solution is inhaled for 1 minute, and the nebulization system automatically switches to the next concentration for inhalation according to the set time. Each nebulizer cup contains 2-3 ml of solution, the output is 0.15 ml/min, and each concentration is inhaled for 1 minute. The dose-response curve is recorded automatically. Subjects should breathe tidally during the test, avoiding deep breaths and swallowing. Continue until Rrs significantly rises to more than double the baseline value, or if the subject experiences notable respiratory symptoms or other discomfort, such as wheezing in both lungs upon auscultation. At this point, the inhalation of the provocant should be stopped and the subject switchs to inhaling a bronchodilator until Rrs returns to pre-provocation levels. If there is no significant increase in Rrs, stop the test after inhaling the highest concentration of MCh.Question 9: How to interpret the results of the MCT?The method chosen for the MCT determines the specific indicators used for interpretation. The most commonly used indicator is FEV1, although other parameters such as Peak Expiratory Flow (PEF) and Rrs can also be used to assess airway hyperresponsiveness.Qualitative judgment: The test results can be classified as positive, suspiciously positive, or negative, based on a combination of the judgment indicators and changes in the subject's symptoms. If FEV1 decreases by≥20% compared to the baseline value after not completely inhaling at the highest concentration, the result can be judged as positive for Methacholine bronchial challenge test. If the patient has obvious wheezing symptoms or wheezing is heard in both lungs, but the challenge test does not meet the positive criteria (the highest dose/concentration has been inhaled), and FEV1 decreases between 10% and 20% compared to the baseline level, the result can also be judged as positive. If FEV1 decreases between 15% and 20% compared to the baseline value without dyspnea or wheezing attacks, the result can be judged as suspiciously positive. Astograph method: If Rrs rises to 2 times or more of the baseline resistance before reaching the highest inhalation concentration, or if the subject's lungs have wheezing and severe coughing, the challenge test can be judged as positive. Regardless of the result of the Methacholine bronchial challenge test, factors that affect airway reactivity, such as drugs, seasons, climate, diurnal variations, and respiratory tract infections, should be excluded.Quantitative judgment: When using the APS method, the severity of airway hyperresponsiveness can be graded based on PD20-FEV1 or PC20-FEV1. Existing evidence suggests that PD20 shows good consistency when different nebulizers, inhalation times, and starting concentrations of MCh are used for bronchial provocation tests, whereas there is more variability with PC20. Therefore, PD20 is often recommended as the quantitative assessment indicator. The threshold value for PD20 with the APS method is 2.5 mg.The Astograph method often uses the minimum cumulative dose (Dmin value, in Units) to reflect airway sensitivity. Dmin is the minimum cumulative dose of MCh required to produce a linear increase in Rrs. A dose of 1 g/L of the drug concentration inhaled for 1-minute equals 1 unit. It's important to note that with the continuous increase in inhaled provocant concentration, the concept of cumulative dose in the Astograph method should not be directly compared to other methods. Most asthma patients have a Dmin<10 Units, according to Japanese guidelines. The Astograph method, having been used in China for over twenty years, suggests a high likelihood of asthma when Dmin≤6 Units, with a smaller Dmin value indicating a higher probability. When Dmin is between 6 and 10 Units, further differential diagnosis is advised to ascertain whether the condition is asthma.Precautions:A negative methacholine challenge test (MCT) does not entirely rule out asthma. The test may yield negative results due to the following reasons:(1) Prior use of medications that reduce airway responsiveness, such as ß2 agonists, anticholinergic drugs, antihistamines, leukotriene receptor antagonists, theophylline, corticosteroids, etc., and insufficient washout time.(2) Failure to meet quality control standards in terms of pressure, flow rate, particle size, and nebulization volume of the aerosol delivery device.(3) Poor subject cooperation leads to inadequate inhalation of the methacholine agent.(4) Some exercise-induced asthma patients may not be sensitive to direct bronchial challenge tests like the Methacholine challenge and require indirect bronchial challenge tests such as hyperventilation, cold air, or exercise challenge to induce a positive response.(5) A few cases of occupational asthma may only react to specific antigens or sensitizing agents, requiring specific allergen exposure to elicit a positive response.A positive MCT does not necessarily indicate asthma. Other conditions can also present with airway hyperresponsiveness and yield positive results in the challenge test, such as allergic rhinitis, chronic bronchitis, viral upper respiratory infections, allergic alveolitis, tropical eosinophilia, cystic fibrosis, sarcoidosis, bronchiectasis, acute respiratory distress syndrome, post-cardiopulmonary transplant, congestive heart failure, and more. Furthermore, factors like smoking, air pollution, or exercise before the test may also result in a positive bronchial challenge test.Question 10: What are the standardized requirements for the MCT report?The report should include: (1) basic information about the subject; (2) examination data and graphics: present baseline data, measurement data after the last two challenge doses or concentrations in tabular form, and the percentage of actual measured values compared to the baseline; flow-volume curve and volume-time curve before and after challenge test; dose-response curve: showing the threshold for positive challenge; (3) opinions and conclusions of the report: including the operator's opinions, quality rating of the examination, and review opinions of the reviewing physician.Question 11: What are the adverse reactions and safety measures of MCT?During the MCT, the subject needs to repeatedly breathe forcefully and inhale bronchial challenge agents, which may induce or exacerbate bronchospasm and contraction and may even cause life-threatening situations. Medical staff should be fully aware of the indications, contraindications, medication use procedures, and emergency response plans for the MCT.


Subject(s)
Asthma , Respiratory Hypersensitivity , Rhinitis, Allergic , Child , Humans , Female , Aged , Methacholine Chloride/pharmacology , Bronchial Provocation Tests/methods , Bronchodilator Agents , Respiratory Sounds , Lactation , Respiratory Aerosols and Droplets , Asthma/diagnosis , Asthma/therapy , Dyspnea , Adrenal Cortex Hormones , Antibodies, Monoclonal , Histamine Antagonists , Phenols
16.
Biol Pharm Bull ; 47(1): 227-231, 2024.
Article in English | MEDLINE | ID: mdl-38246609

ABSTRACT

Between 5 and 10% of asthma patients do not respond to glucocorticoid therapy. Experimental animal models are indispensable for investigating the pathogenesis of steroid-resistant asthma; however, the majority of murine asthma models respond well to glucocorticoids. We previously reported that multiple intratracheal administration of ovalbumin (OVA) at a high dose (500 µg/animal) induced steroid-insensitive airway eosinophilia and remodeling with lung fibrosis, whereas a low dose (5 µg/animal) caused steroid-sensitive responses. The aims of the present study were as follows: 1) to clarify whether airway hyperresponsiveness (AHR) in the two models is also insensitive and sensitive to a glucocorticoid, respectively, and 2) to identify steroid-insensitive genes encoding extracellular matrix (ECM) components and pro-fibrotic factors in the lung. In comparisons with non-challenged group, the 5- and 500-µg OVA groups both exhibited AHR to methacholine. Daily intraperitoneal treatment with dexamethasone (1 mg/kg) significantly suppressed the development of AHR in the 5-µg OVA group, but not in the 500-µg OVA group. Among genes encoding ECM components and pro-fibrotic factors, increased gene expressions of fibronectin and collagen types I, III, and IV as ECM components as well as 7 matrix metalloproteinases, tissue inhibitor of metalloproteinase-1, transforming growth factor-ß1, and activin A/B as pro-fibrotic factors were insensitive to dexamethasone in the 500-µg OVA group, but were sensitive in the 5-µg OVA group. In conclusion, steroid-insensitive AHR developed in the 500-µg OVA group and steroid-insensitive genes encoding ECM components and pro-fibrotic factors were identified. Drugs targeting these molecules have potential in the treatment of steroid-resistant asthma.


Subject(s)
Asthma , Respiratory Hypersensitivity , Humans , Animals , Mice , Glucocorticoids , Tissue Inhibitor of Metalloproteinase-1 , Asthma/drug therapy , Asthma/genetics , Steroids , Ovalbumin , Lung , Extracellular Matrix , Gene Expression , Dexamethasone/pharmacology , Dexamethasone/therapeutic use
17.
FASEB J ; 38(2): e23428, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38236184

ABSTRACT

Asthma is a chronic inflammatory disease of the airways characterized by recurrent episodes of airway obstruction, hyperresponsiveness, remodeling, and eosinophilia. Phospholipase A2 s (PLA2 s), which release fatty acids and lysophospholipids from membrane phospholipids, have been implicated in exacerbating asthma by generating pro-asthmatic lipid mediators, but an understanding of the association between individual PLA2 subtypes and asthma is still incomplete. Here, we show that group III-secreted PLA2 (sPLA2 -III) plays an ameliorating, rather than aggravating, role in asthma pathology. In both mouse and human lungs, sPLA2 -III was expressed in bronchial epithelial cells and decreased during the asthmatic response. In an ovalbumin (OVA)-induced asthma model, Pla2g3-/- mice exhibited enhanced airway hyperresponsiveness, eosinophilia, OVA-specific IgE production, and type 2 cytokine expression as compared to Pla2g3+/+ mice. Lipidomics analysis showed that the pulmonary levels of several lysophospholipids, including lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidic acid (LPA), were decreased in OVA-challenged Pla2g3-/- mice relative to Pla2g3+/+ mice. LPA receptor 2 (LPA2 ) agonists suppressed thymic stromal lymphopoietin (TSLP) expression in bronchial epithelial cells and reversed airway hyperresponsiveness and eosinophilia in Pla2g3-/- mice, suggesting that sPLA2 -III negatively regulates allergen-induced asthma at least by producing LPA. Thus, the activation of the sPLA2 -III-LPA pathway may be a new therapeutic target for allergic asthma.


Subject(s)
Asthma , Eosinophilia , Phospholipases A2, Secretory , Respiratory Hypersensitivity , Humans , Animals , Mice , Lysophospholipids , Phospholipases A2, Secretory/genetics , Cytokines
18.
Equine Vet J ; 56(3): 494-502, 2024 May.
Article in English | MEDLINE | ID: mdl-37587652

ABSTRACT

BACKGROUND: Formalin intoxication via the gastrointestinal route has not been previously reported in the horse. Whereas ingestion of formalin in humans, although rare, is well documented. Majority of human cases are either accidental, suicidal or homicidal and often lead to fatality, with a reported lethal formaldehyde dose equating to 0.12 - 0.16 g/kg bwt. OBJECTIVES: To describe a single case report of the clinical management of an adult horse referred to a veterinary teaching hospital following accidental administration of 10% formalin via nasogastric tube. METHODS: A 13-year-old Thoroughbred gelding originally presented to the referring veterinarian for colic where 1.8 L of 10% formalin was accidentally administered instead of mineral oil via nasogastric intubation, a potentially lethal dose of formaldehyde (0.12 g/kg bwt). Approximately 20-hours following 10% formalin administration the horse was admitted to the referral hospital with moderate tachycardia, occasional ectopic beats, tacky and hyperaemic mucous membranes, delayed capillary refill time, reduced borborygmi, and pronounced digital pulses. Diagnostic investigations included laboratory blood analysis, urinalysis, electrocardiogram, abdominal ultrasound, palpation per rectum and gastroscopy. RESULTS: Patient assessment found evidence of toxicity to the gastrointestinal tract, hypovolaemia and risk for laminitis. Intensive care included fluid and electrolyte therapy, anti-inflammatories and analgesia, continuous digital cryotherapy, gastro-protectants and other methods of gastrointestinal support. The horse was discharged from hospital on day 14 with no long-term complications and the client-veterinarian relationship was preserved. DISCUSSION: In human cases of ingestion, gastrointestinal injury is typically accompanied by severe metabolic acidosis and multiple organ dysfunction syndrome due to toxicity of other body systems that can contribute to non-survival. Formaldehyde toxicity in the present case predominantly affected the gastrointestinal tract, most likely a direct result of the route of administration. Aside from gastrointestinal injury, primary toxicity of other body systems was not confirmed. To prevent this medical error recurring, the referring veterinary clinic revised their labelling and storage of 10% formalin. CONCLUSION: This is the first report of systemic formalin intoxication in the horse. Following a high dose of 10% formalin (0.12 g/kg bwt formaldehyde) enterally, the horse survived having received intensive supportive care based on human guidelines for ingested formalin.


Subject(s)
Colic , Formaldehyde/adverse effects , Horse Diseases , Respiratory Hypersensitivity , Humans , Male , Animals , Horses , Hospitals, Animal , Hospitals, Teaching , Formaldehyde/toxicity , Colic/veterinary , Horse Diseases/chemically induced , Horse Diseases/therapy , Horse Diseases/diagnosis
19.
Allergol Int ; 73(1): 48-57, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37659887

ABSTRACT

Obesity is one of the factors associated with the severity of asthma. Obesity is associated with aggravation of the pathophysiology of asthma, including exacerbations, airway inflammation, decreased pulmonary function, and airway hyperresponsiveness. The present review addresses the characteristics of asthma with obesity, focusing especially on the heterogeneity caused by the degree of type 2 inflammation, sex differences, the onset of asthma, and race differences. To understand the severity mechanisms in asthma and obesity, such as corticosteroid resistance, fatty acids, gut microbiome, and cytokines, several basic research studies are evaluated. Finally, possible future therapies, including weight reduction, microbiome-targeted therapies, and other molecular targeted therapies are addressed. We believe that the present review will contribute to better understanding of the severity mechanisms and the establishment of novel treatments for severe asthma patients with obesity.


Subject(s)
Asthma , Respiratory Hypersensitivity , Humans , Female , Male , Asthma/epidemiology , Asthma/therapy , Asthma/etiology , Obesity/complications , Cytokines , Inflammation
20.
Sci Total Environ ; 912: 168947, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38043820

ABSTRACT

Formaldehyde (FA) exposure has been reported to induce or aggravate allergic asthma. Infection is also a potential risk factor for the onset and aggravation of asthma. However, no study has addressed the effects of FA exposure on asthmatic patients with respiratory infection. FA is ubiquitous in environment and respiratory infections are common in clinics. Therefore, it is necessary to explore whether FA exposure leads to the further worsening of symptoms in asthma patients with existing respiratory infection. In the present study, ovalbumin (OVA) was used to establish the murine asthma model. Lipopolysaccharide (LPS) was intratracheal administrated to mimic asthma with respiratory infection. The mice were exposed to 0.5 mg/m3 FA. FA exposure did not induce a significant aggravation on OVA induced allergic asthma. However, the lung function of specific airway resistance (sRaw), histological changes and cytokines production were greatly aggravated by FA exposure in OVA/LPS induced murine asthma model. Monocyte-derived macrophages (MDMs) were isolated from asthmatic patients. Exposure of MDMs to FA and LPS resulted in increased TNF-α, IL-6, IL-1ß, and nitric oxide (NO) production. Lactate produciton and lactate dehydrogenase A (LDHA) expression were found to be upregulated by FA in OVA/LPS induced asthmatic mice and LPS stimulated MDMs. Furthermore, glycolysis inhibitor 2-Deoxy-d-glucose attenuated FA and LPS induced TNF-α, IL-6, IL-1ß, and NO production. We conclude that FA exposure can lead to the aggravation of allergic asthma with infection through induction of glycolysis. This study could offer some new insight into how FA promotes asthma development.


Subject(s)
Asthma , Lipopolysaccharides , Respiratory Hypersensitivity , Humans , Mice , Animals , Lipopolysaccharides/toxicity , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Asthma/metabolism , Inflammation , Formaldehyde/toxicity , Glycolysis , Models, Theoretical , Mice, Inbred BALB C , Lung , Bronchoalveolar Lavage Fluid , Cytokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...