Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.167
Filter
1.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747932

ABSTRACT

BACKGROUND: Parainfluenza virus (PIV) is a significant etiological agent of acute lower respiratory tract infections (ALRIs) in infants and young children. The present study has been conducted to investigate the prevalence of recently identified respiratory viruses. METHODS: In total, 543 oropharyngeal or nasopharyngeal swab samples collected from hospitalized patients with acute respiratory symptoms (ARS) between January and December 2021 (5,653 females and 4,950 males) were tested for respiratory viruses using RT-PCR. RESULTS: At least one respiratory virus was detected by RT-PCR in 119 out of 175 samples (68%). The most frequently detected virus was human rhinovirus (HRV) (34, 6.5%), followed by human parainfluenza viruses (HPIVs) (19, 3.6%), human bocavirus (HBoV) (8, 1.5%), human adenovirus (HAdV) (7, 1.3%), and human respiratory syncytial virus (HRSV) (4, 0.8%). HPIV-3 accounted for 3.6% (19/175) of all viral pathogens and was the second most frequently detected viral pathogen in our study. HPIV-3 infections peaked in the fall (November) of 2021. Phylogenetic analysis of the coding region of the viral protein HA revealed that all 35 (100%) of 35 HPIV-infected patients were infected with HPIV-3. CONCLUSIONS: HPIV was an important causative pathogen associated with ALRI in children hospitalized in Korea in the late fall of 2021, as the social distancing rules for COVID-19 were relaxed. These findings highlight the im-portance of HPIV as a cause of ALRI.


Subject(s)
Respiratory Tract Infections , Humans , Female , Male , Infant , Child, Preschool , Prevalence , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/diagnosis , Child , Republic of Korea/epidemiology , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/virology , Paramyxoviridae Infections/diagnosis , Adolescent
2.
Allergol Immunopathol (Madr) ; 52(3): 22-30, 2024.
Article in English | MEDLINE | ID: mdl-38721952

ABSTRACT

BACKGROUND: Preschoolers frequently have respiratory infections (RIs), which may cause wheezing in some subjects. Type 2 polarization may favor increased susceptibility to RIs and associated wheezing. Non-pharmacological remedies are garnering increasing interest as possible add-on therapies. The present preliminary study investigated the efficacy and safety of a new multi-component nasal spray in preschoolers with frequent RIs and associated wheezing. METHODS: Some preschoolers with these characteristics randomly took this product, containing lactoferrin, dipotassium glycyrrhizinate, carboxymethyl-beta-glucan, and vitamins C and D3 (Saflovir), two sprays per nostril twice daily for 3 months. Other children were randomly treated only with standard therapy. Outcomes included the number of RIs and wheezing episodes, use of medications, and severity of clinical manifestations. RESULTS: Preschoolers treated add-on with this multicomponent product experienced fewer RIs and used fewer beta-2 agonists than untreated children (P = 0.01 and 0.029, respectively). CONCLUSIONS: This preliminary study demonstrated that a multicomponent product, administered add-on as a nasal spray, could reduce the incidence of RIs and use of symptomatic drugs for relieving wheezing in children.


Subject(s)
Nasal Sprays , Respiratory Sounds , Respiratory Tract Infections , Humans , Child, Preschool , Respiratory Sounds/drug effects , Female , Male , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/diagnosis , Ascorbic Acid/administration & dosage , Lactoferrin/administration & dosage , Glycyrrhizic Acid/administration & dosage , Treatment Outcome , beta-Glucans/administration & dosage , Cholecalciferol/administration & dosage , Infant
3.
Medicine (Baltimore) ; 103(18): e37757, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701307

ABSTRACT

To explore the effect of targeted second-generation sequencing technique to guide clinical diagnosis and medication on the therapeutic effect and prognosis of respiratory tract infection (RTI) in children. During January 2021 to June 2022, 320 children with RTI cured were selected in our hospital as the object of this retrospective study. The control group accepted empirical broad-spectrum antibacterial therapy and the observation group accepted targeted second-generation sequencing technique to guide diagnosis and medication. The therapeutic effect, improvement time of clinical symptom index, laboratory-related index, level of inflammatory factors, incidence of complications, and parents' treatment satisfaction were compared. The observation group was considerably more efficacious (91.25%) versus the controlled group (72.50%). The duration of enhancement of fever, nasal congestion, tonsillar congestion, and cough symptoms was shorter in the observation group (P < .05). Serum levels of iron, IgA, IgG as well as IgM were substantially elevated in the observation group. The levels of IL-4 and IL-10 were markedly reduced in the observation group after treatment. The prevalence of complications was considerably below that of the comparison group (21.25%) in the observation group (8.75%). Parental satisfaction with therapy was markedly higher in the observation group (92.50%) than in the control group (66.25%). The application of targeted second-generation sequencing technology to guide clinical diagnosis and drug use can elevate the RTIs efficacy and prognosis in childhood. Targeted second-generation sequencing can achieve precise treatment, reduce drug resistance of drug-resistant strains, and improve the efficacy. It has high promotion and application value.


Subject(s)
Anti-Bacterial Agents , Respiratory Tract Infections , Humans , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/diagnosis , Male , Female , Retrospective Studies , Anti-Bacterial Agents/therapeutic use , Child, Preschool , Child , Prognosis , Infant , Treatment Outcome
4.
Rev Esp Quimioter ; 37(3): 252-256, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38606841

ABSTRACT

The increased knowledge on virology and the increased potential of their diagnostic has risen several relevant question about the role of an early viral diagnosis and potential early treatment on the management of respiratory tract infections (RTI). In order to further understand the role of viral diagnostic tests in the management of RTI, a panel of experts was convened to discuss about their potential role, beyond what had been agreed in Influenza. The objective of this panel was to define the plausible role of aetiologic viral diagnostic into clinical management; make recommendations on the potential expanded use of such tests in the future and define some gaps in the management of RTI. Molecular Infection Viral Diagnostic (mIVD) tests should be used in all adult patients admitted to Hospital with RTI, and in paediatric patients requiring admission or who would be referred to another hospital for more specialised care. The increased use of mIVD will not only reduce the inappropriate use of antibiotics so reducing the antibiotic microbe resistance, but also will improve the outcome of the patient if an aetiologic viral therapy can be warranted, saving resource requirements and improving patient flows. Implementing IVD testing in RTI has various organizational benefits as well, but expanding its use into clinical settings would need a cost-effectiveness strategy and budget impact assessment.


Subject(s)
Respiratory Tract Infections , Humans , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/virology , Virus Diseases/diagnosis , Molecular Diagnostic Techniques , Child
6.
Front Cell Infect Microbiol ; 14: 1230650, 2024.
Article in English | MEDLINE | ID: mdl-38638824

ABSTRACT

Objective: To evaluate the diagnostic value of metagenomic sequencing technology based on Illumina and Nanopore sequencing platforms for patients with suspected lower respiratory tract infection whose pathogen could not be identified by conventional microbiological tests. Methods: Patients admitted to the Respiratory and Critical Care Medicine in Shanghai Ruijin Hospital were retrospectively studied from August 2021 to March 2022. Alveolar lavage or sputum was retained in patients with clinically suspected lower respiratory tract infection who were negative in conventional tests. Bronchoalveolar lavage fluid (BALF) samples were obtained using bronchoscopy. Sputum samples were collected, while BALF samples were not available due to bronchoscopy contraindications. Samples collected from enrolled patients were simultaneously sent for metagenomic sequencing on both platforms. Results: Thirty-eight patients with suspected LRTI were enrolled in this study, consisting of 36 parts of alveolar lavage and 2 parts of sputum. According to the infection diagnosis, 31 patients were confirmed to be infected with pathogens, while 7 patients were diagnosed with non-infectious disease. With regard to the diagnosis of infectious diseases, the sensitivity and specificity of Illumina and Nanopore to diagnose infection in patients were 80.6% vs. 93.5% and 42.9 vs. 28.6%, respectively. In patients diagnosed with bacterial, Mycobacterium, and fungal infections, the positive rates of Illumina and Nanopore sequencer were 71.4% vs. 78.6%, 36.4% vs. 90.9%, and 50% vs. 62.5%, respectively. In terms of pathogen diagnosis, the sensitivity and specificity of pathogens detected by Illumina and Nanopore were 55.6% vs. 77.8% and 42.9% vs. 28.6%, respectively. Among the patients treated with antibiotics in the last 2 weeks, 61.1% (11/18) and 77.8% (14/18) cases of pathogens were accurately detected by Illumina and Nanopore, respectively, among which 8 cases were detected jointly. The consistency between Illumina and diagnosis was 63.9% (23/36), while the consistency between Nanopore and diagnosis was 83.3% (30/36). Between Illumina and Nanopore sequencing methods, the consistency ratio was 55% (22/42) based on pathogen diagnosis. Conclusion: Both platforms play a certain value in infection diagnosis and pathogen diagnosis of CMT-negative suspected LRTI patients, providing a theoretical basis for clinical accurate diagnosis and symptomatic treatment. The Nanopore platform demonstrated potential advantages in the identification of Mycobacterium and could further provide another powerful approach for patients with suspected Mycobacterium infection.


Subject(s)
Nanopore Sequencing , Respiratory Tract Infections , Humans , Retrospective Studies , China , Respiratory Tract Infections/diagnosis , Anti-Bacterial Agents , Bronchoalveolar Lavage Fluid , Metagenomics , High-Throughput Nucleotide Sequencing , Sensitivity and Specificity
7.
Tuberk Toraks ; 72(1): 82-90, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38676597

ABSTRACT

Introduction: Flexible bronchoscopy is a valuable method in the diagnosis and treatment of respiratory tract diseases in children. This study aimed to examine the indications for and results of flexible bronchoscopy in children. Materials and Methods: The study included patients aged 0-18 years who underwent flexible bronchoscopy between 1 January 2017 and 31 December 2022. The patients were evaluated for demographic characteristics, indications for bronchoscopy, comorbidities, bronchoscopy findings, and the results of bronchoalveolar lavage. Result: During the defined study period, a total of 410 flexible bronchoscopy procedures were performed. 51.9% of the patient population were male, and 48.1% were female, with a mean age of 96.93 ± 63.45 months. The most common indication for flexible bronchoscopy was recurrent lower respiratory tract infection (26.8%), followed by chronic cough (19.1%). The bronchoalveolar lavage culture results showed that the most commonly isolated microorganisms were H. influenzae non-type b (7.8%) followed by M. catarrhalis (7.3%). Mucus obstruction and secretion (33.0%) constituted the most common bronchoscopic findings, while the flexible bronchoscopy examination was normal in 27% of patients. No serious complications occurred in any patient during or after the procedure. Conclusions: The results of this study demonstrated that the most common indication for flexible bronchoscopy was recurrent lower respiratory tract infection and the most common bronchoscopy finding was purulent secretion with mucus obstruction. Flexible bronchoscopy is an important diagnostic and treatment tool for patients with recurrent respiratory symptoms. It is a highly valuable method as it enables direct visualization of the airways and facilitates the collection of bronchoalveolar lavage samples.


Subject(s)
Bronchoscopy , Humans , Bronchoscopy/methods , Female , Male , Child , Child, Preschool , Adolescent , Infant , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Bronchoalveolar Lavage/methods , Lung Diseases/diagnosis , Cough , Infant, Newborn , Retrospective Studies
8.
Anal Chem ; 96(16): 6282-6291, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38595038

ABSTRACT

Respiratory tract infections (RTIs) pose a grave threat to human health, with bacterial pathogens being the primary culprits behind severe illness and mortality. In response to the pressing issue, we developed a centrifugal microfluidic chip integrated with a recombinase-aided amplification (RAA)-clustered regularly interspaced short palindromic repeats (CRISPR) system to achieve rapid detection of respiratory pathogens. The limitations of conventional two-step CRISPR-mediated systems were effectively addressed by employing the all-in-one RAA-CRISPR detection method, thereby enhancing the accuracy and sensitivity of bacterial detection. Moreover, the integration of a centrifugal microfluidic chip led to reduced sample consumption and significantly improved the detection throughput, enabling the simultaneous detection of multiple respiratory pathogens. Furthermore, the incorporation of Chelex-100 in the sample pretreatment enabled a sample-to-answer capability. This pivotal addition facilitated the deployment of the system in real clinical sample testing, enabling the accurate detection of 12 common respiratory bacteria within a set of 60 clinical samples. The system offers rapid and reliable results that are crucial for clinical diagnosis, enabling healthcare professionals to administer timely and accurate treatment interventions to patients.


Subject(s)
Respiratory Tract Infections , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/microbiology , Humans , Microfluidic Analytical Techniques/instrumentation , Lab-On-A-Chip Devices , Nucleic Acid Amplification Techniques , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Bacteria/isolation & purification , Bacteria/genetics , Recombinases/metabolism , Automation , Bacterial Infections/diagnosis
9.
J Vis Exp ; (205)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38619279

ABSTRACT

Respiratory tract infections (RTIs) are among the most common problems in clinical settings. Rapid and accurate identification of bacterial pathogens will provide practical guidelines for managing and treating RTIs. This study describes a method for rapidly detecting bacterial pathogens that cause respiratory tract infections via multi-channel loop-mediated isothermal amplification (LAMP). LAMP is a sensitive and specific diagnostic tool that rapidly detects bacterial nucleic acids with high accuracy and reliability. The proposed method offers a significant advantage over traditional bacterial culturing methods, which are time-consuming and often require greater sensitivity for detecting low levels of bacterial nucleic acids. This article presents representative results of K. pneumoniae infection and its multiple co-infections using LAMP to detect samples (sputum, bronchial lavage fluid, and alveolar lavage fluid) from the lower respiratory tract. In summary, the multi-channel LAMP method provides a rapid and efficient means of identifying single and multiple bacterial pathogens in clinical samples, which can help prevent the spread of bacterial pathogens and aid in the appropriate treatment of RTIs.


Subject(s)
Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Nucleic Acids , Respiratory Tract Infections , Humans , Microfluidics , Reproducibility of Results , Respiratory Tract Infections/diagnosis , Klebsiella pneumoniae
10.
Rev Med Suisse ; 20(869): 734-738, 2024 Apr 10.
Article in French | MEDLINE | ID: mdl-38616683

ABSTRACT

While most episodes of community-acquired pneumonia are caused by Streptococcus pneumoniae and respiratory viruses, other atypical pathogens can also be responsible for lung infections. The Infectious Diseases Service of the Lausanne University Hospital (CHUV) organizes an annual meeting aimed at general practitioners, during which interesting clinical cases are presented. In this article, we summarize five cases of community-aquired respiratory infection due to atypical pathogens that were presented during the 2023 meeting, each with a particular teaching point. Although these infections are rare, expanding the differential diagnosis in cases of suboptimal response to therapy or particular exposures is warranted.


La plupart des épisodes de pneumonie acquise en communauté sont causés par Streptococcus pneumoniae et des virus respiratoires, mais d'autres agents pathogènes atypiques peuvent également être responsables d'infections pulmonaires. Le Service des maladies infectieuses du Centre hospitalier universitaire vaudois (CHUV) organise une réunion annuelle destinée aux médecins généralistes, au cours de laquelle des cas cliniques intéressants sont présentés. Dans cet article, nous résumons cinq cas d'infections respiratoires communautaires dus à des agents pathogènes atypiques présentés lors de la réunion de 2023, chacun avec un enseignement particulier. Bien que ces infections soient rares, élargir le diagnostic différentiel en cas de réponse thérapeutique suboptimale ou d'expositions particulières est justifié.


Subject(s)
Respiratory Tract Infections , Humans , Diagnosis, Differential , General Practitioners , Hospitals, University , Respiratory Tract Infections/diagnosis
11.
BMC Pediatr ; 24(1): 231, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561704

ABSTRACT

BACKGROUND: Effects of non-pharmaceutical interventions during the pandemic were mainly studied for severe outcomes. Among children, most of the burden of respiratory infections is related to infections which are not medically attended. The perspective on infections in the community setting is necessary to understand the effects of the pandemic on non-pharmaceutical interventions. METHODS: In the unique prospective LoewenKIDS cohort study, we compared the true monthly incidence of self-reported acute respiratory infections (ARI) in about 350 participants (aged 3-4 years old) between October 2019 to March 2020 (pre-pandemic period) and October 2020 to March 2021 (pandemic period). Parents reported children's symptoms using a diary. Parents were asked to take a nasal swab of their child during all respiratory symptoms. We analysed 718 swabs using Multiplex PCR for 25 common respiratory viruses and bacteria. RESULTS: During the pre-pandemic period, on average 44.6% (95% CI: 39.5-49.8%) of children acquired at least one ARI per month compared to 19.9% (95% CI: 11.1-28.7%) during the pandemic period (Incidence Rate Ratio = 0.47; 95% CI: 0.41-0.54). The detection of influenza virus decreased absolute by 96%, respiratory syncytial virus by 65%, metapneumovirus by 95%, parainfluenza virus by 100%, human enterovirus by 96% and human bocavirus by 70% when comparing the pre-pandemic to the pandemic period. However, rhinoviruses were nearly unaffected by NPI. Co-detection (detection of more than one virus in a single symptomatic swab) was common in the pre-pandemic period (222 of 390 samples with viral detection; 56.9%) and substantially less common during the pandemic period (46 of 216 samples; 21.3%). CONCLUSION: Non-pharmaceutical interventions strongly reduced the incidence of all respiratory infections in preschool children but did not affect rhinovirus.


Subject(s)
COVID-19 , Metapneumovirus , Respiratory Tract Infections , Humans , Child, Preschool , Infant , Cohort Studies , Prospective Studies , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Rhinovirus
12.
Eur J Med Res ; 29(1): 213, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561853

ABSTRACT

OBJECTIVES: This study aims to compare the diagnostic efficacy of metagenomic next-generation sequencing (mNGS) to traditional diagnostic methods in patients with lower respiratory tract infections (LRTIs), elucidate the etiological spectrum of these infections, and explore the impact of mNGS on guiding antimicrobial therapy. METHODS: We retrospectively analyzed data from 128 patients admitted to the Respiratory Department of Anqing 116 Hospital between July 2022 and July 2023. All patients had undergone both mNGS and conventional microbiological techniques (CMT) for LRTI diagnosis. We assessed the diagnostic performance of these methods and examined the influence of mNGS on antimicrobial decision-making. RESULTS: Overall, mNGS demonstrated superior sensitivity (96.8%) and accuracy (96.8%) compared to CMT. For Mycobacterium tuberculosis detection, the accuracy and sensitivity of mNGS was 88.8% and 77.6%, which was lower than the 94.7% sensitivity of the T-spot test and the 79.6% sensitivity of CMT. In fungal pathogen detection, mNGS showed excellent sensitivity (90.5%), specificity (86.7%), and accuracy (88.0%). Bacteria were the predominant pathogens detected (75.34%), with Mycobacterium tuberculosis (41.74%), Streptococcus pneumoniae (21.74%), and Haemophilus influenzae (16.52%) being most prevalent. Bacterial infections were most common (62.10%), followed by fungal and mixed infections (17.74%). Of the 118 patients whose treatment regimens were adjusted based on mNGS results, 102 (86.5%) improved, 7 (5.9%) did not respond favorably, and follow-up was lost for 9 patients (7.6%). CONCLUSIONS: mNGS offers rapid and precise pathogen detection for patients with suspected LRTIs and shows considerable promise in diagnosing Mycobacterium tuberculosis and fungal infections. By broadening the pathogen spectrum and identifying polymicrobial infections, mNGS can significantly inform and refine antibiotic therapy.


Subject(s)
Anti-Infective Agents , Coinfection , Mycobacterium tuberculosis , Respiratory Tract Infections , Humans , Retrospective Studies , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , High-Throughput Nucleotide Sequencing , Mycobacterium tuberculosis/genetics , Sensitivity and Specificity
13.
BMJ Open ; 14(4): e076338, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670622

ABSTRACT

INTRODUCTION: Syndromic panel assays, that is, using one test to simultaneously target multiple pathogens with overlapping signs and symptoms, have been integrated into routine paediatric care over the past decade, mainly for more severely ill and hospitalised patients. Their wider availability and short turnaround times open the possibility to apply them to non-hospitalised patients as well. In this context, it is important to trial how clinicians make use of pathogen detection data and if their early availability influences management decisions, particularly antibiotic use and hospitalisation. METHODS AND ANALYSIS: Advanced Diagnostics for Enhanced QUality of Antibiotic prescription in respiratory Tract infections in Emergency rooms is an individually randomised, controlled, open-label effectiveness trial comparing the impact of a respiratory pathogen panel assay (BIOFIRE Respiratory Panel 2.1plus) used as a rapid syndromic test on nasopharyngeal swabs in addition to the standard of care versus standard of care alone. The trial will 1:1 randomise 520 participants under the age of 18 at 7 paediatric emergency departments in 5 European countries. Inclusion criteria for the trial consist of two sets, with the first describing respiratory tract infections in paediatric patients and the second describing the situation of potential management uncertainty in which test results may immediately affect management decisions. Enrolment started in July 2021 and is expected to be completed in early 2024. We will perform a two-sample t-test assuming a pooled variance estimate to compare the log-transformed mean time on antibiotic treatment (in hours) and number of days alive out of the hospital within 14 days after study enrolment between the control and intervention arms. ETHICS AND DISSEMINATION: The trial protocol and materials were approved by research ethics committees in all participating countries. The respiratory pathogen panel assay is CE marked (assessed to meet European regulations) and FDA (United States Food and Drug Administration) cleared for diagnostic use. Participants and caregivers provide informed consent prior to study procedures commencing. The trial results will be published in peer-reviewed journals and at national and international conferences. Key messages will also be disseminated via press and social media where appropriate. TRIAL REGISTRATION NUMBER: NCT04781530.


Subject(s)
Emergency Service, Hospital , Respiratory Tract Infections , Humans , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/diagnosis , Child , Europe , Randomized Controlled Trials as Topic , Anti-Bacterial Agents/therapeutic use , Child, Preschool , Multicenter Studies as Topic , Infant , Adolescent , Female , Male , Acute Disease
14.
Viruses ; 16(4)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38675941

ABSTRACT

The BIOFIRE SPOTFIRE Respiratory (R) Panel is a novel, in vitro diagnostic PCR assay with 15 pathogen targets. The runtime is about 15 min which is the shortest among similar panels in the market. We evaluated the performance of the SPOTFIRE R Panel with 151 specimens, including 133 collected from the upper respiratory tract (URT), 13 from the lower respiratory tract (LRT) and 5 external quality assessment program (EQAP) samples. The respiratory specimens were enrolled throughout the first two post-COVID-19 influenza seasons in Hong Kong (March to December 2023). For URT specimens, full concordance was observed between the SPOTFIRE R Panel and the standard-of-care FilmArray Respiratory 2.1 plus Panel (RP2.1plus) for 109 specimens (109/133, 81.95%). After discrepant analysis, the SPOTFIRE R Panel identified more pathogens than the RP2.1plus in 15 specimens and vice versa in 3 specimens. The per-target negative and positive percentage agreement (NPA and PPA) were 92.86-100% except the PPA of adenovirus (88.24%). For LRT and EQAP samples, all results were fully concordant. To conclude, the performance of the SPOTFIRE R Panel was comparable to the RP2.1plus.


Subject(s)
COVID-19 , Respiratory Tract Infections , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/virology , Respiratory Tract Infections/virology , Respiratory Tract Infections/diagnosis , Hong Kong , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , COVID-19 Nucleic Acid Testing/methods
15.
Health Informatics J ; 30(2): 14604582241233996, 2024.
Article in English | MEDLINE | ID: mdl-38587170

ABSTRACT

Background: Remote mobile examination devices in telemedicine are a new technology in healthcare. Objective: To assess the utilization of visits using remote medical devices. Methods: A retrospective analysis of follow-up visits, referrals, laboratory testing and antibiotic prescriptions of 470,845 children's video visits with and without remote medical examination device and in-clinic visits. Results: Rates of follow-up visits, referrals and laboratory tests were higher in video visits compared to visit with medical device (OR of 1.27, 1.08, 1.93 respectfully). For in-clinic visits, rates of follow-up were lower but higher for referrals to subspecialists and laboratory test referrals when compared to telemedicine. Antibiotic prescriptions were provided at a lower rate in video visits compared to visits with a medical device (OR = 0.48) and in-clinic visits. Conclusions: Incorporating a remote medical device may reduce follow up visits, referrals and laboratory tests compared to a video visit without a device. The prevalence of antibiotic prescriptions did not escalate in telemedicine consultations.


Subject(s)
Respiratory Tract Infections , Telemedicine , Humans , Child , Retrospective Studies , Delivery of Health Care , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/therapy , Anti-Bacterial Agents/therapeutic use
16.
Article in English | MEDLINE | ID: mdl-38575379

ABSTRACT

OBJECTIVES: To elaborate the utility of multiplex quantitative polymerase chain reaction (multiplex qPCR) for the accurate diagnosis of severe respiratory tract infections (RTIs) in hospitalized children. METHODS: In two separate periods during 2022, 76 respiratory specimens (combined throat/nasopharyngeal swabs) were submitted for multiplex qPCR regarding 26 respiratory pathogens. The specimens were obtained from children with severe RTIs hospitalized in the Institute for Respiratory Diseases in Children, Skopje. RESULTS: Multiplex qPCR detected at least one respiratory pathogen in all examined specimens (76/76), with 83% (63/76) rate of co-infections. Considering that positive results are only the ones with Ct value below 28, the rates of detected pathogens and co-infections decrease to 75% and 22%, respectively. The most commonly detected pathogens during the spring period were Parainfluenza type 3 (PIV3) followed by Adenovirus (AdV) and Respiratory syncytial virus type B (RSVB) with frequency rate of 23%, 19% and 19%, respectively. During the autumn period, the most common were RSVB and Streptococcus pneumoniae with frequency rate of 31% and 17%, respectively. CONCLUSION: Multiplex qPCR is a powerful tool for diagnosing RTIs. Semi-quantification of the viral load by reporting Ct values added higher level of evidence for accurate diagnosis. Seasonal detection of the examined viruses was notable with higher prevalence of PIV3 in spring and RSVB in autumn period.


Subject(s)
Coinfection , Respiratory Tract Infections , Child , Humans , Infant , Multiplex Polymerase Chain Reaction/methods , Child, Hospitalized , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Prevalence
17.
J Med Virol ; 96(4): e29624, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38647075

ABSTRACT

Respiratory infections pose a serious threat to global public health, underscoring the urgent need for rapid, accurate, and large-scale diagnostic tools. In recent years, the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system, combined with isothermal amplification methods, has seen widespread application in nucleic acid testing (NAT). However, achieving a single-tube reaction system containing all necessary components is challenging due to the competitive effects between recombinase polymerase amplification (RPA) and CRISPR/Cas reagents. Furthermore, to enable precision medicine, distinguishing between bacterial and viral infections is essential. Here, we have developed a novel NAT method, termed one-pot-RPA-CRISPR/Cas12a, which combines RPA with CRISPR molecular diagnostic technology, enabling simultaneous detection of 12 common respiratory pathogens, including six bacteria and six viruses. RPA and CRISPR/Cas12a reactions are separated by paraffin, providing an independent platform for RPA reactions to generate sufficient target products before being mixed with the CRISPR/Cas12a system. Results can be visually observed under LED blue light. The sensitivity of the one-pot-RPA-CRISPR/Cas12a method is 2.5 × 100 copies/µL plasmids, with no cross-reaction with other bacteria or viruses. Additionally, the clinical utility was evaluated by testing clinical isolates of bacteria and virus throat swab samples, demonstrating favorable performance. Thus, our one-pot-RPA-CRISPR/Cas12a method shows immense potential for accurate and large-scale detection of 12 common respiratory pathogens in point-of-care testing.


Subject(s)
Bacteria , CRISPR-Cas Systems , Molecular Diagnostic Techniques , Respiratory Tract Infections , Viruses , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Recombinases/genetics , Recombinases/metabolism , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Respiratory Tract Infections/microbiology , Sensitivity and Specificity , Virus Diseases/diagnosis , Viruses/genetics , Viruses/isolation & purification
18.
Korean J Intern Med ; 39(3): 513-523, 2024 May.
Article in English | MEDLINE | ID: mdl-38649159

ABSTRACT

BACKGROUND/AIMS: Since the coronavirus disease 2019 (COVID-19) outbreak, hospitals have implemented infection control measures to minimize the spread of the virus within facilities. This study aimed to investigate the impact of COVID-19 on the incidence of healthcare-associated infections (HCAIs) and common respiratory virus (cRV) infections in hematology units. METHODS: This retrospective study included all patients hospitalized in Catholic Hematology Hospital between 2019 and 2020. Patients infected with vancomycin-resistant Enterococci (VRE), carbapenemase-producing Enterobacterales (CPE), Clostridium difficile infection (CDI), and cRV were analyzed. The incidence rate ratio (IRR) methods and interrupted time series analyses were performed to compare the incidence rates before and after the pandemic. RESULTS: The incidence rates of CPE and VRE did not differ between the two periods. However, the incidence of CDI increased significantly (IRR: 1.41 [p = 0.002]) after the COVID-19 pandemic. The incidence of cRV infection decreased by 76% after the COVID-19 outbreak (IRR: 0.240 [p < 0.001]). The incidence of adenovirus, parainfluenza virus, and rhinovirus infection significantly decreased in the COVID-19 period (IRRs: 0.087 [p = 0.003], 0.031 [p < 0.001], and 0.149 [p < 0.001], respectively). CONCLUSION: The implementation of COVID-19 infection control measures reduced the incidence of cRV infection. However, CDI increased significantly and incidence rates of CPE and VRE remained unchanged in hematological patients after the pandemic. Infection control measures suitable for each type of HCAI, such as stringent hand washing for CDI and enough isolation capacities, should be implemented and maintained in future pandemics, especially in immunocompromised patients.


Subject(s)
COVID-19 , Cross Infection , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Incidence , Retrospective Studies , Cross Infection/epidemiology , Cross Infection/prevention & control , Cross Infection/diagnosis , Cross Infection/microbiology , Republic of Korea/epidemiology , Male , Female , Middle Aged , Infection Control , Aged , Adult , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/diagnosis , Hematology , SARS-CoV-2
19.
Biosens Bioelectron ; 257: 116341, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38677019

ABSTRACT

Origami biosensors leverage paper foldability to develop total analysis systems integrated in a single piece of paper. This capability can also be utilized to incorporate additional features that would be difficult to achieve with rigid substrates. In this article, we report a new design for 3D origami biosensors called OriPlex, which leverages the foldability of filter paper for the multiplexed detection of bacterial pathogens. OriPlex immunosensors detect pathogens by folding nanoparticle reservoirs containing different types of nanoprobes. This releases antibody-coated nanoparticles in a central channel where targets are captured through physical interactions. The OriPlex concept was demonstrated by detecting the respiratory pathogens Pseudomonas aeruginosa (PA) and Klebsiella pneumoniae (KP) with a limit of detection of 3.4·103 cfu mL-1 and 1.4·102 cfu mL-1, respectively, and with a turn-around time of 25 min. Remarkably, the OriPlex biosensors allowed the multiplexed detection of both pathogens spiked into real bronchial aspirate (BAS) samples at a concentration of 105 cfu mL-1 (clinical infection threshold), thus demonstrating their suitability for diagnosing lower tract respiratory infections. The results shown here pave the way for implementing OriPlex biosensors as a screening test for detecting superbugs requiring personalized antibiotics in suspected cases of nosocomial pneumonia.


Subject(s)
Biosensing Techniques , Klebsiella pneumoniae , Pseudomonas aeruginosa , Biosensing Techniques/methods , Klebsiella pneumoniae/isolation & purification , Pseudomonas aeruginosa/isolation & purification , Humans , Limit of Detection , Pseudomonas Infections/diagnosis , Pseudomonas Infections/microbiology , Equipment Design , Klebsiella Infections/diagnosis , Klebsiella Infections/microbiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/diagnosis , Nanoparticles/chemistry , Immunoassay/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...