Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 747
Filter
1.
J Transl Med ; 22(1): 457, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745204

ABSTRACT

BACKGROUND AND PURPOSE: Interstitial lung disease (ILD) represents a significant complication of rheumatoid arthritis (RA) that lacks effective treatment options. This study aimed to investigate the intrinsic mechanism by which resveratrol attenuates rheumatoid arthritis complicated with interstitial lung disease through the AKT/TMEM175 pathway. METHODS: We established an arthritis model by combining chicken type II collagen and complete Freund's adjuvant. Resveratrol treatment was administered via tube feeding for 10 days. Pathological changes in both the joints and lungs were evaluated using HE and Masson staining techniques. Protein expression of TGF-ß1, AKT, and TMEM175 was examined in lung tissue. MRC-5 cells were stimulated using IL-1ß in combination with TGF-ß1 as an in vitro model of RA-ILD, and agonists of AKT, metabolic inhibitors, and SiRNA of TMEM175 were used to explore the regulation and mechanism of action of resveratrol RA-ILD. RESULTS: Resveratrol mitigates fibrosis in rheumatoid arthritis-associated interstitial lung disease and reduces oxidative stress and inflammation in RA-ILD. Furthermore, resveratrol restored cellular autophagy. When combined with the in vitro model, it was further demonstrated that resveratrol could suppress TGF-ß1 expression, and reduce AKT metamorphic activation, consequently inhibiting the opening of AKT/MEM175 ion channels. This, in turn, lowers lysosomal pH and enhances the fusion of autophagosomes with lysosomes, ultimately ameliorating the progression of RA-ILD. CONCLUSION: In this study, we demonstrated that resveratrol restores autophagic flux through the AKT/MEM175 pathway to attenuate inflammation as well as fibrosis in RA-ILD by combining in vivo and in vitro experiments. It further provides a theoretical basis for the selection of therapeutic targets for RA-ILD.


Subject(s)
Arthritis, Rheumatoid , Fibrosis , Inflammation , Lung Diseases, Interstitial , Proto-Oncogene Proteins c-akt , Resveratrol , Signal Transduction , Resveratrol/pharmacology , Resveratrol/therapeutic use , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/complications , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/metabolism , Humans , Inflammation/pathology , Inflammation/drug therapy , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Membrane Proteins/metabolism , Autophagy/drug effects , Oxidative Stress/drug effects , Cell Line , Lung/pathology , Lung/drug effects , Male
2.
BMC Cancer ; 24(1): 566, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711004

ABSTRACT

BACKGROUND: Resveratrol has demonstrated its ability to regulate BRCA1 gene expression in breast cancer cells, and previous studies have established the binding of MBD proteins to BRCA1 gene promoter regions. However, the molecular mechanism underlying these interactions remains to be elucidated. The aimed to evaluate the impact of MBD proteins on the regulation of BRCA1, BRCA2, and p16 genes and their consequential effects on breast cancer cells. METHODS: Efficacy of resveratrol was assessed using the MTT assay. Binding interactions were investigated through EMSA, ChIP, & MeIP assay. Expression analyses of MBD genes and proteins were conducted using qRT-PCR and western blotting, respectively. Functional assays, including clonogenic, migratory, and sphere formation assays were used to assess cancer cells' colony-forming, metastatic, and tumor-forming abilities. The cytotoxicity of resveratrol on cancer cells was also tested using an apoptosis assay. RESULTS: The study determined an IC50 of 30µM for resveratrol. MBD proteins were found to bind to the BRCA1 gene promoter. Resveratrol exhibited regulatory effects on MBD gene expression, subsequently impacting BRCA1 gene expression and protein levels. Higher concentrations of resveratrol resulted in reduced colony and sphere formation, decreases migration of cancer cells, and an increases number of apoptotic cells in breast cancer cells. Impact Identification of MBD2-BRCA1 axis indicates their significant role in the induction of apoptosis and reduction of metastasis and proliferation in breast cancer cells. Further therapy can be designed to target these MBD proteins and resveratrol could be used along with other anticancer drugs to target breast cancer. CONCLUSIONS: In conclusion MBD2 protein interact to the BRCA1 gene promoter, and resveratrol modulates MBD2 gene expression, which in turn regulates BRCA1 gene expression, and inhibits cell proliferation, migration, and induces apoptosis in ER+, PR+ & Triple negative breast cancer cells.


Subject(s)
BRCA1 Protein , DNA-Binding Proteins , Gene Expression Regulation, Neoplastic , Promoter Regions, Genetic , Resveratrol , Triple Negative Breast Neoplasms , Resveratrol/pharmacology , Resveratrol/therapeutic use , Humans , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Line, Tumor , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , Receptors, Estrogen/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use
3.
Int J Mol Sci ; 25(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38612425

ABSTRACT

Resveratrol is a polyphenol present in various plant sources. Studies have reported numerous potential health benefits of resveratrol, exhibiting anti-aging, anti-inflammatory, anti-microbial, and anti-carcinogenic activity. Due to the reported effects, resveratrol is also being tested in reproductive disorders, including female infertility. Numerous cellular, animal, and even human studies were performed with a focus on the effect of resveratrol on female infertility. In this review, we reviewed some of its molecular mechanisms of action and summarized animal and human studies regarding resveratrol and female infertility, with a focus on age-related infertility, polycystic ovary syndrome, and endometriosis.


Subject(s)
Endometriosis , Infertility, Female , Animals , Female , Humans , Infertility, Female/drug therapy , Resveratrol/pharmacology , Resveratrol/therapeutic use , Endometriosis/drug therapy , Polyphenols , Aging
4.
Int J Mol Sci ; 25(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612556

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is influenced by a variety of factors, including environmental and genetic factors. The most significant outcome is the alteration of free fatty acid and triglyceride metabolism. Lipotoxicity, impaired autophagy, chronic inflammation, and oxidative stress, as well as coexisting insulin resistance, obesity, and changes in the composition of gut microbiota, are also considered crucial factors in the pathogenesis of MASLD. Resveratrol is a polyphenolic compound that belongs to the stilbene subgroup. This review summarises the available information on the therapeutic effects of resveratrol against MASLD. Resveratrol has demonstrated promising antisteatotic, antioxidant, and anti-inflammatory activities in liver cells in in vitro and animal studies. Resveratrol has been associated with inhibiting the NF-κB pathway, activating the SIRT-1 and AMPK pathways, normalizing the intestinal microbiome, and alleviating intestinal inflammation. However, clinical studies have yielded inconclusive results regarding the efficacy of resveratrol in alleviating hepatic steatosis or reducing any of the parameters found in MASLD in human patients. The lack of homogeneity between studies, low bioavailability of resveratrol, and population variability when compared to animal models could be the reasons for this.


Subject(s)
Fatty Liver , Metabolic Diseases , Animals , Humans , Resveratrol/pharmacology , Resveratrol/therapeutic use , Antioxidants , Inflammation
6.
BMC Oral Health ; 24(1): 412, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575921

ABSTRACT

The present study aimed to investigate the impact of resveratrol on oral neoplastic parameters through a systematic review and meta-analysis. Resveratrol, a naturally occurring polyphenol, has shown promising potential as a therapeutic agent in various cancer types, including oral neoplasms. Understanding the collective findings from existing studies can shed light on the efficacy and mechanisms of resveratrol in oral cancer management. The systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive search was performed to identify relevant studies from various databases, registers, websites, and citation searches. The inclusion criteria encompassed in-vivo studies investigating the impact of resveratrol on oral neoplastic parameters in animal models. After screening and assessment, a total of five eligible studies were included in the meta-analysis. The meta-analysis of the selected studies revealed that resveratrol treatment exhibited a potential impact on reducing oral neoplastic proliferation and promoting neoplastic apoptosis. The combined analysis showed a statistically significant decrease in neoplastic parameters with an overall effect size (ES) of 0.85 (95% CI: [0.74, 0.98]). Subgroup analyses were conducted to explore potential variations among different cellular types and exposure compounds, providing further insights into the efficacy of resveratrol in specific contexts. This systematic review and meta-analysis support the potential of resveratrol as a promising therapeutic agent in oral cancer management. The findings indicate that resveratrol may effectively modulate neoplastic proliferation and apoptosis in various cellular types within animal models of oral cancer. However, further well-controlled studies and clinical trials are warranted to validate these observations and elucidate the underlying mechanisms of resveratrol's actions. Resveratrol holds promise as a complementary therapeutic approach in the prevention and treatment of oral neoplastic conditions.


Subject(s)
Mouth Neoplasms , Animals , Resveratrol/therapeutic use , Mouth Neoplasms/drug therapy , Apoptosis
7.
Int Immunopharmacol ; 132: 112013, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38583241

ABSTRACT

BACKGROUND: Diabetes-related skin ulcers provide a substantial therapeutic issue, sometimes leading to amputation, needing immediate practical treatments for efficient wound care. While the exact mechanisms are unknown, pyroptosis and deregulation of the unfolded protein response (UPR) are known to exacerbate inflammation. Nicotinamide Riboside (NR) and Resveratrol (RV), which are known for their Nicotinamide adenine dinucleotide (NAD+) boosting and anti-inflammatory properties, are being studied as potential treatments. The purpose of this study was to shed light on the underlying molecular mechanisms and explore the medical application of NR and RV in diabetic wound healing. METHODS: 54 male Sprague-Dawley rats divided into control, diabetic (DM), Gel Base, DM-NR, DM-RV, and DM-NR + RV. Rats were orally administered 50 mg/kg/day of RV and 300 mg/kg/day of NR for 5 weeks. Following diabetes induction, their wounds were topically treated with 5 % NR and RV gel for 15 days. The wound closure rate, body weight, and serum lipid profiles were examined. Gene expression study evaluated UPR and pyroptosis-related genes (BIP, PERK, ATF6, IRE1α, sXBP1, CHOP, NLRP3, caspase-1, NFκB, and IL1-ß) in wound tissues, alongside histological assessment of cellular changes. RESULTS: NR and RV treatments greatly enhanced wound healing. Molecular investigation demonstrated UPR and pyroptosis marker modifications, suggesting UPR balance and anti-inflammatory effects. Histological investigation demonstrated decreased inflammation and increased re-epithelialization. The combination of NR and RV therapy had better results than either treatment alone. CONCLUSION: This study shows that NR and RV have therapeutic promise in treating diabetic wounds by addressing UPR dysregulation, and pyroptosis. The combination therapy is a viable strategy to improving the healing process, providing a multimodal intervention for diabetic skin ulcers. These findings pave the way for additional investigation and possible therapeutic applications, giving hope for better outcomes in diabetic wound care.


Subject(s)
Diabetes Mellitus, Experimental , Niacinamide , Niacinamide/analogs & derivatives , Pyridinium Compounds , Pyroptosis , Rats, Sprague-Dawley , Resveratrol , Unfolded Protein Response , Wound Healing , Animals , Male , Pyroptosis/drug effects , Wound Healing/drug effects , Resveratrol/pharmacology , Resveratrol/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Niacinamide/therapeutic use , Niacinamide/pharmacology , Pyridinium Compounds/therapeutic use , Pyridinium Compounds/pharmacology , Unfolded Protein Response/drug effects , Rats , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology
8.
Sci Rep ; 14(1): 9864, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684734

ABSTRACT

Essential tremor (ET) is a neurological disease that impairs motor and cognitive functioning. A variant of the Lingo-1 genetic locus is associated with a heightened ET risk, and increased expression of cerebellar Lingo-1. Lingo-1 has been associated with neurodegenerative processes; however, neuroprotection from ET-associated degeneration can be conferred by the protein Sirt1. Sirt1 activity can be promoted by Resveratrol (Res) and 1,25-dihydroxyvitamin D3 (VitD3), and thus these factors may exert neuroprotective properties through a Sirt1 mechanism. As Res and VitD3 are linked to Sirt1, enhancing Sirt1 could counteract the negative effects of increased Lingo-1. Therefore, we hypothesized that a combination of Res-VitD3 in a harmaline injection model of ET would modulate Sirt1 and Lingo-1 levels. As expected, harmaline exposure (10 mg/kg/every other day; i.p.) impaired motor coordination, enhanced tremors, rearing, and cognitive dysfunction. When Res (5 mg/kg/day; i.p.) and VitD3 (0.1 mg/kg/day; i.p.) were given to adult rats (n = 8 per group) an hour before harmaline, tremor severity, rearing, and memory impairment were reduced. Individual treatment with Res and VitD3 decreased Lingo-1 gene expression levels in qPCR assays. Co-treatment with Res and VitD3 increased and decreased Sirt1 and Lingo-1 gene expression levels, respectively, and in some cases, beneficial effects on behavior were noted, which were not seen when Res or VitD3 were individually applied. Taken together, our study found that Res and VitD3 improved locomotor and cognitive deficits, modulated Sirt1 and Lingo-1. Therefore, we would recommend co-treatment of VitD3 and Res to leverage complementary effects for the management of ET symptoms.


Subject(s)
Essential Tremor , Harmaline , Resveratrol , Sirtuin 1 , Animals , Resveratrol/pharmacology , Resveratrol/therapeutic use , Sirtuin 1/metabolism , Sirtuin 1/genetics , Male , Rats , Essential Tremor/drug therapy , Essential Tremor/metabolism , Essential Tremor/genetics , Harmaline/pharmacology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Calcitriol/pharmacology , Calcitriol/therapeutic use , Disease Models, Animal , Behavior, Animal/drug effects , Rats, Sprague-Dawley , Membrane Proteins/metabolism , Membrane Proteins/genetics , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
9.
Int J Mol Sci ; 25(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38542344

ABSTRACT

Natural products have been a long-standing source for exploring health-beneficial components from time immemorial. Modern science has had a renewed interest in natural-products-based drug discovery. The quest for new potential secondary metabolites or exploring enhanced activities for existing molecules remains a pertinent topic for research. Resveratrol belongs to the stilbenoid polyphenols group that encompasses two phenol rings linked by ethylene bonds. Several plant species and foods, including grape skin and seeds, are the primary source of this compound. Resveratrol is known to possess potent anti-inflammatory, antiproliferative, and immunoregulatory properties. Among the notable bioactivities associated with resveratrol, its pivotal role in safeguarding the intestinal barrier is highlighted for its capacity to prevent intestinal inflammation and regulate the gut microbiome. A better understanding of how oxidative stress can be controlled using resveratrol and its capability to protect the intestinal barrier from a gut microbiome perspective can shed more light on associated physiological conditions. Additionally, resveratrol exhibits antitumor activity, proving its potential for cancer treatment and prevention. Moreover, cardioprotective, vasorelaxant, phytoestrogenic, and neuroprotective benefits have also been reported. The pharmaceutical industry continues to encounter difficulties administering resveratrol owing to its inadequate bioavailability and poor solubility, which must be addressed simultaneously. This report summarizes the currently available literature unveiling the pharmacological effects of resveratrol.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Resveratrol/pharmacology , Resveratrol/therapeutic use , Polyphenols/pharmacology , Dietary Supplements , Colorectal Neoplasms/drug therapy
10.
J Cancer Res Clin Oncol ; 150(3): 168, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546908

ABSTRACT

OBJECTIVES: The aim of this study was to investigate the anti-tumor effect of resveratrol (RSV) on glioblastoma (GBM) and its specific mechanism in improving the inflammatory response of the tumor microenvironment. The tumor microenvironment of GBM is highly neuroinflammatory, inducing tumor immunosuppression. Therefore, ameliorating the inflammatory response is an important focus for anti-tumor research. METHODS: The anti-tumor effect of RSV on GBM was demonstrated through in vitro cellular assays, including CCK-8, EdU, PI staining, Transwell, wound healing assay, and flow cytometry. Potential mechanisms of RSV's anti-GBM effects were identified through network pharmacological analysis. In addition, the relationship of RSV with the JAK2/STAT3 signaling pathway and the inflammasome NLRP3 was verified using Western blot. RESULTS: RSV significantly inhibited cell viability in GBM cell lines LN-229 and U87-MG. Furthermore, it inhibited the proliferation and invasive migration ability of GBM cells, while promoting apoptosis. Network pharmacological analysis revealed a close association between the anti-GBM effects of RSV and the JAK/STAT signaling pathway, as well as inflammatory responses. Western blot analysis confirmed that RSV inhibited the over-activation of the inflammasome NLRP3 through the JAK2/STAT3 signaling pathway. Partial reversal of RSV's inhibition of inflammasome NLRP3 was observed with the addition of the JAK/STAT agonist RO8191. CONCLUSIONS: In vitro, RSV can exert anti-tumor effects on GBM and improve the inflammatory response in the GBM microenvironment by inhibiting the activation of the JAK2/STAT3 signaling pathway. These findings provide new insights into potential therapeutic targets for GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Resveratrol/pharmacology , Resveratrol/therapeutic use , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Brain Neoplasms/pathology , STAT3 Transcription Factor/metabolism , Cell Line, Tumor , Janus Kinase 2/metabolism , Tumor Microenvironment
11.
Physiol Res ; 73(1): 91-104, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38466008

ABSTRACT

The objective of this study was to evaluate whether RSV inhibits neutrophil extracellular traps (NETs) that induce joint hyperalgesia in C57BL/6 mice after adjuvant-induced arthritis. A subplantar injection of Freund's complete adjuvant was administered to C57BL/6 mice on day 0 for immunization in the AIA model. Resveratrol (RSV, 25 mg/kg) was administered intraperitoneally once daily starting on day 22 and continuing for two weeks. The effects of mechanical hyperalgesia and edema formation have been assessed in addition to histopathological scoring. Mice were sacrificed on day 35 to determine cytokine levels and PADI4 and COX-2 expression levels. ELISA was used to quantify neutrophil extracellular traps (NETs) along with neutrophil elastase-DNA and myeloperoxidase-DNA complexes in neutrophils. An immunohistochemical stain was performed on knee joints to determine the presence of nuclear factor kappa B p65 (NF-kappaB p65). AIA mice were found to have higher levels of NET in joints and their joint cells demonstrated an increased expression of the PADI4 gene. Treatment with RSV in AIA mice (25 mg/kg, i.p.) significantly (P<0.05) inhibited joint hyperalgesia, resulting in a significant increase in mechanical threshold, a decrease in articular edema, a decrease in the production of inflammatory cytokines, increased COX-2 expression, and a decrease in the immunostaining of NF-kappaB. Furthermore, treatment with RSV significantly reduced the amount of neutrophil elastase (NE)-DNA and MPO-DNA complexes, which were used as indicators of NET formation (P<0.05). This study indicates that RSV reduces NET production and hyperalgesia by reducing inflammation mediated by PADI4 and COX-2. According to these data, NETs contribute to joint pain and resveratrol can be used to treat pain in RA through this pathway.


Subject(s)
Arthritis, Rheumatoid , Extracellular Traps , Mice , Animals , Extracellular Traps/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Resveratrol/metabolism , Leukocyte Elastase/metabolism , Leukocyte Elastase/pharmacology , Toll-Like Receptor 4/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , NF-kappa B/metabolism , Cyclooxygenase 2 , Mice, Inbred C57BL , Inflammation/metabolism , Arthritis, Rheumatoid/metabolism , Neutrophils/metabolism , Cytokines/metabolism , DNA/metabolism , Edema/metabolism
12.
J Physiol ; 602(8): 1835-1852, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38529522

ABSTRACT

Acute kidney injury (AKI) often triggers physiological processes aimed at restoring renal function and architecture. However, this response can become maladaptive, leading to nephron loss and fibrosis. Although the therapeutic effects of resveratrol (RSV) are well established, its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. This study assessed whether transient administration of RSV following ischaemia-reperfusion injury (IRI) could prevent the progression to CKD. Forty-one male Wistar rats were assigned randomly to sham surgery, bilateral renal ischaemia for 30 min (IR) or IR+RSV. The RSV treatment commenced 24 h after IRI and continued for 10 days. The rats were studied for either 10 days or 5 months, after which kidney function and structure were evaluated. Mitochondrial homeostasis, oxidant defence and renal inflammation state were also evaluated. Despite having the same severity of AKI, rats receiving RSV for 10 days after IRI exhibited significant improvement in kidney histological injury and reduced inflammation, although renal haemodynamic recovery was less pronounced. Resveratrol effectively prevented the elevation of tubular injury-related molecules and profibrotic signalling with reduced myofibroblast proliferation. Furthermore, RSV substantially improved the antioxidant response and mitochondrial homeostasis. After 5 months, RSV prevented the transition to CKD, as evidenced by the prevention of progressive proteinuria, renal dysfunction and tubulointerstitial fibrosis. This study demonstrates that a brief treatment with RSV following IRI is enough to prevent maladaptive repair and the development of CKD. Our findings highlight the importance of the early days of reperfusion, indicating that maladaptive responses can be reduced effectively following severe AKI. KEY POINTS: Physiological processes activated after acute kidney injury (AKI) can lead to maladaptive responses, causing nephron loss and fibrosis. Prophylactic renoprotection with resveratrol (RSV) has been described in experimental AKI, but its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. In this study, we found that histological tubular injury persists 10 days after ischaemia-reperfusion injury and contributes to a failed repair phenotype in proximal tubular cells. Short-term RSV intervention influenced the post-ischaemic repair response and accelerated tubular recovery by reducing oxidative stress and mitochondrial damage. Furthermore, RSV targeted inflammation and profibrotic signalling during the maladaptive response, normalizing both processes. Resveratrol effectively prevented AKI-to-CKD transition even 5 months after the intervention. The study serves as a proof of concept, proposing RSV as a valuable candidate for further translational clinical studies to mitigate AKI-to-CKD transition.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Reperfusion Injury , Rats , Male , Animals , Resveratrol/pharmacology , Resveratrol/therapeutic use , Rats, Wistar , Kidney/pathology , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/pathology , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Acute Kidney Injury/pathology , Inflammation/complications , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/complications , Fibrosis
13.
Physiol Behav ; 278: 114508, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38460779

ABSTRACT

BACKGROUND: Neurodegenerative disorders are associated with chronic neuroinflammation, which contributes to their pathogenesis and progression. Resveratrol (RSV) is a polyphenolic compound with strong antioxidant and anti-inflammatory properties. In the present study, we investigated whether RSV could protect against cognitive impairment and inflammatory response in a mouse model of chronic neuroinflammation induced by lipopolysaccharide (LPS). METHOD: Mice received oral RSV (30 mg/kg) or vehicle for two weeks, and injected with LPS (0.75 mg/kg) or saline daily for the last seven days. After two weeks, mice were subjected to behavioral assessments using the Morris water maze and Y-maze. Moreover, mRNA expression of several inflammatory markers, neuronal loss, and glial density were evaluated in the hippocampus of treated mice. RESULTS: Our findings showed that RSV treatment effectively improved spatial and working memory impairments induced by LPS. In addition, RSV significantly reduced hippocampal glial densities and neuronal loss in LPS-injected mice. Moreover, RSV treatment suppressed LPS-induced upregulation of NF-κB, IL-6, IL-1ß, and GFAP in the hippocampus of treated mice. CONCLUSION: Taken together, our results highlight the detrimental effect of systemic inflammation on the hippocampus and the potential of natural products with anti-inflammatory effects to counteract this impact.


Subject(s)
Cognitive Dysfunction , Lipopolysaccharides , Mice , Animals , Resveratrol/therapeutic use , Lipopolysaccharides/toxicity , Neuroinflammatory Diseases , Microglia/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Disease Models, Animal , NF-kappa B/metabolism , Hippocampus/metabolism , Maze Learning
14.
Neurosci Lett ; 826: 137712, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38447888

ABSTRACT

Glaucoma is a kind of neurodegenerative disorder characterized by irreversible loss of retinal ganglion cells (RGCs) and permanent visual impairment. It is reported that resveratrol (RES) is a promising drug for neurodegenerative diseases. However, the detailed molecular mechanisms underlying its protective potential have not yet been fully elucidated. The present study sought to investigate whether resveratrol could protect RGCs and retinal function triggered by acute ocular hypertension injury through the SIRT1/NF-κB pathway. An experimental glaucoma model was generated in C57BL/6J mice. Resveratrol was intraperitoneally injected for 5 days. Sirtinol was injected intravitreally on the day of retinal AOH injury. RGC survival was determined using immunostaining. TUNEL staining was conducted to evaluate retinal cell apoptosis. ERG was used to evaluate visual function. The proteins Brn3a, SIRT1, NF-κB, IL-6, Bax, Bcl2, and Cleaved Caspase3 were determined using western blot. The expression and localisation of SIRT1 and NF-κB in the retina were detected by immunofluorescence. Our data indicated that resveratrol treatment significantly increased Brn3a-labelled RGCs and reduced RGC apoptosis caused by AOH injury. Resveratrol administration also remarkably decreased NF-κB, IL-6, Bax, and Cleaved Caspase3 proteins and increased SIRT1 and Bcl2 proteins. Furthermore, resveratrol treatment obviously inhibited the reduction in ERG caused by AOH injury. Importantly, simultaneous administration of resveratrol and sirtinol abrogated the protective effect of resveratrol, decreased NF-κB protein expression, and increased SIRT1 protein levels. These results suggest that resveratrol administration significantly mitigates retinal AOH-induced RGCs loss and retinal dysfunction, and that this neuroprotective effect is partially regulated through the SIRT1/NF-κB pathway.


Subject(s)
Benzamides , Glaucoma , Naphthols , Ocular Hypertension , Mice , Animals , Resveratrol/pharmacology , Resveratrol/therapeutic use , NF-kappa B/metabolism , Sirtuin 1/metabolism , bcl-2-Associated X Protein , Interleukin-6 , Mice, Inbred C57BL , Ocular Hypertension/drug therapy , Glaucoma/drug therapy
15.
Nutrients ; 16(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474838

ABSTRACT

Breast cancer (BC) is currently one of the most common cancers in women worldwide with a rising tendency. Epigenetics, generally inherited variations in gene expression that occur independently of changes in DNA sequence, and their disruption could be one of the main causes of BC due to inflammatory processes often associated with different lifestyle habits. In particular, hormone therapies are often indicated for hormone-positive BC, which accounts for more than 50-80% of all BC subtypes. Although the cure rate in the early stage is more than 70%, serious negative side effects such as secondary osteoporosis (OP) due to induced estrogen deficiency and chemotherapy are increasingly reported. Approaches to the management of secondary OP in BC patients comprise adjunctive therapy with bisphosphonates, non-steroidal anti-inflammatory drugs (NSAIDs), and cortisone, which partially reduce bone resorption and musculoskeletal pain but which are not capable of stimulating the necessary intrinsic bone regeneration. Therefore, there is a great therapeutic need for novel multitarget treatment strategies for BC which hold back the risk of secondary OP. In this review, resveratrol, a multitargeting polyphenol that has been discussed as a phytoestrogen with anti-inflammatory and anti-tumor effects at the epigenetic level, is presented as a potential adjunct to both support BC therapy and prevent osteoporotic risks by positively promoting intrinsic regeneration. In this context, resveratrol is also known for its unique role as an epigenetic modifier in the regulation of essential signaling processes-both due to its catabolic effect on BC and its anabolic effect on bone tissue.


Subject(s)
Breast Neoplasms , Osteoporosis , Female , Humans , Resveratrol/therapeutic use , Breast Neoplasms/drug therapy , Osteoporosis/prevention & control , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Hormones/therapeutic use
16.
Int J Mol Sci ; 25(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38473918

ABSTRACT

The prevalence and incidence of obesity and the comorbidities linked to it are increasing worldwide. Current therapies for obesity and associated pathologies have proven to cause a broad number of adverse effects, and often, they are overpriced or not affordable for all patients. Among the alternatives currently available, natural bioactive compounds stand out. These are frequently contained in pharmaceutical presentations, nutraceutical products, supplements, or functional foods. The clinical evidence for these molecules is increasingly solid, among which epigallocatechin-3-gallate, ellagic acid, resveratrol, berberine, anthocyanins, probiotics, carotenoids, curcumin, silymarin, hydroxy citric acid, and α-lipoic acid stand out. The molecular mechanisms and signaling pathways of these molecules have been shown to interact with the endocrine, nervous, and gastroenteric systems. They can regulate the expression of multiple genes and proteins involved in starvation-satiety processes, activate the brown adipose tissue, decrease lipogenesis and inflammation, increase lipolysis, and improve insulin sensitivity. This review provides a comprehensive view of nature-based therapeutic options to address the increasing prevalence of obesity. It offers a valuable perspective for future research and subsequent clinical practice, addressing everything from the molecular, genetic, and physiological bases to the clinical study of bioactive compounds.


Subject(s)
Anthocyanins , Thioctic Acid , Humans , Anthocyanins/therapeutic use , Obesity/metabolism , Dietary Supplements , Resveratrol/therapeutic use , Thioctic Acid/therapeutic use
17.
Phytomedicine ; 127: 155476, 2024 May.
Article in English | MEDLINE | ID: mdl-38430586

ABSTRACT

BACKGROUND: Herpes simplex virus type 1 (HSV-1)-induced herpes simplex encephalitis (HSE) has a high mortality rate in clinically immunocompromised patients, while recovered patients often experience neurological sequelae due to neuroinflammation. Nucleoside drugs and nucleoside analogues such as acyclovir and ganciclovir are mainly used in clinical treatment, and the emergence of resistant viral strains makes the development of new anti-herpesvirus encephalitis drugs urgent. Resveratrol is a multifunctional, plant-derived bioactive compound and its antiviral potential is attracting much attention. PURPOSE: This study aimed to investigate the anti-HSV-1 mechanism of resveratrol in microglial cells and in the HSE mouse model. METHODS: The antiviral effect of resveratrol on HSV-1 infection was investigated by plaque assay, virus titer, immunofluorescence, Western blot and time-of-addition assay. The influence of resveratrol on stimulator of interferon gene (STING)/Nuclear Factor kappa B (NF-κB) signaling pathway-mediated neuroinflammation was examined by Western blot, RT-qPCR and ELISA. The interaction between resveratrol and STING/heat shock protein 90 beta (HSP90ß) was evaluated by molecular modeling, co-immunoprecipitation, and drug affinity responsive target stability assay. The therapeutic effect of resveratrol on HSE was evaluated in the HSE mouse model by analyzing weight loss, neurodegenerative symptoms and histopathological scores. RESULTS: Resveratrol inhibited the early process of HSV-1 infection, and interfered with the STING/NF-κB signaling pathway to attenuate HSV-1-induced neuroinflammation and microglial M1 polarization, independent of its classical target Sirtuin1. Mechanistically, resveratrol completely bound to Glu515 and Lys491 of HSP90ß, thus disrupting the HSP90ß-STING interaction and promoting STING degradation. Resveratrol also significantly alleviated viral encephalitis and neuroinflammation caused by HSV-1 in the HSE mouse model. CONCLUSION: Resveratrol acted as a non-classical HSP90ß inhibitor, binding to the STING-HSP90ß interaction site to promote STING degradation and attenuate HSV-1-induced encephalitis and neuroinflammation. These findings suggest the alternative strategy of targeting HSP90ß and resveratrol-mediated inhibition of HSP90ß as a potential antiviral approach.


Subject(s)
Encephalitis, Herpes Simplex , Herpes Simplex , Herpesvirus 1, Human , Animals , Mice , Humans , Encephalitis, Herpes Simplex/drug therapy , Encephalitis, Herpes Simplex/diagnosis , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Resveratrol/pharmacology , Resveratrol/therapeutic use , NF-kappa B/metabolism , Neuroinflammatory Diseases , Herpes Simplex/drug therapy
18.
Mol Med Rep ; 29(5)2024 05.
Article in English | MEDLINE | ID: mdl-38488031

ABSTRACT

Ulcerative colitis (UC) is a chronic idiopathic inflammatory condition affecting the rectum and colon. Inflammation and compromisation of the intestinal mucosal barrier are key in UC pathogenesis. Resveratrol (Res) is a naturally occurring polyphenol that exhibits anti­inflammatory and antioxidant properties. Nuclear factor erythroid­2­related factor 2/heme oxygenase 1 (Nrf2/HO­1) pathway regulates occurrence and development of numerous types of diseases through anti­inflammatory and antioxidant activity. However, it is not clear whether Nrf2/HO­1 pathway is involved in the treatment of Res in UC. Therefore, the present study aimed to investigate whether Res modulates the Nrf2/HO­1 signaling pathway to attenuate UC in mice. Dextran sulfate sodium (DSS) was used to induce experimental UC in male C57BL/6J mice. Disease activity index (DAI) and hematoxylin eosin (H&E) staning was used to assessed the magnitude of colonic lesions in UC mice. ELISA) was utilized to quantify inflammatory cytokines (IL­6, IL­1ß, TNF­α and IL­10) in serum and colon tissues. Immunohistochemistry and Western blot were used to evaluate the expression levels of tight junction (TJ) proteins [zonula occludens (ZO)­1 and Occludin] in colon tissues. Pharmacokinetic (PK) parameters of Res were derived from TCMSP database. Networkpharmacology was employed to identify the biological function and pharmacological mechanism of Res in the process of relieving UC, and the key target was screened. The binding ability of Res and key target was verified by molecular docking. Finally, the effectiveness of key target was substantiated by Western blot. Res decreased DAI, ameliorated histopathological changes such as crypt loss, disappeatance of the mucosal epithelium, and inflammatory infiltration in mice. Additionally, Res decreased expression of pro­inflammatory cytokines IL­6, IL­1ß and TNF­α and increased anti­inflammatory factor IL­10 expression. Res also restored the decreased protein expression of ZO­1 and occludin after DSS treatment, increasing the integrity of the intestinal mucosal barrier. The PK properties of Res suggested that Res possesses the therapeutic potential for oral administration. Network pharmacology revealed that Res alleviated UC through anti­inflammatory and antioxidant pathways, and confirmed that Nrf2 has a high binding affinity with Res and is a key target of Res against UC. Western blotting demonstrated that Res treatment increased the protein levels of Nrf2 and HO­1. In conclusion, Res treatment activated the Nrf2/HO­1 pathway to decrease clinical symptoms, inflammatory responses, and intestinal mucosal barrier damage in experimental UC mice.


Subject(s)
Animal Experimentation , Colitis, Ulcerative , Colitis , Male , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Interleukin-10/metabolism , NF-E2-Related Factor 2/metabolism , Colon/pathology , Antioxidants/metabolism , Interleukin-6/metabolism , Occludin/metabolism , Tumor Necrosis Factor-alpha/metabolism , Network Pharmacology , Molecular Docking Simulation , Mice, Inbred C57BL , Cytokines/metabolism , Anti-Inflammatory Agents/therapeutic use , Dextran Sulfate , Disease Models, Animal , Colitis/pathology
19.
Mol Carcinog ; 63(5): 991-1008, 2024 May.
Article in English | MEDLINE | ID: mdl-38376345

ABSTRACT

The worldwide incidence and mortality rates of esophageal squamous cell carcinoma (ESCC) have increased over the last decade. Moreover, molecular targets that may benefit the therapeutics of patients with ESCC have not been fully characterized. Our study discovered that thousand and one amino-acid protein kinase 1 (TAOK1) is highly expressed in ESCC tumor tissues and cell lines. Knock-down of TAOK1 suppresses ESCC cell proliferation in vitro and patient-derived xenograft or cell-derived xenograft tumors growth in vivo. Moreover, TAOK1 overexpression promotes ESCC growth in vitro and in vivo. Additionally, we identified that the natural small molecular compound resveratrol binds to TAOK1 directly and diminishes the kinase activity of TAOK1. Targeting TAOK1 directly with resveratrol significantly inhibits cell proliferation, induces cell cycle arrest and apoptosis, and suppresses tumor growth in ESCC. Furthermore, the silencing of TAOK1 or the application of resveratrol attenuated the activation of TAOK1 downstream signaling effectors. Interestingly, combining resveratrol with paclitaxel, cisplatin, or 5-fluorouracil synergistically enhanced their therapeutic effects against ESCC. In conclusion, this work illustrates the underlying oncogenic function of TAOK1 and provides a theoretical basis for the application of targeting TAOK1 therapy to the clinical treatment of ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Protein Serine-Threonine Kinases , Humans , Apoptosis , Cell Line, Tumor , Cell Proliferation , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Gene Expression Regulation, Neoplastic , Protein Serine-Threonine Kinases/drug effects , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use
20.
Brain Res ; 1830: 148821, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38401770

ABSTRACT

Neurocognitive disorders, such as Alzheimer's disease, vascular dementia, and postoperative cognitive dysfunction, are non-psychiatric brain syndromes in which a significant decline in cognitive function causes great trauma to the mental status of the patient. The lack of effective treatments for neurocognitive disorders imposes a considerable burden on society, including a substantial economic impact. Over the past few decades, the identification of resveratrol, a natural plant compound, has provided researchers with an opportunity to formulate novel strategies for the treatment of neurocognitive disorders. This is because resveratrol effectively protects the brain of those with neurocognitive disorders by targeting some mechanisms such as inflammation and oxidative stress. This article reviews the status of recent research investigating the use of resveratrol for the treatment of different neurocognitive disorders. By examining the possible mechanisms of action of resveratrol and the shared mechanisms of different neurocognitive disorders, treatments for neurocognitive disorders may be further clarified.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia, Vascular , Humans , Resveratrol/therapeutic use , Cognitive Dysfunction/drug therapy , Alzheimer Disease/drug therapy , Dementia, Vascular/drug therapy , Brain
SELECTION OF CITATIONS
SEARCH DETAIL
...