Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Microbiol Res ; 284: 127737, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705080

ABSTRACT

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH or Gap) is a ubiquitous enzyme essential for carbon and energy metabolism in most organisms. Despite its primary role in sugar metabolism, GAPDH is recognized for its involvement in diverse cellular processes, being considered a paradigm among multifunctional/moonlighting proteins. Besides its canonical cytoplasmic location, GAPDH has been detected on cell surfaces or as a secreted protein in prokaryotes, yet little is known about its possible roles in plant symbiotic bacteria. Here we report that Rhizobium etli, a nitrogen-fixing symbiont of common beans, carries a single gap gene responsible for both GAPDH glycolytic and gluconeogenic activities. An active Gap protein is required throughout all stages of the symbiosis between R. etli and its host plant Phaseolus vulgaris. Both glycolytic and gluconeogenic Gap metabolic activities likely contribute to bacterial fitness during early and intermediate stages of the interaction, whereas GAPDH gluconeogenic activity seems critical for nodule invasion and nitrogen fixation. Although the R. etli Gap protein is secreted in a c-di-GMP related manner, no involvement of the R. etli gap gene in c-di-GMP related phenotypes, such as flocculation, biofilm formation or EPS production, was observed. Notably, the R. etli gap gene fully complemented a double gap1/gap2 mutant of Pseudomonas syringae for free life growth, albeit only partially in planta, suggesting potential specific roles for each type of Gap protein. Nevertheless, further research is required to unravel additional functions of the R. etli Gap protein beyond its essential metabolic roles.


Subject(s)
Phaseolus , Rhizobium etli , Symbiosis , Phaseolus/microbiology , Rhizobium etli/genetics , Rhizobium etli/metabolism , Rhizobium etli/physiology , Rhizobium etli/growth & development , Nitrogen Fixation , Gluconeogenesis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Glycolysis , Root Nodules, Plant/microbiology , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism
2.
Braz. j. microbiol ; 48(4): 815-821, Oct.-Dec. 2017. graf
Article in English | LILACS | ID: biblio-889159

ABSTRACT

ABSTRACT Strain RT1 was isolated from root nodules of Lens culinaris (a lentil) and characterized as Rhizobium etli (a Gram-negative soil-borne bacterium) by 16S rDNA sequencing and phylogenetic analysis. The signaling molecules produced by R. etli (RT1) were detected and identified by high-performance liquid chromatography coupled with mass spectrometry. The most abundant and biologically active N-acyl homoserine lactone molecules (3-oxo-C8-HSL and 3-OH-C14-HSL) were detected in the ethyl acetate extract of RT1. The biological role of 3-oxo-C8-HSL was evaluated in RT1. Bacterial motility and biofilm formation were affected or modified on increasing concentrations of 3-oxo-C8-HSL. Results confirmed the existence of cell communication in RT1 mediated by 3-oxo-C8-HSL, and positive correlations were found among quorum sensing, motility and biofilm formation in RT1.


Subject(s)
4-Butyrolactone/analogs & derivatives , Biofilms , Quorum Sensing , Rhizobium etli/physiology , 4-Butyrolactone/chemistry , 4-Butyrolactone/metabolism , Lens Plant/microbiology , Plant Roots/microbiology , Rhizobium etli/chemistry , Rhizobium etli/genetics , Rhizobium etli/isolation & purification
3.
Braz J Microbiol ; 48(4): 815-821, 2017.
Article in English | MEDLINE | ID: mdl-28735852

ABSTRACT

Strain RT1 was isolated from root nodules of Lens culinaris (a lentil) and characterized as Rhizobium etli (a Gram-negative soil-borne bacterium) by 16S rDNA sequencing and phylogenetic analysis. The signaling molecules produced by R. etli (RT1) were detected and identified by high-performance liquid chromatography coupled with mass spectrometry. The most abundant and biologically active N-acyl homoserine lactone molecules (3-oxo-C8-HSL and 3-OH-C14-HSL) were detected in the ethyl acetate extract of RT1. The biological role of 3-oxo-C8-HSL was evaluated in RT1. Bacterial motility and biofilm formation were affected or modified on increasing concentrations of 3-oxo-C8-HSL. Results confirmed the existence of cell communication in RT1 mediated by 3-oxo-C8-HSL, and positive correlations were found among quorum sensing, motility and biofilm formation in RT1.


Subject(s)
4-Butyrolactone/analogs & derivatives , Biofilms , Quorum Sensing , Rhizobium etli/physiology , 4-Butyrolactone/chemistry , 4-Butyrolactone/metabolism , Lens Plant/microbiology , Plant Roots/microbiology , Rhizobium etli/chemistry , Rhizobium etli/genetics , Rhizobium etli/isolation & purification
4.
Arch Microbiol ; 198(9): 847-60, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27226009

ABSTRACT

Organisms belonging to the genus Rhizobium colonize leguminous plant roots and establish a mutually beneficial symbiosis. Biofilms are structured ecosystems in which microbes are embedded in a matrix of extracellular polymeric substances, and their development is a multistep process. The biofilm formation processes of R. etli CFN42 were analyzed at an early (24-h incubation) and mature stage (72 h), comparing cells in the biofilm with cells remaining in the planktonic stage. A genome-wide microarray analysis identified 498 differentially regulated genes, implying that expression of ~8.3 % of the total R. etli gene content was altered during biofilm formation. In biofilms-attached cells, genes encoding proteins with diverse functions were overexpressed including genes involved in membrane synthesis, transport and chemotaxis, repression of flagellin synthesis, as well as surface components (particularly exopolysaccharides and lipopolysaccharides), in combination with the presence of activators or stimulators of N-acyl-homoserine lactone synthesis This suggests that R. etli is able to sense surrounding environmental conditions and accordingly regulate the transition from planktonic and biofilm growth. In contrast, planktonic cells differentially expressed genes associated with transport, motility (flagellar and twitching) and inhibition of exopolysaccharide synthesis. To our knowledge, this is the first report of nodulation and nitrogen assimilation-related genes being involved in biofilm formation in R. etli. These results contribute to the understanding of the physiological changes involved in biofilm formation by bacteria.


Subject(s)
Biofilms/growth & development , Gene Expression Regulation, Bacterial , Rhizobium etli/genetics , Transcriptome/physiology , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , DNA, Bacterial/analysis , Microarray Analysis , RNA, Bacterial/analysis , Rhizobium etli/physiology
5.
Plant Physiol ; 169(2): 1356-70, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26282238

ABSTRACT

Establishment of nitrogen-fixing symbiosis requires the recognition of rhizobial molecules to initiate the development of nodules. Using transcriptional profiling of roots inoculated with mutant strains defective in the synthesis of Nod Factor (NF), exopolysaccharide (EPS), or lipopolysaccharide (LPS), we identified 2,606 genes from common bean (Phaseolus vulgaris) that are differentially regulated at early stages of its interaction with Rhizobium etli. Many transcription factors from different families are modulated by NF, EPS, and LPS in different combinations, suggesting that the plant response depends on the integration of multiple signals. Some receptors identified as differentially expressed constitute excellent candidates to participate in signal perception of molecules derived from the bacteria. Several components of the ethylene signal response, a hormone that plays a negative role during early stages of the process, were down-regulated by NF and LPS. In addition, genes encoding proteins involved in small RNA-mediated gene regulation were regulated by these signal molecules, such as Argonaute7, a specific component of the trans-acting short interfering RNA3 pathway, an RNA-dependent RNA polymerase, and an XH/XP domain-containing protein, which is part of the RNA-directed DNA methylation. Interestingly, a number of genes encoding components of the circadian central oscillator were down-regulated by NF and LPS, suggesting that a root circadian clock is adjusted at early stages of symbiosis. Our results reveal a complex interaction of the responses triggered by NF, LPS, and EPS that integrates information of the signals present in the surface or secreted by rhizobia.


Subject(s)
Phaseolus/genetics , Phaseolus/microbiology , Rhizobium etli/physiology , Transcriptome , Circadian Clocks/genetics , Gene Expression Regulation, Plant , Lipopolysaccharides/metabolism , Mutation , Phaseolus/metabolism , RNA Interference , Reproducibility of Results , Rhizobium etli/genetics , Rhizobium etli/metabolism , Root Nodules, Plant/metabolism , Root Nodules, Plant/microbiology , Signal Transduction/genetics , Transcription Factors/genetics
6.
Plant Physiol ; 168(1): 273-91, 2015 May.
Article in English | MEDLINE | ID: mdl-25739700

ABSTRACT

Micro-RNAs are recognized as important posttranscriptional regulators in plants. The relevance of micro-RNAs as regulators of the legume-rhizobia nitrogen-fixing symbiosis is emerging. The objective of this work was to functionally characterize the role of micro-RNA172 (miR172) and its conserved target APETALA2 (AP2) transcription factor in the common bean (Phaseolus vulgaris)-Rhizobium etli symbiosis. Our expression analysis revealed that mature miR172c increased upon rhizobial infection and continued increasing during nodule development, reaching its maximum in mature nodules and decaying in senescent nodules. The expression of AP2-1 target showed a negative correlation with miR172c expression. A drastic decrease in miR172c and high AP2-1 mRNA levels were observed in ineffective nodules. Phenotypic analysis of composite bean plants with transgenic roots overexpressing miR172c or a mutated AP2-1 insensitive to miR172c cleavage demonstrated the pivotal regulatory role of the miR172 node in the common bean-rhizobia symbiosis. Increased miR172 resulted in improved root growth, increased rhizobial infection, increased expression of early nodulation and autoregulation of nodulation genes, and improved nodulation and nitrogen fixation. In addition, these plants showed decreased sensitivity to nitrate inhibition of nodulation. Through transcriptome analysis, we identified 114 common bean genes that coexpressed with AP2-1 and proposed these as being targets for transcriptional activation by AP2-1. Several of these genes are related to nodule senescence, and we propose that they have to be silenced, through miR172c-induced AP2-1 cleavage, in active mature nodules. Our work sets the basis for exploring the miR172-mediated improvement of symbiotic nitrogen fixation in common bean, the most important grain legume for human consumption.


Subject(s)
Nitrogen Fixation , Phaseolus/microbiology , Phaseolus/physiology , Plant Proteins/metabolism , Rhizobium etli/physiology , Symbiosis , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gene Ontology , Genes, Plant , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Biological , Nitrates/pharmacology , Nitrogen Fixation/drug effects , Nitrogen Fixation/genetics , Phaseolus/drug effects , Phaseolus/genetics , Plant Proteins/genetics , Plant Root Nodulation/drug effects , Plant Root Nodulation/genetics , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/microbiology , Protein Isoforms , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rhizobium etli/drug effects , Symbiosis/drug effects , Symbiosis/genetics
7.
J Bacteriol ; 197(9): 1573-81, 2015 May.
Article in English | MEDLINE | ID: mdl-25691531

ABSTRACT

UNLABELLED: Many rhizobial species use complex N-acyl-homoserine lactone (AHL)-based quorum sensing (QS) systems to monitor their population density and regulate their symbiotic interactions with their plant hosts. There are at least three LuxRI-type regulatory systems in Rhizobium etli CFN42: CinRI, RaiRI, and TraRI. In this study, we show that CinI, RaiI, and TraI are responsible for synthesizing all AHLs under the tested conditions. The activation of these AHL synthase genes requires their corresponding LuxR-type counterparts. We further demonstrate that CinRI is at the top of the regulatory cascade that activates RaiRI and TraRI QS systems. Moreover, we discovered that CinR possesses a specific affinity to bind cinI promoter in the absence of its cognate AHL ligand, thereby activating cinI transcription. Addition of AHLs leads to improved binding to the cinI promoter and enhanced cinI expression. Furthermore, we found that compared to the wild type, the cinR mutation displayed reduced nodule formation, and cinR, raiR, and traI mutants show significantly lower levels of nitrogen fixation activity than the wild type. These results suggest that the complex QS regulatory systems in R. etli play an important role in its symbiosis with legume hosts. IMPORTANCE: Many bacteria use quorum sensing (QS) to monitor their cell densities and coordinately regulate a number of physiological functions. Rhizobia often have diverse and complex LuxR/LuxI-type quorum sensing systems that may be involved in symbiosis and N2 fixation. In this study, we identified three LuxR/LuxI-type QS systems in Rhizobium etli CFN42: CinRI, RaiRI, and TraRI. We established a complex network of regulation between these QS components and found that these QS systems played important roles in symbiosis processes.


Subject(s)
Acyl-Butyrolactones/metabolism , Gene Expression Regulation, Bacterial , Quorum Sensing , Rhizobium etli/genetics , Rhizobium etli/physiology , Transcription Factors/metabolism , DNA, Bacterial/metabolism , Protein Binding
8.
Microbiologyopen ; 2(6): 976-87, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24311555

ABSTRACT

A core component of the α-proteobacterial general stress response (GSR) is the extracytoplasmic function (ECF) sigma factor EcfG, exclusively present in this taxonomic class. Half of the completed α-proteobacterial genome sequences contain two or more copies of genes encoding σ(EcfG) -like sigma factors, with the primary copy typically located adjacent to genes coding for a cognate anti-sigma factor (NepR) and two-component response regulator (PhyR). So far, the widespread occurrence of additional, non-canonical σ(EcfG) copies has not satisfactorily been explained. This study explores the hierarchical relation between Rhizobium etli σ(EcfG1) and σ(EcfG2) , canonical and non-canonical σ(EcfG) proteins, respectively. Contrary to reports in other species, we find that σ(EcfG1) and σ(EcfG2) act in parallel, as nodes of a complex regulatory network, rather than in series, as elements of a linear regulatory cascade. We demonstrate that both sigma factors control unique yet also shared target genes, corroborating phenotypic evidence. σ(EcfG1) drives expression of rpoH2, explaining the increased heat sensitivity of an ecfG1 mutant, while katG is under control of σ(EcfG2) , accounting for reduced oxidative stress resistance of an ecfG2 mutant. We also identify non-coding RNA genes as novel σ(EcfG) targets. We propose a modified model for GSR regulation in R. etli, in which σ(EcfG1) and σ(EcfG2) function largely independently. Based on a phylogenetic analysis and considering the prevalence of α-proteobacterial genomes with multiple σ(EcfG) copies, this model may also be applicable to numerous other species.


Subject(s)
Gene Expression Regulation, Bacterial , Rhizobium etli/physiology , Sigma Factor/metabolism , Stress, Physiological , Models, Biological , Rhizobium etli/genetics
9.
Biochim Biophys Acta ; 1831(7): 1250-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-24046865

ABSTRACT

The lipid A component of lipopolysaccharide from the nitrogen-fixing plant endosymbiont, Rhizobium etli, is structurally very different from that found in most enteric bacteria. The lipid A from free-living R. etli is structurally heterogeneous and exists as a mixture of species which are either pentaacylated or tetraacylated. In contrast, the lipid A from R. etli bacteroids is reported to consist exclusively of tetraacylated lipid A species. The tetraacylated lipid A species in both cases lack a beta-hydroxymyristoyl chain at the 3-position of lipid A. Here, we show that the lipid A modification enzyme responsible for 3-O deacylation in R. etli is a homolog of the PagL protein originally described in Salmonella enterica sv. typhimurium. In contrast to the PagL proteins described from other species, R. etli PagL displays a calcium dependency. To determine the importance of the lipid A modification catalyzed by PagL, we isolated and characterized a R. etli mutant deficient in the pagL gene. Mass spectrometric analysis confirmed that the mutant strain was exclusively tetraacylated and radiochemical analysis revealed that 3-O deacylase activity was absent in membranes prepared from the mutant. The R. etli mutant was not impaired in its ability to form nitrogen-fixing nodules on Phaseolus vulgaris but it displayed slower nodulation kinetics relative to the wild-type strain. The lipid A modification catalyzed by R. etli PagL, therefore, is not required for nodulation but may play other roles such as protecting bacterial endosymbionts from plant immune responses during infection.


Subject(s)
Calcium/metabolism , Carboxylic Ester Hydrolases/metabolism , Lipid A/metabolism , Phaseolus/microbiology , Rhizobium etli/enzymology , Rhizobium etli/physiology , Amino Acid Sequence , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/genetics , Gene Deletion , Molecular Sequence Data , Mutation , Nitrogen Fixation , Phaseolus/physiology , Plant Root Nodulation , Rhizobium etli/chemistry , Rhizobium etli/genetics , Salmonella typhimurium/enzymology , Sequence Alignment , Symbiosis
10.
PLoS One ; 8(7): e70138, 2013.
Article in English | MEDLINE | ID: mdl-23922937

ABSTRACT

Mutualisms are common in nature, though these symbioses can be quite permeable to cheaters in situations where one individual parasitizes the other by discontinuing cooperation yet still exploits the benefits of the partnership. In the Rhizobium-legume system, there are two separate contexts, namely nodulation and nitrogen fixation processes, by which resident Rhizobium individuals can benefit by cheating. Here, we constructed reversible and irreversible mutations in key nodulation and nitrogen-fixation pathways of Rhizobium etli and compared their interaction with plant hosts Phaseolus vulgaris to that of wild type. We show that R. etli reversible mutants deficient in nodulation factor production are capable of intra-specific cheating, wherein mutants exploit other Rhizobium individuals capable of producing these factors. Similarly, we show that R. etli mutants are also capable of cheating inter-specifically, colonizing the host legume yet contributing nothing to the partnership in terms of nitrogen fixation. Our findings indicate that cheating is possible in both of these frameworks, seemingly without damaging the stability of the mutualism itself. These results may potentially help explain observations suggesting that legume plants are commonly infected by multiple bacterial lineages during the nodulation process.


Subject(s)
Host-Parasite Interactions , Nitrogen Fixation , Phaseolus/microbiology , Rhizobium etli/physiology , Symbiosis , Mutation , Phaseolus/physiology , Rhizobium etli/genetics
11.
Plant Physiol Biochem ; 68: 81-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23644278

ABSTRACT

Flavonoids and isoflavonoids participate in the signaling exchange between roots of legumes and nitrogen-fixing rhizobia and can promote division of cortical cells during nodule formation by inhibiting auxin transport. Here, we report the characterization of a member of the common bean isoflavone reductase (EC 1.3.1.45, PvIFR1) gene family, an enzyme that participates in the last steps of the biosynthetic pathway of isoflavonoids. Transcript levels of PvIFR1 were detected preferentially in the susceptible zone of roots, augmented upon nitrogen starvation and in response to Rhizobium etli inoculation at very early stages of the interaction. Knockdown of PvIFR1 mediated by RNA interference (RNAi) in common bean composite plants resulted in a reduction of shoot and root length. Furthermore, reduction of PvIFR1 mRNAs also affected growth of lateral roots after emergence, a stage in which auxins are required to establish a persistent meristem. Upon inoculation, the number of nodules formed by different strains of R. etli was significantly lower in IFR RNAi than in control roots. Transcript levels of two auxin-regulated genes are consistent with lower levels of auxin in PvIFR1 silenced roots. These results suggest a complex role of PvIFR1 during plant growth, root development and symbiosis, all processes in which auxin transport is involved.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors/genetics , Phaseolus/physiology , Root Nodules, Plant/growth & development , Root Nodules, Plant/genetics , Root Nodules, Plant/microbiology , Amino Acid Sequence , Gene Expression Regulation, Plant , Gene Knockdown Techniques , Indoleacetic Acids/metabolism , Molecular Sequence Data , Multigene Family , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Phaseolus/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Plants, Genetically Modified , RNA Interference , Rhizobium etli/physiology , Symbiosis/physiology
12.
BMC Microbiol ; 12: 207, 2012 Sep 17.
Article in English | MEDLINE | ID: mdl-22985230

ABSTRACT

BACKGROUND: The compatible solute trehalose is involved in the osmostress response of Rhizobium etli, the microsymbiont of Phaseolus vulgaris. In this work, we reconstructed trehalose metabolism in R. etli, and investigated its role in cellular adaptation and survival to heat and desiccation stress under free living conditions. RESULTS: Besides trehalose as major compatible solute, R. etli CE3 also accumulated glutamate and, if present in the medium, mannitol. Putative genes for trehalose synthesis (otsAB/treS/treZY), uptake (aglEFGK/thuEFGK) and degradation (thuAB/treC) were scattered among the chromosome and plasmids p42a, p42c, p42e, and p42f, and in some instances found redundant. Two copies of the otsA gene, encoding trehalose-6-P-synthase, were located in the chromosome (otsAch) and plasmid p42a (otsAa), and the latter seemed to be acquired by horizontal transfer. High temperature alone did not influence growth of R. etli, but a combination of high temperature and osmotic stress was more deleterious for growth than osmotic stress alone. Although high temperature induced some trehalose synthesis by R. etli, trehalose biosynthesis was mainly triggered by osmotic stress. However, an otsAch mutant, unable to synthesize trehalose in minimal medium, showed impaired growth at high temperature, suggesting that trehalose plays a role in thermoprotection of R. etli. Desiccation tolerance by R. etli wild type cells was dependent of high trehalose production by osmotic pre-conditioned cells. Cells of the mutant strain otsAch showed ca. 3-fold lower survival levels than the wild type strain after drying, and a null viability after 4 days storage. CONCLUSIONS: Our findings suggest a beneficial effect of osmotic stress in R. etli tolerance to desiccation, and an important role of trehalose on the response of R. etli to high temperature and desiccation stress.


Subject(s)
Desiccation , Rhizobium etli/physiology , Stress, Physiological , Trehalose/metabolism , Chromosomes, Bacterial , Gene Expression Regulation, Bacterial , Hot Temperature , Metabolic Networks and Pathways/genetics , Osmotic Pressure , Phaseolus/microbiology , Plasmids , Rhizobium etli/genetics , Rhizobium etli/metabolism , Rhizobium etli/radiation effects , Soil Microbiology
13.
BMC Syst Biol ; 5: 120, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21801415

ABSTRACT

BACKGROUND: Bacterial nitrogen fixation is the biological process by which atmospheric nitrogen is uptaken by bacteroids located in plant root nodules and converted into ammonium through the enzymatic activity of nitrogenase. In practice, this biological process serves as a natural form of fertilization and its optimization has significant implications in sustainable agricultural programs. Currently, the advent of high-throughput technology supplies with valuable data that contribute to understanding the metabolic activity during bacterial nitrogen fixation. This undertaking is not trivial, and the development of computational methods useful in accomplishing an integrative, descriptive and predictive framework is a crucial issue to decoding the principles that regulated the metabolic activity of this biological process. RESULTS: In this work we present a systems biology description of the metabolic activity in bacterial nitrogen fixation. This was accomplished by an integrative analysis involving high-throughput data and constraint-based modeling to characterize the metabolic activity in Rhizobium etli bacteroids located at the root nodules of Phaseolus vulgaris (bean plant). Proteome and transcriptome technologies led us to identify 415 proteins and 689 up-regulated genes that orchestrate this biological process. Taking into account these data, we: 1) extended the metabolic reconstruction reported for R. etli; 2) simulated the metabolic activity during symbiotic nitrogen fixation; and 3) evaluated the in silico results in terms of bacteria phenotype. Notably, constraint-based modeling simulated nitrogen fixation activity in such a way that 76.83% of the enzymes and 69.48% of the genes were experimentally justified. Finally, to further assess the predictive scope of the computational model, gene deletion analysis was carried out on nine metabolic enzymes. Our model concluded that an altered metabolic activity on these enzymes induced different effects in nitrogen fixation, all of these in qualitative agreement with observations made in R. etli and other Rhizobiaceas. CONCLUSIONS: In this work we present a genome scale study of the metabolic activity in bacterial nitrogen fixation. This approach leads us to construct a computational model that serves as a guide for 1) integrating high-throughput data, 2) describing and predicting metabolic activity, and 3) designing experiments to explore the genotype-phenotype relationship in bacterial nitrogen fixation.


Subject(s)
Metabolic Networks and Pathways/physiology , Models, Biological , Nitrogen Fixation/physiology , Phaseolus/microbiology , Rhizobium etli/physiology , Root Nodules, Plant/microbiology , Systems Biology/methods , Gene Expression Regulation, Bacterial/genetics , Gene Expression Regulation, Bacterial/physiology , Mass Spectrometry , Metabolic Networks and Pathways/genetics , Microarray Analysis , Nitrogen Fixation/genetics , Proteomics/methods , Rhizobium etli/genetics , Rhizobium etli/metabolism
14.
Mol Plant Microbe Interact ; 24(12): 1553-61, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21809980

ABSTRACT

Rhizobium etli occurs either in a nitrogen-fixing symbiosis with its host plant, Phaseolus vulgaris, or free-living in the soil. During both conditions, the bacterium has been suggested to reside primarily in a nongrowing state. Using genome-wide transcriptome profiles, we here examine the molecular basis of the physiological adaptations of rhizobia to nongrowth inside and outside of the host. Compared with exponentially growing cells, we found an extensive overlap of downregulated growth-associated genes during both symbiosis and stationary phase, confirming the essentially nongrowing state of nitrogen-fixing bacteroids in determinate nodules that are not terminally differentiated. In contrast, the overlap of upregulated genes was limited. Generally, actively growing cells have hitherto been used as reference to analyze symbiosis-specific expression. However, this prevents the distinction between differential expression arising specifically from adaptation to a symbiotic lifestyle and features associated with nongrowth in general. Using stationary phase as the reference condition, we report a distinct transcriptome profile for bacteroids, containing 203 induced and 354 repressed genes. Certain previously described symbiosis-specific characteristics, such as the downregulation of amino acid metabolism genes, were no longer observed, indicating that these features are more likely due to the nongrowing state of bacteroids rather than representing bacteroid-specific physiological adaptations.


Subject(s)
Gene Expression Regulation, Bacterial/genetics , Nitrogen Fixation/genetics , Phaseolus/physiology , Rhizobium etli/genetics , Symbiosis/genetics , Transcriptome/genetics , Down-Regulation , Gene Expression Profiling , Genes, Bacterial/genetics , Oligonucleotide Array Sequence Analysis , Phaseolus/microbiology , Rhizobium etli/growth & development , Rhizobium etli/physiology , Up-Regulation
16.
Plant Cell ; 22(12): 4142-57, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21139064

ABSTRACT

Legume plants are able to interact symbiotically with soil bacteria to form nitrogen-fixing root nodules. Although specific recognition between rhizobia and legume species has been extensively characterized, plant molecular determinants that govern the preferential colonization by different strains within a single rhizobium species have received little attention. We found that the C subunit of the heterotrimeric nuclear factor NF-Y from common bean (Phaseolus vulgaris) NF-YC1 plays a key role in the improved nodulation seen by more efficient strains of rhizobia. Reduction of NF-YC1 transcript levels by RNA interference (RNAi) in Agrobacterium rhizogenes-induced hairy roots leads to the arrest of nodule development and defects in the infection process with either high or low efficiency strains. Induction of three G2/M transition cell cycle genes in response to rhizobia was impaired or attenuated in NF-YC1 RNAi roots, suggesting that this transcription factor might promote nodule development by activating cortical cell divisions. Furthermore, overexpression of this gene has a positive impact on nodulation efficiency and selection of Rhizobium etli strains that are naturally less efficient and bad competitors. Our findings suggest that this transcription factor might be part of a mechanism that links nodule organogenesis with an early molecular dialogue that selectively discriminates between high- and low-quality symbiotic partners, which holds important implications for optimizing legume performance.


Subject(s)
CCAAT-Binding Factor/physiology , Phaseolus/physiology , Rhizobium etli/physiology , Symbiosis/physiology , CCAAT-Binding Factor/genetics , CCAAT-Binding Factor/metabolism , Cell Nucleus/metabolism , Gene Expression Profiling , Genes, Plant , Phaseolus/genetics , Plant Roots/metabolism , Plant Roots/microbiology , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction
17.
Arch Microbiol ; 192(7): 595-602, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20502878

ABSTRACT

In this communication we reported the study of a cation channel present in the cytoplasmic membrane of the nitrogen fixing bacterium Rhizobium etli. Inner-membrane (IM) vesicles were purified and fused into planar lipid bilayers (PLBs), under voltage clamp conditions. We have found that fusion of IM-enriched vesicle fractions with these model membranes leads, mainly (>30% of 46 experiments), to the reconstitution of high-conductance channels. Following this strategy, the activity of a channel with main open conductance of 198 pS, in symmetrical 100 mM KCl, was recorded. The single-channel conductance increase to 653 pS in the presence of a 5:1 (cis to trans) gradient of KCl. The channel exhibits voltage dependency and a weak selectivity for cations showing a permeability ratios of P (Rb)/P (K) = 0.96, P (Na)/P (K) = 0.07, and a conductance ratio of gamma(Rb)/gamma(K) = 1.1. The channel here characterized represents a previously undescribed Rhizobium channel although its precise role in rhizobial physiology remains yet to be determined.


Subject(s)
Bacterial Proteins/metabolism , Ion Channels/metabolism , Rhizobium etli/physiology , Cations/metabolism , Cell Membrane/metabolism , Lipid Bilayers/metabolism , Rhizobium etli/metabolism , Soil Microbiology
18.
Appl Environ Microbiol ; 76(13): 4510-20, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20453139

ABSTRACT

The NifA-RpoN complex is a master regulator of the nitrogen fixation genes in alphaproteobacteria. Based on the complete Rhizobium etli genome sequence, we constructed an R. etli CFN42 oligonucleotide (70-mer) microarray and utilized this tool, reverse transcription (RT)-PCR analysis (transcriptomics), proteomics, and bioinformatics to decipher the NifA-RpoN regulon under microaerobic conditions (free life) and in symbiosis with bean plants. The R. etli NifA-RpoN regulon was determined to contain 78 genes, including the genes involved in nitrogen fixation, and the analyses revealed 42 new NifA-RpoN-dependent genes. More importantly, this study demonstrated that the NifA-RpoN regulon is composed of genes and proteins that have very diverse functions, that play fundamental and previously less appreciated roles in regulating the normal physiology of the cell, and that have important functions in providing adequate conditions for efficient nitrogen fixation in symbiosis. The R. etli NifA-RpoN regulon defined here has some components in common with other NifA-RpoN regulons described previously, but the vast majority of the components have been found only in the R. etli regulon, suggesting that they have a specific role in this bacterium and particular requirements during nitrogen fixation compared with other symbiotic bacterial models.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Phaseolus/microbiology , RNA Polymerase Sigma 54 , Regulon , Rhizobium etli , Symbiosis , Transcription Factors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Computational Biology , Gene Expression Profiling , Molecular Sequence Data , Mutation , Nitrogen Fixation/genetics , Oligonucleotide Array Sequence Analysis , Proteomics , RNA Polymerase Sigma 54/genetics , RNA Polymerase Sigma 54/metabolism , Rhizobium etli/genetics , Rhizobium etli/growth & development , Rhizobium etli/metabolism , Rhizobium etli/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Appl Environ Microbiol ; 76(5): 1604-14, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20048063

ABSTRACT

Strains of the same bacterial species often show considerable genomic variation. To examine the extent of such variation in Rhizobium etli, the complete genome sequence of R. etli CIAT652 and the partial genomic sequences of six additional R. etli strains having different geographical origins were determined. The sequences were compared with each other and with the previously reported genome sequence of R. etli CFN42. DNA sequences common to all strains constituted the greater part of these genomes and were localized in both the chromosome and large plasmids. About 700 to 1,000 kb of DNA that did not match sequences of the complete genomes of strains CIAT652 and CFN42 was unique to each R. etli strain. These sequences were distributed throughout the chromosome as individual genes or chromosomal islands and in plasmids, and they encoded accessory functions, such as transport of sugars and amino acids, or secondary metabolism; they also included mobile elements and hypothetical genes. Sequences corresponding to symbiotic plasmids showed high levels of nucleotide identity (about 98 to 99%), whereas chromosomal sequences and the sequences with matches to other plasmids showed lower levels of identity (on average, about 90 to 95%). We concluded that R. etli has a pangenomic structure with a core genome composed of both chromosomal and plasmid sequences, including a highly conserved symbiotic plasmid, despite the overall genomic divergence.


Subject(s)
DNA, Bacterial/genetics , Genome, Bacterial , Plasmids , Rhizobium etli/genetics , Cluster Analysis , Conserved Sequence , DNA, Bacterial/chemistry , Genomic Islands , Molecular Sequence Data , Phylogeny , Rhizobium etli/physiology , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
20.
J Bacteriol ; 191(13): 4122-32, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19376852

ABSTRACT

The aims of this study were to functionally characterize and analyze the transcriptional regulation and transcriptome of the Rhizobium etli rpoE4 gene. An R. etli rpoE4 mutant was sensitive to oxidative, saline, and osmotic stresses. Using transcriptional fusions, we determined that RpoE4 controls its own transcription and that it is negatively regulated by rseF (regulator of sigma rpoE4; CH03274), which is cotranscribed with rpoE4. rpoE4 expression was induced not only after oxidative, saline, and osmotic shocks, but also under microaerobic and stationary-phase growth conditions. The transcriptome analyses of an rpoE4 mutant and an rpoE4-overexpressing strain revealed that the RpoE4 extracytoplasmic function sigma factor regulates about 98 genes; 50 of them have the rpoE4 promoter motifs in the upstream regulatory regions. Interestingly, 16 of 38 genes upregulated in the rpoE4-overexpressing strain encode unknown putative cell envelope proteins. Other genes controlled by RpoE4 include rpoH2, CH00462, CH02434, CH03474, and xthA1, which encode proteins involved in the stress response (a heat shock sigma factor, a putative Mn-catalase, an alkylation DNA repair protein, pyridoxine phosphate oxidase, and exonuclease III, respectively), as well as several genes, such as CH01253, CH03555, and PF00247, encoding putative proteins involved in cell envelope biogenesis (a putative peptidoglycan binding protein, a cell wall degradation protein, and phospholipase D, respectively). These results suggest that rpoE4 has a relevant function in cell envelope biogenesis and that it plays a role as a general regulator in the responses to several kinds of stress.


Subject(s)
Bacterial Proteins/physiology , Osmotic Pressure/physiology , Oxidative Stress/genetics , Rhizobium etli/physiology , Sigma Factor/physiology , Bacterial Proteins/genetics , Base Sequence , Fabaceae/microbiology , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Oxidative Stress/physiology , Phenotype , Reverse Transcriptase Polymerase Chain Reaction , Rhizobium etli/genetics , Rhizobium etli/growth & development , Rhizobium etli/metabolism , Sequence Homology, Nucleic Acid , Sigma Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...