Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Gene ; 917: 148467, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38615983

ABSTRACT

Rhodiola crenulata, a plant of great medicinal value found in cold high-altitude regions, has been excessively exploited due to the difficulty in cultivation. Understanding Rhodiola crenulata's adaptation mechanisms to cold environment can provide a theoretical basis for artificial breeding. Glutathione peroxidases (GPXs), critical enzymes found in plants, play essential roles in antioxidant defense through the ascorbate-glutathione cycle. However, it is unknown whether GPX5 contributes to Rhodiola crenulata's cold tolerance. In this study, we investigated the role of GPX5 in Rhodiola crenulata's cold tolerance mechanisms. By overexpressing Rhodiola crenulata GPX5 (RcGPX5) in yeast and Arabidopsis thaliana, we observed down-regulation of Arabidopsis thaliana GPX5 (AtGPX5) and increased cold tolerance in both organisms. Furthermore, the levels of antioxidants and enzyme activities in the ascorbate-glutathione cycle were elevated, and cold-responsive genes such as AtCBFs and AtCORs were induced. Additionally, RcGPX5 overexpressing lines showed insensitivity to exogenous abscisic acid (ABA), suggesting a negative regulation of the ABA pathway by RcGPX5. RcGPX5 also promoted the expression of several thioredoxin genes in Arabidopsis and interacted with two endogenous genes of Rhodiola crenulata, RcTrx2-3 and RcTrxo1, located in mitochondria and chloroplasts. These findings suggest a significantly different model in Rhodiola crenulata compared to Arabidopsis thaliana, highlighting a complex network involving the function of RcGPX5. Moreover, overexpressing RcGPX5 in Rhodiola crenulata hairy roots positively influenced the salidroside synthesis pathway, enhancing its pharmaceutical value for doxorubicin-induced cardiotoxicity. These results suggested that RcGPX5 might be a key component for Rhodiola crenulata to adapt to cold stress and overexpressing RcGPX5 could enhance the pharmaceutical value of the hairy roots.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Glutathione Peroxidase , Plant Roots , Rhodiola , Rhodiola/genetics , Rhodiola/metabolism , Arabidopsis/genetics , Plant Roots/genetics , Plant Roots/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Plants, Genetically Modified/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Cold Temperature , Antioxidants/metabolism , Abscisic Acid/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Adaptation, Physiological/genetics
2.
Metab Eng ; 82: 274-285, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38428730

ABSTRACT

Rosavin is the characteristic component of Rhodiola rosea L., an important medicinal plant used widely in the world that has been reported to possess multiple biological activities. However, the endangered status of wild Rhodiola has limited the supply of rosavin. In this work, we successfully engineered an Escherichia coli strain to efficiently produce rosavin as an alternative production method. Firstly, cinnamate: CoA ligase from Hypericum calycinum, cinnamoyl-CoA reductase from Lolium perenne, and uridine diphosphate (UDP)-glycosyltransferase (UGT) from Bacillus subtilis (Bs-YjiC) were selected to improve the titer of rosin in E. coli. Subsequently, four UGTs from the UGT91R subfamily were identified to catalyze the formation of rosavin from rosin, with SlUGT91R1 from Solanum lycopersicum showing the highest activity level. Secondly, production of rosavin was achieved for the first time in E. coli by incorporating the SlUGT91R1 and UDP-arabinose pathway, including UDP-glucose dehydrogenase, UDP-xylose synthase, and UDP-xylose 4-epimerase, into the rosin-producing stain, and the titer reached 430.5 ± 91.4 mg/L. Thirdly, a two-step pathway derived from L-arabinose, composed of L-arabinokinase and UDP-sugar pyrophosphorylase, was developed in E. coli to further optimize the supply of the precursor UDP-arabinose. Furthermore, 1203.7 ± 32.1 mg/L of rosavin was produced from D-glucose and L-arabinose using shake-flask fermentation. Finally, the production of rosavin reached 7539.1 ± 228.7 mg/L by fed-batch fermentation in a 5-L bioreactor. Thus, the microbe-based production of rosavin shows great potential for commercialization. This work provides an effective strategy for the biosynthesis of other valuable natural products with arabinose-containing units from D-glucose and L-arabinose.


Subject(s)
Disaccharides , Glucose , Rhodiola , Glucose/genetics , Glucose/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Arabinose/metabolism , Rhodiola/genetics , Rhodiola/metabolism , Xylose/metabolism
3.
Plant J ; 117(2): 464-482, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37872890

ABSTRACT

Rhodiola L. is a genus that has undergone rapid radiation in the mid-Miocene and may represent a typic case of adaptive radiation. Many species of Rhodiola have also been widely used as an important adaptogen in traditional medicines for centuries. However, a lack of high-quality chromosome-level genomes hinders in-depth study of its evolution and biosynthetic pathway of secondary metabolites. Here, we assembled two chromosome-level genomes for two Rhodiola species with different chromosome number and sexual system. The assembled genome size of R. chrysanthemifolia (2n = 14; hermaphrodite) and R. kirilowii (2n = 22; dioecious) were of 402.67 and 653.62 Mb, respectively, with approximately 57.60% and 69.22% of transposable elements (TEs). The size difference between the two genomes was mostly due to proliferation of long terminal repeat-retrotransposons (LTR-RTs) in the R. kirilowii genome. Comparative genomic analysis revealed possible gene families responsible for high-altitude adaptation of Rhodiola, including a homolog of plant cysteine oxidase 2 gene of Arabidopsis thaliana (AtPCO2), which is part of the core molecular reaction to hypoxia and contributes to the stability of Group VII ethylene response factors (ERF-VII). We found extensive chromosome fusion/fission events and structural variations between the two genomes, which might have facilitated the initial rapid radiation of Rhodiola. We also identified candidate genes in the biosynthetic pathway of salidroside. Overall, our results provide important insights into genome evolution in plant rapid radiations, and possible roles of chromosome fusion/fission and structure variation played in rapid speciation.


Subject(s)
Glucosides , Phenols , Rhodiola , Rhodiola/genetics , Rhodiola/metabolism , Biosynthetic Pathways , Genome Size , Chromosomes , Evolution, Molecular
4.
Int J Mol Sci ; 24(20)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37894905

ABSTRACT

Rhodiola rosea L. is a vulnerable species in the Altai Republic (AR) and Russia in general. For the first time on the territory of AR, studies of the adaptive capabilities of the species and genetic differentiation using ISSR markers were carried out in seven cenopopulations (CP) of R. rosea in 2018 and 2020. The research was founded on the notion of conducting a comparative analysis of the morphogenetic structure of Rhodiola rosea populations in various ecological and geographical conditions of AR. The aim of this work is to evaluate the variability of morphometric traits of sexually mature living female R. rosea plants and to conduct a comparative analysis of genetic variability in cenopopulations (CP) both under undisturbed conditions and under stressful conditions of anthropogenic impact (grazing). Of the 8 primers used, HB12 turned out to be the most informative. The percentage of polymorphic loci in the populations between 0 and 88%. Two populations, located in favorable conditions at relatively low absolute altitudes (2000 m above sea level) (masl) in the undisturbed habitats of the Katun and Altai reserves of AR, were characterized by higher polymorphism. The share of polymorphic loci reached 80%. According to the analysis of statistical data, the highest values of morphometric parameters of the aerial parts of R. rosea plants and the highest potential seed productivity were also recorded in these habitats. Representatives of two high-mountain CPs (2400-2500 masl) in the Sailyugemsky National Park (SNP) were characterized by the lowest genetic polymorphism. Their genetic structure is the most homogeneous, since we have not found polymorphic loci. Due to spatial isolation, these individuals are reliably genetically differentiated. In addition, individuals of one type were subjected to stressful anthropogenic impact (grazing). Therefore, the smallest sizes and lowest potential seed productivity were recorded. Our research shows that alpine populations of R. rosea in AR, under conditions of anthropogenic stress, need protection for their gene pool.


Subject(s)
Crassulaceae , Rhodiola , Humans , Rhodiola/genetics , Rhodiola/chemistry , Polymorphism, Genetic , Russia , Genetic Markers , Plant Extracts
5.
Mol Phylogenet Evol ; 186: 107863, 2023 09.
Article in English | MEDLINE | ID: mdl-37329933

ABSTRACT

The Tibetan Plateau and adjacent mountain regions (TP; including the Tibetan Plateau, Himalaya, Hengduan Mountains and Mountains of Central Asia) harbor great biodiversity, some lineages on which may have undergone rapid radiations. However, only a few studies have investigated the evolutionary pattern of such diversification in depth using genomic data. In this study, we reconstructed a robust phylogeny backbone of Rhodiola, a lineage that may have undergone rapid radiation in the TP, using Genotyping-by-sequencing data, and conducted a series of gene flow and diversification analyses. The concatenation and coalescent-based methods yield similar tree topologies, and five well-supported clades were revealed. Potential gene flow and introgression events were detected, both between species from different major clades and closely related species, suggesting pervasive hybridization and introgression. An initial rapid and later slowdown of the diversification rate was revealed, indicating niche filling. Molecular dating and correlation analyses showed that the uplift of TP and global cooling in the mid-Miocene might have played an important role in promoting the rapid radiation of Rhodiola. Our work demonstrates that gene flow and introgression might be an important contributor to rapid radiation possibly by quickly reassembling old genetic variation into new combinations.


Subject(s)
Crassulaceae , Rhodiola , Phylogeny , Rhodiola/genetics , Crassulaceae/genetics , Genomics , Biodiversity
6.
Genes (Basel) ; 14(4)2023 03 25.
Article in English | MEDLINE | ID: mdl-37107552

ABSTRACT

Representatives of the Crassulaceae family's genus Rhodiola are succulents, making them distinctive in a changing environment. One of the most significant tools for analyzing plant resources, including numerous genetic processes in wild populations, is the analysis of molecular genetic polymorphism. This work aimed to look at the polymorphisms of allelic variations of the superoxide dismutase (SOD) and auxin response factor (ARF) gene families, as well as the genetic diversity of five Rhodiola species, using the retrotransposons-based fingerprinting approach. The multi-locus exon-primed intron-crossing (EPIC-PCR) profiling approach was used to examine allelic variations in the SOD and ARF gene families. We implemented the inter-primer binding site (iPBS) PCR amplification technique for genome profiling, which demonstrated a significant level of polymorphism in the Rhodiola samples studied. Natural populations of Rhodiola species have a great capacity for adaptation to unfavorable environmental influences. The genetic variety of wild populations of Rhodiola species leads to their improved tolerance of opposing environmental circumstances and species evolutionary divergence based on the diversity of reproductive systems.


Subject(s)
Crassulaceae , Rhodiola , Rhodiola/genetics , Genetic Variation/genetics , Phylogeny , Polymorphism, Genetic , Crassulaceae/genetics
7.
BMC Plant Biol ; 23(1): 156, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36944988

ABSTRACT

BACKGROUND: Plant organelle genomes are a valuable resource for evolutionary biology research, yet their genome architectures, evolutionary patterns and environmental adaptations are poorly understood in many lineages. Rhodiola species is a type of flora mainly distributed in highland habitats, with high medicinal value. Here, we assembled the organelle genomes of three Rhodiola species (R. wallichiana, R. crenulata and R. sacra) collected from the Qinghai-Tibet plateau (QTP), and compared their genome structure, gene content, structural rearrangements, sequence transfer and sequence evolution rates. RESULTS: The results demonstrated the contrasting evolutionary pattern between plastomes and mitogenomes in three Rhodiola species, with the former possessing more conserved genome structure but faster evolutionary rates of sequence, while the latter exhibiting structural diversity but slower rates of sequence evolution. Some lineage-specific features were observed in Rhodiola mitogenomes, including chromosome fission, gene loss and structural rearrangement. Repeat element analysis shows that the repeats occurring between the two chromosomes may mediate the formation of multichromosomal structure in the mitogenomes of Rhodiola, and this multichromosomal structure may have recently formed. The identification of homologous sequences between plastomes and mitogenomes reveals several unidirectional protein-coding gene transfer events from chloroplasts to mitochondria. Moreover, we found that their organelle genomes contained multiple fragments of nuclear transposable elements (TEs) and exhibited different preferences for TEs insertion type. Genome-wide scans of positive selection identified one gene matR from the mitogenome. Since the matR is crucial for plant growth and development, as well as for respiration and stress responses, our findings suggest that matR may participate in the adaptive response of Rhodiola species to environmental stress of QTP. CONCLUSION: The study analyzed the organelle genomes of three Rhodiola species and demonstrated the contrasting evolutionary pattern between plastomes and mitogenomes. Signals of positive selection were detected in the matR gene of Rhodiola mitogenomes, suggesting the potential role of this gene in Rhodiola adaptation to QTP. Together, the study is expected to enrich the genomic resources and provide valuable insights into the structural dynamics and sequence divergences of Rhodiola species.


Subject(s)
Genome, Mitochondrial , Genome, Plastid , Rhodiola , Rhodiola/genetics , Phylogeny , Tibet , Mitochondria/genetics , Genome, Mitochondrial/genetics , Evolution, Molecular
8.
Life Sci ; 308: 120949, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36096243

ABSTRACT

AIMS: Rhodiola was found to be a potential treatment for nonalcoholic fatty liver disease (NAFLD). The macrophage migration inhibitory factor (MIF)-regulated lipophagy and lipid metabolism might be the therapeutic targets of Rhodiola. MAIN METHODS: A 16-week high-fat diet (HFD) was used to simulate a NAFLD mouse model. Rhodiola extract or normal saline were administrated to mice. Blood was collected to assess blood glucose and insulin, and livers were harvested to assess lipid accumulation and metabolism. In cell experiments, the active ingredient of Rhodiola, salidroside, and recombinant MIF protein (rMIF) were used to treat palmitate (PA)-incubated HepG2 cells, with MIF-siRNA or NC-siRNA transfection. Then, the level of lipophagy and lipid metabolism was examined. KEY FINDINGS: Rhodiola improved lipid accumulation and metabolism disorder of HFD mice. The oil red O staining of the liver showed that increased lipid droplets in the NAFLD liver could be relieved by Rhodiola; Rhodiola also alleviated the increasing body weight, liver weight, and HOMA-IR index of HFD mice. Results in cell experiments were consistent: salidroside relieved the lipid droplet accumulation and triglyceride release in PA cells, as well as reduced lipophagosome and lipid metabolism disorder in PA cells. However, all these effects of salidroside were partially blocked by MIF-siRNA transfection. SIGNIFICANCE: Rhodiola reduces lipid accumulation in the liver of NAFLD by facilitating the MIF pathway and the downstream lipophagy and lipid metabolism. MIF may be an endogenous regulator of liver lipophagy and lipid metabolism and a potential therapeutic target for NAFLD.


Subject(s)
Macrophage Migration-Inhibitory Factors , Non-alcoholic Fatty Liver Disease , Rhodiola , Animals , Blood Glucose/metabolism , Diet, High-Fat , Glucosides , Insulin/metabolism , Lipid Metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Palmitates/pharmacology , Phenols , Plant Extracts/therapeutic use , RNA, Small Interfering/pharmacology , Rhodiola/genetics , Rhodiola/metabolism , Saline Solution/metabolism , Saline Solution/pharmacology , Saline Solution/therapeutic use , Triglycerides/metabolism
9.
BMC Genomics ; 23(1): 577, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35953771

ABSTRACT

BACKGROUND: As a valuable medicinal plant, Rhodiola has a very long history of folk medicine used as an important adaptogen, tonic, and hemostatic. However, our knowledge of the chloroplast genome level of Rhodiola is limited. This drawback has limited studies on the identification, evolution, genetic diversity and other relevant studies on Rhodiola. RESULTS: Six Rhodiola complete chloroplast genomes were determined and compared to another Rhodiola cp genome at the genome scale. The results revealed a cp genome with a typical quadripartite and circular structure that ranged in size from 150,771 to 151,891 base pairs. High similarity of genome organization, gene number, gene order, and GC content were found among the chloroplast genomes of Rhodiola. 186 (R. wallichiana) to 200 (R. gelida) SSRs and 144 pairs of repeats were detected in the 6 Rhodiola cp genomes. Thirteen mutational hotspots for genome divergence were determined and could be used as candidate markers for phylogenetic analyses and Rhodiola species identification. The phylogenetic relationships inferred by members of Rhodiola cluster into two clades: dioecious and hermaphrodite. Our findings are helpful for understanding Rhodiola's taxonomic, phylogenetic, and evolutionary relationships. CONCLUSIONS: Comparative analysis of chloroplast genomes of Rhodiola facilitates medicinal resource conservation, phylogenetic reconstruction and biogeographical research of Rhodiola.


Subject(s)
Genome, Chloroplast , Rhodiola , Base Composition , Genetic Markers , Phylogeny , Rhodiola/genetics
10.
Gene ; 836: 146672, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35714804

ABSTRACT

Rhodiola imbricata (Crassulaceae) is a traditional trans-Himalayan endangered medicinal herb with immense therapeutic applications. Over the years, over-exploitation, un-managed harvesting, and lack of captive cultivation procedures persuaded threat to its wild habitat. Plant tissue culture and RNA-Seq-based molecular bioprospection of key regulatory genes aid the understanding of molecular dynamics involved in specialized metabolites (phenylethanoids and phenylpropanoids) biosynthesis and its sustainable production. Hence, comparative transcriptomic analysis was performed using leaf and root tissues from the wild and tissue-cultured plants, revealing tissue-specific production of salidroside and rosavin. The transcriptome profiling resulted in 345 million high-quality reads yielding 92,380 unique transcripts with an N50 of 1260 bp. Tissue-specific gene expression analysis revealed that both phenylethanoids and phenylpropanoids biosynthesis are predominantly associated with the shikimate pathway. In addition to RNA-Seq data, the downstream biosynthesis pathways genes viz., phospho-2-dehydro-3-deoxyheptonate aldolase (DAHPS), 3-dehydroquinate synthase (DHQS), shikimate kinase (SK), chorismate mutase (CM), arogenate dehydrogenase (TYRAAT), aromatic-L-amino-acid decarboxylase (TDC), phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4-CL), cinnamoyl-CoA reductase (CCR), and cinnamyl alcohol dehydrogenase (CAD) showed higher expression pattern in wild plant tissues compared to tissue-cultured plants. The transcript fold expression determined by RT-qPCR results followed similar patterns as those observed in RNA-seq and targeted metabolite profiling data. Salidroside and rosavin content in wild plants exhibited 2.40 fold and 1.77 fold increase accumulation compared to the tissue-cultured plant. The present investigation explained the tissue and condition-specific significant differences between the expression of proposed biosynthetic pathway genes and salidroside and rosavin content. Additionally, NAC, bHLH, and ARF were the most abundant transcription factor families found in the transcriptomic analysis of R. imbricata. The generated transcriptome dataset provides a valuable gene(s)/transcription factors hub that can be used for the sustainable production of salidroside and rosavin in R. imbricata under tissue culture conditions.


Subject(s)
Rhodiola , Gene Expression Profiling , Phenylalanine Ammonia-Lyase/genetics , Plant Leaves/genetics , Rhodiola/genetics , Rhodiola/metabolism , Transcriptome/genetics
11.
Ann Bot ; 129(2): 185-200, 2022 01 28.
Article in English | MEDLINE | ID: mdl-34718397

ABSTRACT

BACKGROUND AND AIMS: Many plant taxa in the Qinghai-Tibetan Plateau (QTP) and the Hengduan Mountains (HM) radiated rapidly during the Quaternary but with frequent secondary contact between diverging populations. Incomplete lineage sorting and introgressive hybridization might be involved during the rapid radiation, but their effects on phylogeography have not been fully determined. METHODS: We investigated the chloroplast DNA (cpDNA)/internal transcribed spacer (ITS) sequence variations of 611 samples of Rhodiola bupleuroides, R. discolor, R. fastigiata and R. chrysanthemifolia from the QTP and HM to compare the phylogeographic patterns between the four species with different evolutionary histories, geographic ranges and reproductive modes. KEY RESULTS: The divergence times of these species were consistent with the last peak of in situ speciation in the HM. While closely related species exhibited different phylogeographic patterns, they shared several ribotypes and haplotypes in sympatric populations, suggesting introgressive hybridization. A significant phylogenetic discordance between ribotypes and haplotypes was detected in three species, implying incomplete lineage sorting. Rhodiola discolor houses an extraordinary richness of cpDNA haplotypes, and this finding may be attributed to adaptive radiation. CONCLUSION: In addition to geographic isolation and climate oscillations during the Quaternary, both introgressive hybridization and incomplete lineage sorting play important roles in species that experienced rapid diversification in the QTP and HM.


Subject(s)
Rhodiola , DNA, Chloroplast/genetics , Genetic Variation , Haplotypes/genetics , Phylogeny , Phylogeography , Rhodiola/genetics , Sequence Analysis, DNA
12.
J Sci Food Agric ; 100(12): 4483-4494, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32399987

ABSTRACT

BACKGROUND: The contents of some its crucial metabolites tend to decrease when Rhodiola crenulata is cultured at low altitude. Interestingly, it was found that an endophyte, Phialocephala fortinii, could alleviate this problem. RESULTS: There were 16 151 differential genes including 14 706 up-regulated and 1445 down-regulated unigenes with significant differences (P < 0.05), and a total of 1432 metabolites exhibited statistically significant (P < 0.05) metabolic differences comprising 27 different marker metabolites which showed highly significant values of VIP > 5 and P < 0.01. Results highlight differential regulation of 20 enzymatic genes that are involved in the biosynthesis of five different marker metabolites including acetaldehyde, homocysteine, cyclopropylamine, 1-pyrrolinium and halistanol sulfate. CONCLUSIONS: The positive physiological effect of P. fortinii on R. crenulata encompasses differential regulation in carbohydrate metabolism, lipid metabolism and secondary metabolite synthesis. © 2020 Society of Chemical Industry.


Subject(s)
Ascomycota/physiology , Endophytes/physiology , Plant Proteins/genetics , Rhodiola/microbiology , Ascomycota/genetics , Biosynthetic Pathways , Cyclopropanes/metabolism , Endophytes/genetics , Homocysteine/metabolism , Plant Proteins/metabolism , Rhodiola/chemistry , Rhodiola/enzymology , Rhodiola/genetics , Transcriptome
13.
Mol Phylogenet Evol ; 144: 106713, 2020 03.
Article in English | MEDLINE | ID: mdl-31863901

ABSTRACT

The amount of plastome sequence data available has soared in the last decade, but the nature of plastome evolution during rapid radiations is largely unknown. Moreover, although there is increasing evidence showing that plastomes may have undergone adaptive evolution in order to allow adaptation to various environments, few studies have systematically investigated the role of the plastome in alpine adaptation. To address these questions, we sequenced and analyzed 12 representative species of Rhodiola, a genus which includes ca. 70 perennial herbs mainly growing in alpine habitats in the Qinghai-Tibet Plateau and the Hengduan Mountains. Rapid radiation in this genus was triggered by the uplift of the Qinghai-Tibet Plateau. We also included nine species of Crassulaceae as the outgroups. All plastomes were conserved with respect to size, structure, and gene content and order, with few variations: each contained 134 genes, including 85 protein-coding genes, 37 tRNAs, 8 rRNAs, and 4 potential pseudogenes. Four types of repeat sequence were detected. Slight contraction and expansion of the inverted repeats were also revealed. Both the genome-wide alignment and sequence polymorphism analyses showed that the inverted repeats and coding regions were more conserved than the single-copy regions and the non-coding regions. Positive selection analyses identified three genes containing sites of positive selection (rpl16, ndhA, ndhH), and one gene with a faster than average rate of evolution (psaA). The products of these genes may be involved in the adaptation of Rhodiola to alpine environments such as low CO2 concentration and high-intensity light.


Subject(s)
Conserved Sequence/physiology , Evolution, Molecular , Genome, Plastid/genetics , Rhodiola/classification , Rhodiola/genetics , Base Sequence , Crassulaceae/classification , Crassulaceae/genetics , Ecosystem , Genetic Variation/physiology , Genome, Plant/physiology , Phylogeny , Polymorphism, Genetic , Repetitive Sequences, Nucleic Acid/genetics , Tibet
14.
Int J Biol Macromol ; 136: 847-858, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31226374

ABSTRACT

Roseroot (Rhodiola rosea L.) is a medicinal plant with adaptogenic properties and several pharmaceutically important metabolites. In this study, a full length cDNA encoding a UDPG gene of roseroot was identified, cloned and characterized. Its ORF (1425 bp) was transferred into E. coli, where the expression of the recombinant enzyme was confirmed. To monitor the enzyme activity, 3 precursors (tyramine, 4-hydroxyphenylpyruvate & tyrosol) of salidroside biosynthesis pathway were added to roseroot callus cultures and samples were harvested after 1, 6, 12, 24, 48 & 96 h. Along with the controls (without precursor feeding), each sample was subjected to HPLC and qRT-PCR for phytochemical and relative UDP-glycosyltransferase gene expression analysis, respectively. The HPLC analysis showed that the salidroside content significantly increased; reaching 0.5% of the callus dry weight (26-fold higher than the control) after 96 h when 2 mM tyrosol was given to the media. The expression of the UDP-glycosyltransferase increased significantly being the highest at 12 h after the feeding. The effect of tyramine and 4-hydroxyphenylpyruvate was not as pronounced as of tyrosol. Here, we introduce a R. rosea specific UDPG gene and its expression pattern after biotransformation of intermediate precursors in in vitro roseroot callus cultures.


Subject(s)
Gene Expression Regulation, Plant , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Rhodiola/enzymology , Rhodiola/genetics , Uridine Diphosphate/metabolism , Biotransformation , Culture Techniques , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/metabolism , Phylogeny , Rhodiola/growth & development
15.
Sci Rep ; 8(1): 5879, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29651147

ABSTRACT

Climate change profoundly influences species distributions. These effects are evident in poleward latitudinal range shifts for many taxa, and upward altitudinal range shifts for alpine species, that resulted from increased annual global temperatures since the Last Glacial Maximum (LGM, ca. 22,000 BP). For the latter, the ultimate consequence of upward shifts may be extinction as species in the highest alpine ecosystems can migrate no further, a phenomenon often characterized as "nowhere to go". To predict responses to climate change of the alpine plants on the Qinghai-Tibetan Plateau (QTP), we used ecological niche modelling (ENM) to estimate the range shifts of 14 Rhodiola species, beginning with the Last Interglacial (ca. 120,000-140,000 BP) through to 2050. Distributions of Rhodiola species appear to be shaped by temperature-related variables. The southeastern QTP, and especially the Hengduan Mountains, were the origin and center of distribution for Rhodiola, and also served as refugia during the LGM. Under future climate scenario in 2050, Rhodiola species might have to migrate upward and northward, but many species would expand their ranges contra the prediction of the "nowhere to go" hypothesis, caused by the appearance of additional potential habitat concomitant with the reduction of permafrost with climate warming.


Subject(s)
Climate Change , Ecosystem , Phylogeography , Rhodiola/genetics , Biological Evolution , DNA, Chloroplast/genetics , Genetics, Population , Haplotypes/genetics , Rhodiola/growth & development , Sequence Analysis, DNA , Temperature
16.
Mol Phylogenet Evol ; 121: 110-120, 2018 04.
Article in English | MEDLINE | ID: mdl-29309848

ABSTRACT

Quaternary climatic oscillations have had tremendous effects on current distribution of species. Previous studies unraveled multiple microrefugia on the Qinghai-Tibetan Plateau (QTP) in two woody plants. Still we know little whether herbs growing in forests responded to climatic oscillations similarly. We herein conducted a phylogeographic study on Rhodiola sect. Trifida, an herbaceous group endemic to the QTP, which mainly growing on the forest floors, using plastid and ITS sequences as well as ecological niche modeling. The origin and divergence of major clades of sect. Trifida were in accordance with the last phase of the QTP uplifts. Mismatch distribution analysis indicated a range expansion dated to ca. 135 thousand years ago. A high frequency and an even distribution of private haplotypes in both plastid and ITS data sets throughout the distribution of sect. Trifida were detected. The ecological niche modeling results showed that there were suitable habitats on the QTP platform during the LGM. Our results found that multiple microrefugia existed on the QTP platform, supporting the hypothesis that species with similar geographic distribution and inhabiting the same community had similar responses to the Quaternary climatic oscillations. Furthermore, species delimitations in sect. Trifida need to be tested based on integrative evidence from morphological, ecological and genetic data.


Subject(s)
Phylogeography , Refugium , Rhodiola/genetics , Trees/genetics , Base Sequence , Cell Nucleus/genetics , DNA, Chloroplast/genetics , Ecosystem , Genetic Variation , Genetics, Population , Haplotypes/genetics , Phylogeny , Ribotyping , Tibet
17.
J Pharm Biomed Anal ; 149: 403-409, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29154110

ABSTRACT

Siberian ginseng (Eleutherococcus senticosus, Araliaceae) and roseroot (Rhodiola rosea, Rosaceae) are popular herbal supplements which have been shown to improve resilience to conditions such as stress and exhaustion. Using DNA barcoding methods we tested 25 Siberian ginseng and 14 roseroot products which are widely available to UK customers to test whether the herbal ingredient stated on the label is also in the product. All Siberian ginseng supplements contained E. senticosus, however, 36% also contained an Eleutherococcus species other than E. senticosus. In three out of the 13 roseroot products which produced amplifiable DNA, we could only retrieve sequences matching alfalfa (declared on the product label) and fenugreek (not declared). In the other 10 supplements Rhodiola was detected but only five matched the target species R. rosea. As DNA can get severely degraded during the manufacturing process we did not take the absence of Rhodiola DNA as proof for a compromised product. Contamination could explain the presence of non-target species such as fenugreek but is unlikely to be account for the detection of congeneric Rhodiola species in roseroot preparations. Our results therefore suggest that the substitution or mixing of the target medicinal ingredient in these two popular supplements with other species is common.


Subject(s)
Dietary Supplements/analysis , Eleutherococcus/chemistry , Food Contamination/analysis , Food Labeling , Rhodiola/chemistry , DNA Barcoding, Taxonomic , Dietary Supplements/standards , Eleutherococcus/genetics , Medicago sativa/chemistry , Medicago sativa/genetics , Phylogeny , Rhodiola/genetics , Trigonella/chemistry , Trigonella/genetics , United Kingdom
18.
Mol Plant ; 11(1): 205-217, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29277428

ABSTRACT

Salidroside is a bioactive tyrosine-derived phenolic natural product found in medicinal plants under the Rhodiola genus. In addition to their anti-fatigue and anti-anoxia roles in traditional medicine, Rhodiola total extract and salidroside have also displayed medicinal properties as anti-cardiovascular diseases and anti-cancer agents. The resulting surge in global demand of Rhodiola plants and salidroside has driven some species close to extinction. Here, we report the full elucidation of the Rhodiola salidroside biosynthetic pathway utilizing the first comprehensive transcriptomics and metabolomics datasets for Rhodiola rosea. Unlike the previously proposed pathway involving separate decarboxylation and deamination enzymatic steps from tyrosine to the key intermediate 4-hydroxyphenylacetaldehyde (4-HPAA), Rhodiola contains a pyridoxal phosphate-dependent 4-HPAA synthase that directly converts tyrosine to 4-HPAA. We further identified genes encoding the subsequent 4-HPAA reductase and tyrosol:UDP-glucose 8-O-glucosyltransferase, respectively, to complete salidroside biosynthesis in Rhodiola. We show that heterologous production of salidroside can be achieved in the yeast Saccharomyces cerevisiae as well as the plant Nicotiana benthamiana through transgenic expression of Rhodiola salidroside biosynthetic genes. This study provides new tools for engineering sustainable production of salidroside in heterologous hosts.


Subject(s)
Rhodiola/metabolism , Acetaldehyde/metabolism , Glucosides/metabolism , Phenols/metabolism , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Rhodiola/genetics , Saccharomyces cerevisiae/metabolism
19.
Sci Rep ; 7(1): 12540, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28970519

ABSTRACT

Endophyte is a factor that affects the physiology and metabolism of plant. However, limited information is available on the mechanism of interaction between endophyte and plant. To investigate the effects of endophytic fungus ZPRs-R11, that is, Trimmatostroma sp., on salidroside and tyrosol accumulations in Rhodiola crenulata, signal transduction, enzyme gene expression, and metabolic pathway were investigated. Results showed that hydrogen peroxide (H2O2), nitric oxide (NO), and salicylic acid (SA) involved in fungus-induced salidroside and tyrosol accumulations. NO acted as an upstream signal of H2O2 and SA. No up- or down-stream relationship was observed, but mutual coordination existed between H2O2 and SA. Rate-limiting enzyme genes with the maximum expression activities were UDP-glucosyltransferase, tyrosine decarboxylase (TYDC), monoamine oxidase, phenylalanine ammonialyase (PAL), and cinnamic-4-hydroxylase sequentially. Nevertheless, the genes of tyrosine transaminase and pyruvate decarboxylase only indicated slightly higher activities than those in control. Thus, TYDC and PAL branches were the preferential pathways in ZPRs-R11-induced salidroside and tyrosol accumulation. Trimmatostroma sp. was a potential fungus for promoting salidroside and tyrosol accumulations. The present data also provided scientific basis for understanding complex interaction between endophytic fungus and R. crenulata.


Subject(s)
Ascomycota/metabolism , Endophytes/metabolism , Glucosides/metabolism , Phenols/metabolism , Rhodiola/metabolism , Ascomycota/genetics , Endophytes/genetics , Gene Expression Regulation, Enzymologic , Glucosides/biosynthesis , Glucosides/genetics , Hydrogen Peroxide/metabolism , Monoamine Oxidase/genetics , Nitric Oxide/metabolism , Phenylalanine Ammonia-Lyase/genetics , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/metabolism , Rhodiola/genetics , Rhodiola/microbiology , Salicylic Acid/metabolism , Tyrosine Decarboxylase/genetics
20.
Sci Rep ; 7(1): 10051, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855685

ABSTRACT

The roots and rhizomes of Rhodiola crenulata and R. rosea have been used worldwide as adaptogens for hundreds of years. However, rapid growth in demand has resulted in merchants using other species of Rhodiola as adulterants. Here, we surveyed 518 individuals representing 47 of the 55 species in the genus, including 253 R. crenulata individuals from 16 populations and 98 R. rosea individuals from 11 populations, to evaluate the utility of the internal transcribed spacer 2 (ITS2) barcode for identification of Rhodiola species. We detected six haplotypes in R. crenulata and only one haplotype in R. rosea. An obvious overlap between intra- and inter-specific distance was detected, and the authentication efficacy of ITS2, which was assessed by BLAST1, a nearest distance method, and a tree test, was much lower than in other groups. However, R. crenulata and R. rosea could be exactly identified. Analysis showed that the secondary structure of ITS2 differs in R. crenulata and its closest relatives. Our results demonstrated that both a mini barcode from ITS2 and the structure of ITS2 are effective markers for the identification of R. crenulata and R. rosea. This study represents the most comprehensive database of ITS2 barcodes in Rhodiola to date and will be useful in Rhodiola species identification.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Intergenic/genetics , DNA, Plant/genetics , Phylogeny , Rhodiola/genetics , China , DNA, Intergenic/classification , DNA, Plant/classification , Haplotypes , Humans , Nucleic Acid Conformation , Plant Extracts/chemistry , Plant Roots/chemistry , Plant Roots/genetics , Plants, Medicinal , Rhizome/chemistry , Rhizome/genetics , Rhodiola/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...