Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 102(12): 2560-2570, 2018 12.
Article in English | MEDLINE | ID: mdl-30346246

ABSTRACT

Rhododendrons are an important crop in the ornamental nursery industry, but are prone to Phytophthora root rot. Phytophthora root rot is a continuing issue on rhododendrons despite decades of research. Several Phytophthora species are known to cause root rot, but most research has focused on P. cinnamomi, and comparative information on pathogenicity is limited for other commonly encountered oomycetes, including Phytophthora plurivora and Pythium cryptoirregulare. In this study, three isolates each of P. cinnamomi, P. plurivora, and Py. cryptoirregulare were used to inoculate rhododendron cultivars Cunningham's White and Yaku Princess at two different inoculum levels. All three species caused disease, especially at the higher inoculum level. P. cinnamomi and P. plurivora were the most aggressive pathogens, causing severe root rot, whereas Py. cryptoirregulare was a weak pathogen that only caused mild disease. Within each pathogen species, isolate had no influence on disease. Both P. cinnamomi and P. plurivora caused more severe disease on Cunningham's White than on Yaku Princess, suggesting that the relative resistance and susceptibility among rhododendron cultivars might be similar for both pathogens. Reisolation of P. cinnamomi and P. plurivora was also greater from plants exhibiting aboveground symptoms of wilting and plant death and belowground symptoms of root rot than from those without symptoms. Results show that both P. cinnamomi and P. plurivora, but not Py. cryptoirregulare, are important pathogens causing severe root rot in rhododendron. This study establishes the risks for disease resulting from low and high levels of inoculum for each pathogen. Further research is needed to evaluate longer term risks associated with low inoculum levels on rhododendron health and to explore whether differences among pathogen species affect disease control.


Subject(s)
Phytophthora/physiology , Plant Diseases/statistics & numerical data , Pythium/physiology , Rhododendron/parasitology , Disease Susceptibility , Plant Diseases/parasitology , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/parasitology , Rhododendron/genetics , Rhododendron/immunology
2.
Int Immunopharmacol ; 44: 168-173, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28107754

ABSTRACT

Allergic airways disease (AAD) is one of the most common medical illnesses that is associated with an increased allergic airway inflammation. Hyperoside, an active compound isolated from Rhododendron brachycarpum G. Don, has been reported to have anti-inflammatory effect. The aim of this study was to analyze the protective effect of hyperoside on OVA-induced allergic airway inflammation in mice. In the present study, the mouse asthma model was induced by given OVA and hyperoside was administrated 1h before OVA challenge. The levels of IL-4, IL-5, IL-13, and IgE were detected by ELISA. H&E staining was used to assess lung histopathological changes. The expression of NF-κB p65, IκB, HO-1, and Nf-E2 related factor 2 (Nrf2) were measured by western blot analysis. The results showed that hyperoside significantly reduced the inflammatory cells infiltration and the levels of IL-4, IL-5, IL-13, and IgE. Hyperoside significantly inhibited OVA-induced oxidative stress as demonstrated by decreased MDA, and increased GSH and SOD levels. Treatment of hyperoside also inhibited OVA-induced airway hyperresponsiveness (AHR). Furthermore, the results showed that treatment of hyperoside significantly inhibited LPS-induced NF-κB activation. In addition, hyperoside was found to activate Nrf2/HO-1 signaling pathway. In conclusion, these results suggest that hyperoside ameliorates OVA-induced allergic airway inflammation by activating Nrf2 signaling pathway.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Lung/drug effects , NF-E2-Related Factor 2/metabolism , Pneumonia/drug therapy , Quercetin/analogs & derivatives , Rhododendron/immunology , Animals , Asthma/chemically induced , Cells, Cultured , Cytokines/blood , Humans , Immunoglobulin E/blood , Lung/pathology , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Ovalbumin/immunology , Oxidative Stress/drug effects , Quercetin/therapeutic use , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...